1
|
Gimenez G, Marin E, Zanon A, Lapeyre V, Douliez JP, Ravaine V, Perro A. Study of the Interactions between Simple Coacervates and Chemicals for Water Depollution by Self-coacervation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39418541 DOI: 10.1021/acs.langmuir.4c02738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The use of microextraction or sequestration offers a promising method for removing chemicals from polluted water. Simple coacervates, which are water-in-water droplets, present the advantage of being formed at a given pH while being destroyed upon pH-change. Theoretically, such stimuli-responsiveness could be leveraged to recover the pollutant. Coacervates have shown exceptional capability in sequestering diverse chemicals and colloids. In this paper, we seek to understand more in-depth the sequestration mechanisms occurring with a variety of usual ionic pollutants, both qualitatively and quantitatively, since the presence of ions can affect the coacervate formation. By combining microscopy observations with spectroscopic analysis, we have precisely defined the nature and strength of the interactions between coacervates and chemicals. Our findings indicate that polluted solutions treated with coacervates show removal efficiencies ranging from 30% to 90%. We highlight that factors such as charge, concentration, solubility, and process play critical roles in the sequestration efficiency of these coacervates. Understanding these interactions is crucial for advancing several fields, particularly in water purification processes.
Collapse
Affiliation(s)
- Guillaume Gimenez
- Université de Bordeaux, Bordeaux INP, ISM, UMR 5255, Site ENSCBP, 16 avenue Pey Berland, Pessac 33607, France
| | - Etienne Marin
- Université de Bordeaux, Bordeaux INP, ISM, UMR 5255, Site ENSCBP, 16 avenue Pey Berland, Pessac 33607, France
| | - Agathe Zanon
- Université de Bordeaux, Bordeaux INP, ISM, UMR 5255, Site ENSCBP, 16 avenue Pey Berland, Pessac 33607, France
| | - Véronique Lapeyre
- Université de Bordeaux, Bordeaux INP, ISM, UMR 5255, Site ENSCBP, 16 avenue Pey Berland, Pessac 33607, France
| | - Jean-Paul Douliez
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Villenave d'Ornon F-33140, France
| | - Valérie Ravaine
- Université de Bordeaux, Bordeaux INP, ISM, UMR 5255, Site ENSCBP, 16 avenue Pey Berland, Pessac 33607, France
| | - Adeline Perro
- Université de Bordeaux, Bordeaux INP, ISM, UMR 5255, Site ENSCBP, 16 avenue Pey Berland, Pessac 33607, France
| |
Collapse
|
2
|
Kowalczuk K, Mons PJ, Ulrich HF, Wegner VD, Brendel JC, Mosig AS, Schacher FH. Asymmetric Block Extension of Star-Shaped [PEG-SH] 4 - toward Poly(dehydroalanine)-Functionalized PEG Hydrogels for Catch and Release of Charged Guest Molecules. Macromol Biosci 2024; 24:e2300230. [PMID: 37572335 DOI: 10.1002/mabi.202300230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/12/2023] [Indexed: 08/14/2023]
Abstract
With the incorporation of polyampholytic segments into soft matter, hydrogels can serve as a reservoir for a variety of charged molecules which can be caught and released upon changes in pH value. Asymmetric block extension of one arm for star-shaped poly(ethylene glycol) [PEG26 -SH]4 using short segments of polyampholytic poly(dehydroalanine) (PDha) is herein demonstrated while maintaining the functional thiol end groups for network formation. For subsequent hydrogel synthesis with up to 10 wt.% PDha a straightforward and biocompatible photoinitiated thiol-ene click reaction is exploited. The investigation of the swelling properties of the hydrogel revealed responsive behavior toward ionic strength and variations in pH value. Moreover, the reversible adsorption of the model dyes methylene blue (MB) and acid orange 7 (AO7) is investigated by UV-vis measurements and the procedure can be successfully transferred to the adsorption of the adhesion peptide RGDS resulting in an uptake of 1.5 wt% RGDS with regard to the dry weight of the hydrogel.
