1
|
Pandey SN, Pathak NP, Sengupta A, Yadav S. Understanding the gelation properties of the fluorophenyl glycosides of arabinoside gelators: experimental and theoretical studies. SOFT MATTER 2024; 20:7111-7121. [PMID: 39041286 DOI: 10.1039/d4sm00521j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
In supramolecular gelation, fluorinated gelators are important due to the unique properties displayed by these compounds that arise out of the presence of fluorine atoms. Generally, incorporation of fluorine leads to higher mechanical strength of the gels compared to their non-fluorinated counterparts and this property is enhanced with increasing the number of fluorine atoms. Herein, we show that the incorporation of fluorine into the phenyl ring of phenyl arabinoside allows the molecule to act as a gelator, unlike the non-fluorinated compound. We also show that the mechanical strength and stiffness of the gels is not only dependent on the positions of the fluorine atoms but also guided by their number. Detailed experimental studies, supported by computational studies, allowed us to rationalize the observed supramolecular interactions and propose reasons based on the conformational preferences of these compounds that allow additional hydrogen bonds and π-π interactions which guide the self-assembly, in addition to the primary H-bonding interactions. This, in turn, affects the mechanical behavior of these gels.
Collapse
Affiliation(s)
- Sachchida N Pandey
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004, India.
| | - Navendu P Pathak
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004, India.
| | - Arunava Sengupta
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004, India.
| | - Somnath Yadav
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004, India.
| |
Collapse
|
2
|
Holey S, Nayak RR. Harnessing Glycolipids for Supramolecular Gelation: A Contemporary Review. ACS OMEGA 2024; 9:25513-25538. [PMID: 38911776 PMCID: PMC11190938 DOI: 10.1021/acsomega.4c00958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/12/2024] [Accepted: 05/17/2024] [Indexed: 06/25/2024]
Abstract
Within the scope of this review, our exploration spans diverse facets of amphiphilic glycolipid-based low-molecular-weight gelators (LMWGs). This journey explores glycolipid synthesis, self-assembly, and gelation with tailorable properties. It begins by examining the design of glycolipids and their influence on gel formation. Following this, a brief exploration of several gel characterization techniques adds another layer to the understanding of these materials. The final section is dedicated to unraveling the various applications of these glycolipid-based supramolecular gels. A meticulous analysis of available glycolipid gelators and their correlations with desired properties for distinct applications is a pivotal aspect of their investigation. As of the present moment, there exists a notable absence of a review dedicated exclusively to glycolipid gelators. This study aims to bridge this critical gap by presenting an overview that provides novel insights into their unique properties and versatile applications. This holistic examination seeks to contribute to a deeper understanding of molecular design, structural characteristics, and functional applications of glycolipid gelators by offering insights that can propel advancements in these converging scientific disciplines. Overall, this review highlights the diverse classifications of glycolipid-derived gelators and particularly emphasizes their capacity to form gels.
