1
|
Huang H, Tang F, Gan W, Li R, Hou Z, Zhou T, Ma N. GelMA/tannic acid hydrogel decorated polypropylene mesh facilitating regeneration of abdominal wall defects. Biomater Sci 2024. [PMID: 39526500 DOI: 10.1039/d4bm01066c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Polypropylene (PP) mesh is a widely used prosthetic material in hernia repair due to its excellent mechanical properties and appropriate biocompatibility. However, its application is limited due to severe adhesion between the mesh and the abdominal viscera, leading to complications such as chronic pain, intestinal obstruction, and hernia recurrence. Currently, building anti-adhesive PP mesh remains a formidable challenge. In this work, a novel anti-adhesive PP mesh (PPM/GelMA/TA) was designed with a simple and efficient in situ gel of GelMA solution on the surface of PP mesh and further crosslinking of tannic acid (TA). It was demonstrated that PPM/GelMA/TA has good biocompatibility and excellent antioxidant property and effectively activates the polarization of macrophages toward the M2 phenotype in vitro. In addition, PPM/GelMA/TA could inhibit the growth of bacteria, which is of great significance for preventing postoperative infections. Furthermore, in the repair of full-thickness abdominal wall defects in rats, PPM/GelMA/TA reduced inflammation, promoted macrophage M2 polarization, and collagen deposition and angiogenesis so that does not cause any abdominal adhesion compared with PP mesh. As a result, our PPM/GelMA/TA shows an attractive prospect in the treatment of abdominal wall defect without adhesions.
Collapse
Affiliation(s)
- Haonan Huang
- Department of General Surgery (Hernia and Abdominal Wall Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, P. R. China
| | - Fuxin Tang
- Department of General Surgery (Hernia and Abdominal Wall Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, P. R. China
| | - Wenchang Gan
- Department of General Surgery (Hernia and Abdominal Wall Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, P. R. China
| | - Ruibing Li
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, P. R. China
| | - Zehui Hou
- Department of General Surgery (Hernia and Abdominal Wall Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, P. R. China
| | - Taicheng Zhou
- Department of General Surgery (Hernia and Abdominal Wall Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, P. R. China
| | - Ning Ma
- Department of General Surgery (Hernia and Abdominal Wall Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, P. R. China
| |
Collapse
|
2
|
Huang L, Wu T, Sun J, Lin X, Peng Y, Zhang R, Gao Y, Xu S, Sun Y, Zhou Y, Duan B. Biocompatible chitin-based Janus hydrogel membranes for periodontal repair. Acta Biomater 2024:S1742-7061(24)00630-5. [PMID: 39461689 DOI: 10.1016/j.actbio.2024.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/03/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Periodontal defects caused by severe periodontitis are a widespread issue globally. Guided tissue regeneration (GTR) using barrier membranes for alveolar bone repair is a common clinical treatment. However, most commercially available collagen barrier membranes are expensive and lack the antibacterial properties essential for effective bone regeneration. Herein, we report a natural polysaccharide chitin hydrogel barrier membrane with a Janus structure (ChT-PDA-p-HAP), featuring high antibacterial and protein-repelling activity on the outer side and good osteogenesis ability on the inner side. This multifunctional membrane is fabricated though a three-step process: (i) dissolution and regeneration of chitin, (ii) co-deposition with polydopamine (PDA) and poly(sulfobetaine methacrylate) (pSBMA), and (iii) coating with gelatin-hydroxyapatite (gelatin-HAP). In vitro cell experiments demonstrated the membrane's high biocompatibility and significant osteogenic activity. In vivo implantation in rats with periodontal defects revealed that the cemento-enamel junction index of the ChT-PDA-p-HAP membrane (1.165 mm) was superior to that of the commercial Bio-Gide® membrane (1.350 mm). This work presents a method for fabricating a chitin-based Janus barrier membrane, potentially expanding the use of chitin in tissue engineering. STATEMENT OF SIGNIFICANCE: This study introduces a Janus hydrogel membrane based on chitin, tailored for guided tissue regeneration in periodontal defects. By combining antibacterial properties and osteogenic capabilities in a single membrane, the ChT-PDA-p-HAP membrane represents a significant advancement over traditional collagen barriers. Its outer surface, enhanced by Cu2+ and PDA-pSBMA coatings, resists bacterial colonization and protein adhesion effectively, while the inner side, coated with gelatin-HAP, promotes robust bone formation. In vitro experiments demonstrate high biocompatibility and substantial osteogenic differentiation, while in vivo testing in rat models confirms good therapeutic efficacy compared to commercial membranes. This multifunctional approach not only utilizes chitin's abundant natural resource but also integrates simple coating techniques to enhance therapeutic outcomes in periodontal tissue engineering, offering promising avenues for broader biomedical applications.