Collapse
Affiliation(s)
- Kathrin Kowalczuk
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Grüne Aue, 07754, Jena, Germany
| | - Peter J Mons
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Hans F Ulrich
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Valentin D Wegner
- Institute of Biochemistry II, Jena University Hospital, Kastanienallee 1, 07747, Jena, Germany
| | - Johannes C Brendel
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Alexander S Mosig
- Institute of Biochemistry II, Jena University Hospital, Kastanienallee 1, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Grüne Aue, 07754, Jena, Germany
| |
Collapse
|
3
|
Ali SA, Al-Muallem HA, Mazumder MAJ. Stimuli-Responsive Macromolecular Architecture by Butler Cyclopolymerizations: Synthesis and Applications. CHEM REC 2023; 23:e202200235. [PMID: 36461736 DOI: 10.1002/tcr.202200235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/15/2022] [Indexed: 12/04/2022]
Abstract
This article reviews the synthesis of polyzwitterions (PZs) (poly-carboxybetaines, -phosphonobetaines, and -sulfobetaines) having multiple pH-responsive centers. The synthesis follows the Butler cyclopolymerization protocol involving a multitude of diallylammonium salts and their copolymerization with SO2 and maleic acid. The PZs have been transformed into cationic-, anionic-polyelectrolytes, and polyampholytes under the influence of pH. Particular attention is given to the application of these polymers as antiscalants, mild steel corrosion inhibitors, components in constructing Aqueous Two-Phase Systems (ATPSs), and membrane modifiers. The ATPSs could be used to separate various biomolecules, including proteins. Many amphiphilic polymers incorporating a few mol % hydrophobic monomers have shown enhanced viscosities and could be suitable for applications in oil fields. The progress of applying Butler cyclopolymerization in reversible addition-fragmentation chain transfer (RAFT) chemistry has been discussed. Future works are expected to focus on RAFT cyclopolymerization to construct block copolymers.
Collapse
Affiliation(s)
- Shaikh A Ali
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.,Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Hasan A Al-Muallem
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.,Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohammad A J Mazumder
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.,Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
4
|
Nagler F, Schiller C, Kropf C, Schacher FH. Amphiphilic Graft Copolymers for Time-Delayed Release of Hydrophobic Fragrances. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56087-56096. [PMID: 36475582 DOI: 10.1021/acsami.2c16205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
When a controlled or retarded release of perfumes is required such as in cosmetics or cleaning products, polymers can be applied as encapsulation agents. With regard to such applications, we investigated two amphiphilic graft copolymers featuring a polydehydroalanine (PDha) backbone and different hydrophobic side chains. Hereby, grafting of aliphatic octyl side chains (PDha-g-EOct) enabled the adsorption of the aliphatic fragrance tetrahydrolinalool with moderate loads, whereas benzyl side chains (PDha-g-BGE) allowed taking up aromatic fragrances, for example, amylsalicylate-n with exceptionally high loads of up to 8 g g-1. The side-chain density was studied as well but had no significant influence on the loading. In addition, the characterization and quantification of the load by NMR and thermogravimetric analysis were compared, and it was also possible to load the aromatic model fragrance into the graft copolymer with aliphatic side chains. After 3 months, the load had decreased by 40-50% and, hence, such systems are of interest for a long-term release of perfumes over months. Although this study is a proof-of-concept, we foresee that such polyampholytic graft copolymers can be tailored for the adsorption of a variety of hydrophobic perfumes simply by altering polarity and chemistry of the side chain.