Collapse
Affiliation(s)
- Snehal
Ashokrao Holey
- Department
of Oils, Lipid Science and Technology, CSIR-Indian
Institute of Chemical Technology, Hyderabad 500 007, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rati Ranjan Nayak
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Institute
of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| |
Collapse
|
3
|
Sebastian S, Rohila Y, Yadav E, Bhardwaj P, Sudheer Babu Y, Maruthi M, Ansari A, Gupta MK. Supramolecular Organo/hydrogel-Fabricated Long Alkyl Chain α-Amidoamides as a Smart Soft Material for pH-Responsive Curcumin Release. Biomacromolecules 2024; 25:975-989. [PMID: 38189243 DOI: 10.1021/acs.biomac.3c01074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Low-molecular-mass gelators, due to their excellent biocompatibility, low toxicological profile, innate biodegradability and ease of fabrication have garnered significant interest as they self-assemble through non-covalent interactions. In this study, we have designed and synthesized a series of six α-amidoamides by varying the hydrophobic alkyl chain length (C12-C22), which were well characterized using different spectral techniques. These α-amidoamides formed self-assembled aggregates in a DMSO/water solvent system affording organo/hydrogels at 0.66% w/v, which is the minimum gelation concentration (MGC) making them as remarkable supergelators. The various functionalities present in these gelators such as amides and alkyl chain length pave the way toward excellent gelation mechanism through hydrogen bonding and van der Waals interaction as evidenced from FTIR spectroscopy. Notably, as the chain length increased, organo/hydrogels became more thermally stable. Rheological results showed that the stability and strength of these gelators were considerably impacted by variations in chain length. The SEM morphology revealed dense sheet architectures of the organo/hydrogel samples. Organo/hydrogels have a significant impact on the advancement of innovative drug delivery systems that respond to various stimuli, ushering in a new era in pharmaceutical technology. Inspired by this, we encapsulated curcumin, a chemopreventive medication, into the gel core and further released via gel-to-sol transition induced by pH variation at 37 °C, without any alteration in structure-activity relationship. The drug release behavior was observed by UV-vis spectroscopy. Moreover, cell viability and cell invasion experiments demonstrate that the gel formulations exhibit high biocompatibility and low cytotoxicity. Among the tested formulations, 5e+Cur exhibited remarkable efficacy in controlling A549 cell migration, suggesting significant potential for applications in the pharmaceutical industry.
Collapse
Affiliation(s)
- Sharol Sebastian
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Yajat Rohila
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Eqvinshi Yadav
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Priya Bhardwaj
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, Haryana,India
| | - Yangala Sudheer Babu
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, Haryana,India
| | - Mulaka Maruthi
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, Haryana,India
| | - Azaj Ansari
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Manoj K Gupta
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India
| |
Collapse
|
4
|
Holey SA, Basak P, Bojja S, Nayak RR. The fabrication of bifunctional supramolecular glycolipid-based nanocomposite gel: insights into electrocatalytic performance with effective selectivity towards gold. SOFT MATTER 2023; 19:6305-6313. [PMID: 37555430 DOI: 10.1039/d3sm00921a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Recovery, recycling, and reuse of metal waste have been re-intensified in the current era to build a sustainable future. In this context, gel nanocomposites were formulated by in situ reduction of gold within the low molecular weight gel matrix of synthetic glycolipid amphiphiles without using any external reducing/stabilizing agents. This strategy aroused the interest in formulating gel nanocomposites with preferential uptake of gold. The exclusive advantages owned by gold nanoparticle (GNP) embedded hydrogel offer an alternative to decorate the electrode surface without physical deposition/plating of the catalyst. Formation of GNP within the gel matrix was confirmed by the SPR peak in the UV-Visible spectrum. The particle size of 5-7 nm with zeta potential value in the range of -30.5 to -41.4 mV displayed good stability of nanoparticles in the gel matrix. Due to the encapsulation of nanoparticles within supramolecular assemblies of gel, a noteworthy increase in viscoelastic strength was observed, whereas the gelation behavior, melting temperature, and original fibrillar morphology of hydrogel remained intact. This hybrid gel exhibited good ionic conductivity (2.36 × 10-5 S cm-1) with appreciable ionic transport, remarkable oxygen reduction reaction (ORR) augmentation in reduction potential from 0 V to -0.12 V vs. Ag/AgCl as reference electrode, and excellent thermal stability in a wide temperature range. This green and efficient approach can pave the way for creating GNP-embedded hierarchical architecture that can act as bifunctional electrolyte/electrocatalyst material.