Collapse
Affiliation(s)
- Frieda Nagler
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, D-07743Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743Jena, Germany
| | - Christine Schiller
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, D-07743Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743Jena, Germany
| | - Christian Kropf
- Henkel AG & Co. KGaA, Henkelstraße 67, D-40589Düsseldorf, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, D-07743Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743Jena, Germany
| |
Collapse
|
5
|
Kunakham T, Hoijang S, Nguyen MD, Ananta S, Lee TR, Srisombat L. Magnesium Ferrite/Poly(cysteine methacrylate) Nanocomposites for pH-Tunable Selective Removal and Enhanced Adsorption of Indigo Carmine and Methylene Blue. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Tanapong Kunakham
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai50200, Thailand
| | - Supawitch Hoijang
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai50200, Thailand
| | - Minh Dang Nguyen
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, Texas77204-5003, United States
| | - Supon Ananta
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai50200, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai50200, Thailand
| | - T. Randall Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, Texas77204-5003, United States
| | - Laongnuan Srisombat
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai50200, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai50200, Thailand
| |
Collapse
|
6
|
Lunkad R, Biehl P, Murmiliuk A, Blanco PM, Mons P, Štěpánek M, Schacher FH, Košovan P. Simulations and Potentiometric Titrations Enable Reliable Determination of Effective p Ka Values of Various Polyzwitterions. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Raju Lunkad
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| | - Philip Biehl
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany
- Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany
| | - Anastasiia Murmiliuk
- Jülich Centre for Neutron Science JCNS at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Pablo M. Blanco
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
- Department of Material Science and Physical Chemistry, Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Spain
| | - Peter Mons
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany
- Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany
| | - Miroslav Štěpánek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| | - Felix H. Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany
- Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany
| | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| |
Collapse
|
7
|
Polyethylenimine polyampholytes: Synthesis, characterization and dye adsorption study. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03074-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Hofman AH, Pedone M, Kamperman M. Protected Poly(3-sulfopropyl methacrylate) Copolymers: Synthesis, Stability, and Orthogonal Deprotection. ACS POLYMERS AU 2022; 2:169-180. [PMID: 35698473 PMCID: PMC9185742 DOI: 10.1021/acspolymersau.1c00044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022]
Abstract
Because of their permanent charge, strong polyelectrolytes remain challenging to characterize, in particular, when they are combined with hydrophobic features. For this reason, they are typically prepared through a postmodification of a fully hydrophobic precursor. Unfortunately, these routes often result in an incomplete functionalization or otherwise require harsh reaction conditions, thus limiting their applicability. To overcome these problems, in this work a strategy is presented that facilitates the preparation of well-defined strong polyanions by starting from protected 3-sulfopropyl methacrylate monomers. Depending on the chemistry of the protecting group, the hydrophobic precursor could be quantitatively converted into a strong polyanion under nucleophilic, acidic, or basic conditions. As a proof of concept, orthogonally protected diblock copolymers were synthesized, selectively deprotected, and allowed to self-assemble in aqueous solution. Further conversion into a fully water-soluble polyanion was achieved by deprotecting the second block as well.
Collapse
Affiliation(s)
- Anton H. Hofman
- Polymer Science, Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Matteo Pedone
- Polymer Science, Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marleen Kamperman
- Polymer Science, Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
9
|
Queiros Campos J, Boulares M, Raboisson-Michel M, Verger-Dubois G, García Fernández JM, Godeau G, Kuzhir P. Improved Magneto-Microfluidic Separation of Nanoparticles through Formation of the β-Cyclodextrin-Curcumin Inclusion Complex. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14345-14359. [PMID: 34855402 DOI: 10.1021/acs.langmuir.1c02245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular adsorption to the nanoparticle surface may switch the colloidal interactions from repulsive to attractive and promote nanoparticle agglomeration. If the nanoparticles are magnetic, then their agglomerates exhibit a much stronger response to external magnetic fields than individual nanoparticles. Coupling between adsorption, agglomeration, and magnetism allows a synergy between the high specific area of nanoparticles (∼100 m2/g) and their easy guidance or separation by magnetic fields. This yet poorly explored concept is believed to overcome severe restrictions for several biomedical applications of magnetic nanoparticles related to their poor magnetic remote control. In this paper, we test this concept using curcumin (CUR) binding (adsorption) to β-cyclodextrin (βCD)-coated iron oxide nanoparticles (IONP). CUR adsorption is governed by host-guest hydrophobic interactions with βCD through the formation of 1:1 and, possibly, 2:1 βCD:CUR inclusion complexes on the IONP surface. A 2:1 stoichiometry is supposed to promote IONP primary agglomeration, facilitating the formation of the secondary needle-like agglomerates under external magnetic fields and their magneto-microfluidic separation. The efficiency of these field-induced processes increases with CUR concentration and βCD surface density, while their relatively short timescale (<5 min) is compatible with magnetic drug delivery application.
Collapse
Affiliation(s)
- J Queiros Campos
- University Côte d'Azur, CNRS UMR 7010, Institute of Physics of Nice (INPHYNI) - Parc Valrose, Nice 06108, France
| | - M Boulares
- University of Carthage, Faculty of Sciences of Bizerte, Centre des Recherches et des Technologies des Eaux (CERTE) Technopole de Borj-Cédria, Route touristique de Soliman BPn° 273, Soliman 8020, Tunisia
| | - M Raboisson-Michel
- University Côte d'Azur, CNRS UMR 7010, Institute of Physics of Nice (INPHYNI) - Parc Valrose, Nice 06108, France
- Axlepios Biomedical, 1st Avenue, 5th Street, Carros 06510, France
| | - G Verger-Dubois
- Axlepios Biomedical, 1st Avenue, 5th Street, Carros 06510, France
| | - J M García Fernández
- Instituto de Investigaciones Qumicas, CSIC and Universidad de Sevilla, Av. Amrico Vespucio 49, Isla de la Cartuja, Sevilla 41092, Spain
| | - G Godeau
- University Côte d'Azur, CNRS UMR 7010, Institute of Physics of Nice (INPHYNI) - Parc Valrose, Nice 06108, France
| | - P Kuzhir
- University Côte d'Azur, CNRS UMR 7010, Institute of Physics of Nice (INPHYNI) - Parc Valrose, Nice 06108, France
| |
Collapse
|
10
|
Nabiyan A, Max JB, Neumann C, Heiland M, Turchanin A, Streb C, Schacher FH. Polyampholytic Graft Copolymers as Matrix for TiO 2 /Eosin Y/[Mo 3 S 13 ] 2- Hybrid Materials and Light-Driven Catalysis. Chemistry 2021; 27:16924-16929. [PMID: 33547705 PMCID: PMC9290844 DOI: 10.1002/chem.202100091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Indexed: 12/12/2022]
Abstract
An effective strategy to enhance the performance of inorganic semiconductors is moving towards organic-inorganic hybrid materials. Here, we report the design of core-shell hybrid materials based on a TiO2 core functionalized with a polyampholytic (poly(dehydroalanine)-graft-(n-propyl phosphonic acid acrylamide) shell (PDha-g-PAA@TiO2 ). The PDha-g-PAA shell facilitates the efficient immobilization of the photosensitizer Eosin Y (EY) and enables electronic interactions between EY and the TiO2 core. This resulted in high visible-light-driven H2 generation. The enhanced light-driven catalytic activity is attributed to the unique core-shell design with the graft copolymer acting as bridge and facilitating electron and proton transfer, thereby also preventing the degradation of EY. Further catalytic enhancement of PDha-g-PAA@TiO2 was possible by introducing [Mo3 S13 ]2- cluster anions as hydrogen-evolution cocatalyst. This novel design approach is an example for a multi-component system in which reactivity can in future be independently tuned by selection of the desired molecular or polymeric species.