Collapse
Affiliation(s)
- Snehal Ashokrao Holey
- Department of Oils, Lipid Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Pratyay Basak
- Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Sreedhar Bojja
- Department of Analytical and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Rati Ranjan Nayak
- Department of Oils, Lipid Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
5
|
Tsupko P, Sagiri SS, Samateh M, Satapathy S, John G. Self-assembled Trehalose Amphiphiles as Molecular Gels: A Unique Formulation to Wax-free Cosmetics. J SURFACTANTS DETERG 2023; 26:369-385. [PMID: 37252108 PMCID: PMC10211368 DOI: 10.1002/jsde.12664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/10/2023] [Indexed: 02/12/2023]
Abstract
Trehalose has been used as an emollient and antioxidant in cosmetics. However, we aimed to explore trehalose amphiphiles as oil structuring agents for the preparation of gel-based lip balms as part of wax-free cosmetics. This article describes the synthesis of trehalose fatty acyl amphiphiles and their corresponding oleogel-based lip balms. Trehalose dialkanoates were synthesized by esterifying the two primary hydroxyls of trehalose with fatty acids (C4-C12) using a facile, regioselective lipase catalysis. The gelation potential of as-synthesized amphiphiles was evaluated in organic solvents and vegetable oils. Stable oleogels were subjected to X-ray diffraction (XRD), thermal (DSC), and rheological studies and further used for the preparation of lip balms. Trehalose dioctanoate (Tr8), trehalose didecanoate (Tr10) were found to be super gelators as their minimum gelation concentration is ≤ 0.2 wt%. XRD studies revealed their hexagonal columnar molecular packing while forming the fibrillar networks. Rheometry proved that the fatty acyl chain length of amphiphiles can influence the strength and flow properties of oleogels. Further rheometry (at 25 °C, 37 °C, and 50 °C) and DSC studies have validated that Tr8- and Tr10-based oleogels are stable for commercial applications. Tr8- and Tr10-based olive oil oleogels were used for the preparation of lip balms. The preliminary results suggested that the cumulative effect of trehalose's emolliency and vegetable oil gelling nature can be achieved with trehalose amphiphiles, specifically, Tr8 and Tr10. This study has also demonstrated that Tr8- and Tr10-based lip balms can be used as an alternative to beeswax and plant wax lip balms, indicating their huge potential to succeed as a new paradigm to formulate wax-free cosmetics.
Collapse
Affiliation(s)
- Polina Tsupko
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031
| | - Sai Sateesh Sagiri
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031
| | - Malick Samateh
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031
- Doctoral Program in Chemistry, The City University of New York, Graduate Center, New York, NY 10016
| | - Sitakanta Satapathy
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031
| | - George John
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031
- Doctoral Program in Chemistry, The City University of New York, Graduate Center, New York, NY 10016
| |
Collapse
|
6
|
Bhavya P, Soundarajan K, Malecki JG, Mohan Das T. Sugar-Based Phase-Selective Supramolecular Self-Assembly System for Dye Removal and Selective Detection of Cu 2+ Ions. ACS OMEGA 2022; 7:39310-39324. [PMID: 36340083 PMCID: PMC9631723 DOI: 10.1021/acsomega.2c05466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Simple, effective, and eco-friendly sugar-based phase-selective gelators were synthesized at a low cost. They showed high gelling ability toward a wide range of solvents at lower concentrations (minimum gelation concentration ∼0.3%). Preliminary tests reveal that these low molecular weight organogelators can immediately and phase-selectively gel benzene, toluene, petrol, and kerosene in water at room temperature. We also identified G13 in toluene as the good gelator, and the corresponding organogel proficiently removes water-soluble dyes from their concentrated aqueous solutions. This efficient removal of toxic organic solvents and dyes from water suggests promising applications in removing organic substances from contaminated water resources. The thermoreversible gel exhibits effective rechargeability up to five cycles of burning and gelation, which imply the flame stability of the gel. Interestingly, these compounds had a high detection ability toward Cu2+ ions with a state change from gel to the solution. The physical justification for gelation mechanisms and the molecular interaction with metal ions were further confirmed by computational studies.