Collapse
Affiliation(s)
- Afshin Nabiyan
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaLessingstraße 807743JenaGermany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaPhilosophenweg 707743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
| | - Johannes Bernhard Max
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaLessingstraße 807743JenaGermany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaPhilosophenweg 707743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
| | - Christof Neumann
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaPhilosophenweg 707743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
- Institute of Physical Chemistry and Abbe Center of PhotonicsFriedrich Schiller University JenaLessingstr. 1007743JenaGermany
| | - Magdalena Heiland
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Andrey Turchanin
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaPhilosophenweg 707743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
- Institute of Physical Chemistry and Abbe Center of PhotonicsFriedrich Schiller University JenaLessingstr. 1007743JenaGermany
| | - Carsten Streb
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Felix Helmut Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaLessingstraße 807743JenaGermany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaPhilosophenweg 707743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
| |
Collapse
|
11
|
Csenki JT, Mészáros Á, Gonda Z, Novák Z. Stereoselective Direct N-Trifluoropropenylation of Heterocycles with a Hypervalent Iodonium Reagent. Chemistry 2021; 27:15638-15643. [PMID: 34549840 PMCID: PMC9293340 DOI: 10.1002/chem.202102840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 12/16/2022]
Abstract
The availability and synthesis of fluorinated enamine derivatives such as N-(3,3,3-trifluoropropenyl)heterocycles are challenging, especially through direct functionalization of the heterocyclic scaffold. Herein, a stereoselective N-trifluoropropenylation method based on the use of a bench-stable trifluoropropenyl iodonium salt is described. This reagent enables the straightforward trifluoropropenylation of various N-heterocycles under mild reaction conditions, providing trifluoromethyl enamine type moieties with high stereoselectivity and efficiency.
Collapse
Affiliation(s)
- János T Csenki
- ELTE "Lendület" Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, 1117, Budapest, Hungary
| | - Ádám Mészáros
- ELTE "Lendület" Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, 1117, Budapest, Hungary
| | - Zsombor Gonda
- ELTE "Lendület" Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, 1117, Budapest, Hungary
| | - Zoltán Novák
- ELTE "Lendület" Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, 1117, Budapest, Hungary
| |
Collapse
|
12
|
Trindade SG, da Silveira NP, Loh W. Aggregation Behavior of Asymmetric Diblock Polyampholyte in Aqueous Solution over a Wide Range of pH and Ionic Strength. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Suelen G. Trindade
- Institute of Chemistry University of Campinas (UNICAMP) P.O. Box 6154 Campinas São Paulo 13083‐970 Brazil
| | - Nádya P. da Silveira
- Institute of Chemistry Federal University of Rio Grande do Sul (UFRGS) P.O. Box 9500 Porto Alegre Rio Grande do Sul 90650‐001 Brazil
| | - Watson Loh
- Institute of Chemistry University of Campinas (UNICAMP) P.O. Box 6154 Campinas São Paulo 13083‐970 Brazil
| |
Collapse
|
13
|
Polyelectrolyte Functionalisation of Track Etched Membranes: Towards Charge-Tuneable Adsorber Materials. MEMBRANES 2021; 11:membranes11070509. [PMID: 34357159 PMCID: PMC8304886 DOI: 10.3390/membranes11070509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/04/2022]
Abstract
Porous adsorber membranes are promising materials for the removal of charged pollutants, such as heavy metal ions or organic dyes as model substances for pharmaceuticals from water. Here, we present the surface grafting of polyethylene terephthalate (PET) track-etched membranes having well defined cylindrical pores of 0.2 or 1 µm diameter with two polyelectrolytes, poly(2-acrylamido glycolic acid) (PAGA) and poly(N-acetyl dehydroalanine) (PNADha). The polyelectrolyte functionalised membranes were characterised by changes in wettability and hydraulic permeability in response to the external stimuli pH and the presence of Cu2+ ions. The response of the membranes proved to be consistent with functionalisation inside the pores, and the change of grafted polyelectrolyte macro-conformation was due to the reversible protonation or binding of Cu2+ ions. Moreover, the adsorption of the model dye methylene blue was studied and quantified. PAGA-grafted membranes showed an adsorption behavior following the Langmuir model for methylene blue.
Collapse
|
14
|
Staňo R, Košovan P, Tagliabue A, Holm C. Electrostatically Cross-Linked Reversible Gels—Effects of pH and Ionic Strength. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Roman Staňo
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic
| | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic
| | - Andrea Tagliabue
- Dipartimento di Scienza ed Alta Tecnologia, Universitá degli Studi dell’Insubria, via Valleggio 9, 22100 Como, Italy
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
| |
Collapse
|
15
|
Synthesis and application of a poly(bis-zwitterion) containing chelating motifs of N-(2-aminoethyl)iminodiacetic acid. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|