Collapse
Affiliation(s)
- Panichiyil
Valiyaveetil Bhavya
- Department
of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur 610 005, India
| | - Kamalakannan Soundarajan
- Department
of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur 610 005, India
| | - Jan Grzegorz Malecki
- Institute
of Chemistry, University of Silesia, Ninth Szkolna Street, 40-006 Katowice, Poland
| | - Thangamuthu Mohan Das
- Department
of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur 610 005, India
| |
Collapse
|
7
|
Wang YC, Kegel LL, Knoff DS, Deodhar BS, Astashkin AV, Kim M, Pemberton JE. Layered supramolecular hydrogels from thioglycosides. J Mater Chem B 2022; 10:3861-3875. [PMID: 35470365 DOI: 10.1039/d2tb00037g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low molecular weight hydrogels are made of small molecules that aggregate via noncovalent interactions. Here, comprehensive characterization of the physical and chemical properties of hydrogels made from thioglycolipids of the disaccharides lactose and cellobiose with simple alkyl chains is reported. While thiolactoside hydrogels are robust, thiocellobioside gels are metastable, precipitating over time into fibrous crystals that can be entangled to create pseudo-hydrogels. Rheology confirms the viscoelastic solid nature of these hydrogels with storage moduli ranging from 10-600 kPa. Additionally, thiolactoside hydrogels are thixotropic which is a desirable property for many potential applications. Freeze-fracture electron microscopy of xerogels shows layers of stacked sheets that are entangled into networks. These structures are unique compared to the fibers or ribbons typically reported for hydrogels. Differential scanning calorimetry provides gel-to-liquid phase transition temperatures ranging from 30 to 80 °C. Prodan fluorescence spectroscopy allows assignment of phase transitions in the gels and other lyotropic phases of high concentration samples. Phase diagrams are estimated for all hydrogels at 1-10 wt% from 5 to ≥ 80 °C. These hydrogels represent a series of interesting materials with unique properties that make them attractive for numerous potential applications.
Collapse
Affiliation(s)
- Yu-Cheng Wang
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Boulevard, Tucson, Arizona 85721, USA.
| | - Laurel L Kegel
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Boulevard, Tucson, Arizona 85721, USA.
| | - David S Knoff
- Department of Biomedical Engineering, University of Arizona, 1127 E James E Rogers Way, Tucson, AZ 85721, USA
| | - Bhushan S Deodhar
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Boulevard, Tucson, Arizona 85721, USA.
| | - Andrei V Astashkin
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Boulevard, Tucson, Arizona 85721, USA.
| | - Minkyu Kim
- Department of Biomedical Engineering, University of Arizona, 1127 E James E Rogers Way, Tucson, AZ 85721, USA.,Department of Materials Science and Engineering, University of Arizona, 1235 E James E Rogers Way, Tucson, AZ 85721, USA.,BIO5 Institute, University of Arizona, 1657 E Helen Street, Tucson, AZ 85721, USA
| | - Jeanne E Pemberton
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Boulevard, Tucson, Arizona 85721, USA.
| |
Collapse
|
8
|
Tail-group unsaturation tailors the surface and self-assembly behavior of C18-fatty acid-based glycolipids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Holey SA, Sekhar KPC, Swain DK, Bojja S, Nayak RR. Supramolecular Glycolipid-Based Hydro-/Organogels with Enzymatic Bioactive Release Ability by Tuning the Chain Length and Headgroup Size. ACS Biomater Sci Eng 2022; 8:1103-1114. [PMID: 35196000 DOI: 10.1021/acsbiomaterials.1c01510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Designing of supramolecular hydro-/organogels having desired properties, biocompatibility, and stimuli responsiveness is a challenging task. Herein, the gelation ability of amphiphilic glycolipid-based gelators in a wide range of solvents is explored. The structure-function relationship was established by varying the chain length and polar headgroup size of amphiphilic gelators. The prepared hydro-/organogels were characterized by employing several techniques such as differential scanning calorimetry (DSC), rheology, field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), etc. The thermal stability of hydro-/organogels increased with an increase in chain length. Rheological analysis depicted that variation in chain length and headgroup size of amphiphilic gelators significantly affected the gel strength and stability. The self-assembled morphology of hydro-/organogel samples revealed the compact entangled fibrillar network structures. After comparing the energy-minimized molecular length with the d-spacing value obtained by XRD, interdigitated bilayer packing in the gel network was established. The bioactive encapsulation and enzymatic release study of hydro-/organogels portrayed their potential application in the biomedical field. To our delight, glycolipid 16M (C16 chain length) formed a molecular hydrogel with injectable and thixotropic behaviors. High critical strain value, thixotropy, injectability, thermoreversibility, and faster bioactive release for the 16M-W hydrogel proved crucial to predict its future applications. Overall, glycolipid amphiphiles designed by upholding proper hydrophilic-lipophilic balance can form multifunctional supramolecular hydrogels with excellent implementation in the drug delivery system.
Collapse
Affiliation(s)
- Snehal Ashokrao Holey
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kanaparedu P C Sekhar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Deepak Kumar Swain
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Sreedhar Bojja
- Department of Analytical and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Rati Ranjan Nayak
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
10
|
|
11
|
Holey SA, Sekhar KPC, Mishra SS, Kanjilal S, Nayak RR. Effect of oil unsaturation and wax composition on stability, properties and food applicability of oleogels. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Snehal Ashokrao Holey
- Department of Organic Synthesis and Process Chemistry CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Kanaparedu P. C. Sekhar
- Department of Organic Synthesis and Process Chemistry CSIR‐Indian Institute of Chemical Technology Hyderabad India
| | - Shalini Sanjay Mishra
- Department of Organic Synthesis and Process Chemistry CSIR‐Indian Institute of Chemical Technology Hyderabad India
| | - Sanjit Kanjilal
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
- Centre for Lipid Science and Technology CSIR‐Indian Institute of Chemical Technology Hyderabad India
| | - Rati Ranjan Nayak
- Department of Organic Synthesis and Process Chemistry CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
12
|
Morris J, Bietsch J, Bashaw K, Wang G. Recently Developed Carbohydrate Based Gelators and Their Applications. Gels 2021; 7:24. [PMID: 33652820 PMCID: PMC8006029 DOI: 10.3390/gels7010024] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/13/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Carbohydrate based low molecular weight gelators have been an intense subject of study over the past decade. The self-assembling systems built from natural products have high significance as biocompatible materials and renewable resources. The versatile structures available from naturally existing monosaccharides have enriched the molecular libraries that can be used for the construction of gelators. The bottom-up strategy in designing low molecular weight gelators (LMWGs) for a variety of applications has been adopted by many researchers. Rational design, along with some serendipitous discoveries, has resulted in multiple classes of molecular gelators. This review covers the literature from 2017-2020 on monosaccharide based gelators, including common hexoses, pentoses, along with some disaccharides and their derivatives. The structure-based design and structure to gelation property relationships are reviewed first, followed by stimuli-responsive gelators. The last section focuses on the applications of the sugar based gelators, including their utilization in environmental remediation, ion sensing, catalysis, drug delivery and 3D-printing. We will also review the available LMWGs and their structure correlations to the desired properties for different applications. This review aims at elucidating the design principles and structural features that are pertinent to various applications and hope to provide certain guidelines for researchers that are working at the interface of chemistry, biochemistry, and materials science.
Collapse
Affiliation(s)
| | | | | | - Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA; (J.M.); (J.B.); (K.B.)
| |
Collapse
|
13
|
Yadav E, Khatana AK, Sebastian S, Gupta MK. DAP derived fatty acid amide organogelators as novel carrier for drug incorporation and pH-responsive release. NEW J CHEM 2021. [DOI: 10.1039/d0nj04611f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Low-molecular mass fatty acid amide gelators were synthesized using 2,6-diaminopyridine as a linker and alkyl chains of varying lengths. The prepared organogel-elusions are able to trap and release ibuprofen molecule without changing its structure and activity.
Collapse
Affiliation(s)
- Eqvinshi Yadav
- Department of Chemistry
- School of Basic Sciences
- Central University of Haryana
- Haryana
- India
| | - Anil Kumar Khatana
- Department of Chemistry
- School of Basic Sciences
- Central University of Haryana
- Haryana
- India
| | - Sharol Sebastian
- Department of Chemistry
- School of Basic Sciences
- Central University of Haryana
- Haryana
- India
| | - Manoj K. Gupta
- Department of Chemistry
- School of Basic Sciences
- Central University of Haryana
- Haryana
- India
| |
Collapse
|
14
|
Binary mixture of short and long chain glycolipids and its enhanced surface activity. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|