Collapse
Affiliation(s)
- Lin Huang
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan 430072, China
| | - Tao Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jing Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Research Center of Oral and Maxillofacial Development and Regeneration, Center of Stomatology, Xiangya Hospital, Central South University, Changsha 410000, China
| | - Xinghuan Lin
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan 430072, China
| | - Yuhao Peng
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan 430072, China
| | - Rongrong Zhang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan 430072, China
| | - Yang Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Shuo Xu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yuxin Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yi Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Bo Duan
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
3
|
Ding R, Yu L, Peng P, Zhang J, Xu H, Li H, Wu H, Yan L, Li P. Durable and Robust Antibacterial Polypropylene Hernia Mesh for Abdominal Wall Defect Repair. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25686-25697. [PMID: 38739862 DOI: 10.1021/acsami.4c02151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Polypropylene (PP) mesh is commonly used in repairing abdominal wall hernia (AWH). However, the use of synthetic prosthesis comes with the risk of developing a prosthetic infection, resulting in delayed healing, secondary surgery, and potentially increased mortality. To address these issues, a facile surface functionalization strategy for PP mesh based on phytic acid (PA) and polyhexamethylene guanidine (PHMG) was constructed through a one-step co-deposition process, referred to as the PA/PHMG coating. The development of PA/PHMG coating is mainly attributed to the surface affinity of PA and the electrostatic interactions between PA and PHMG. The PA/PHMG coating could be completed within 4 h under mild conditions. The prepared PA/PHMG coatings on PP mesh surfaces exhibited desirable biocompatibility toward mammalian cells and excellent antibacterial properties against the notorious "superbug" methicillin-resistant Staphylococcus aureus (MRSA) and tetracycline-resistant Escherichia coli (TRE). The PA/PHMG-coated PP meshes showed killing ratios of over 99% against MRSA in an infected abdominal wall hernia repair model. Furthermore, histological and immunohistochemical analysis revealed a significantly attenuated degree of neutrophil infiltration in the PA/PHMG coating group, attributed to the decreased bacterial numbers alleviating the inflammatory response at the implant sites. Meanwhile, the pristine PP and PA/PHMG-coated meshes showed effective tissue repair, with the PA/PHMG coating group exhibiting enhanced angiogenesis compared with pristine PP meshes, suggesting superior tissue restoration. Additionally, PP meshes with the highest PHMG weight ratio (PA/PHMG(3)) exhibited excellent long-term robustness under phosphate-buffered saline (PBS) immersion with a killing ratio against MRSA still exceeding 95% after 60 days of PBS immersion. The present work provides a facile and promising approach for developing antibacterial implants.
Collapse
Affiliation(s)
- Rui Ding
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Luofeng Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Pandi Peng
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Jiajun Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Haoqi Xu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Haoyu Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Hanxue Wu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Likun Yan
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an 710072, China
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, China
| |
Collapse
|
4
|
Ding R, Peng P, Huo J, Wang K, Liu P, Wu H, Yan L, Li P. pH-Responsive antibacterial metal-phenolic network coating on hernia meshes. Biomater Sci 2024; 12:2730-2742. [PMID: 38639196 DOI: 10.1039/d4bm00289j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Polypropylene (PP) mesh is widely used in hernioplasty, but it is prone to contamination by pathogenic bacteria. Here, we present an infection microenvironment-responsive metal-phenolic network (MPN) coating, which is made up of Cu2+ and tannic acid (TA) (referred to as CT coating), and is fabricated on PP meshes by layer-by-layer (LbL) assembly. The CT coating provided a robust protection for the PP mesh from pathogenic bacterial infection in a pH-responsive manner due to the pH-responsive disassembly kinetics of MPN complexes. Moreover, the PP meshes with ten CT coating cycles (PP-CT(10)) exhibited excellent stability in a physiological environment, with the killing ratio against "superbug" methicillin-resistant Staphylococcus aureus (MRSA) at pH 5.5 exceeding 99% even after 28 days of PBS (pH 7.4) immersion. In addition, the PP-CT(10) exhibited excellent in vivo anti-infective ability in a rodent subcutaneous implant MRSA infection model, and the results of histological and immunohistochemical analyses demonstrated that the reduced bacterial number alleviated the inflammatory response at implant sites. This study revealed that MPN coating is a promising strategy, which could provide a self-defensive ability for various implants to combat post-surgical infections in a pH-responsive manner.
Collapse
Affiliation(s)
- Rui Ding
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an, 710072, China.
| | - Pandi Peng
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an, 710072, China.
| | - Jingjing Huo
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an, 710072, China.
| | - Kun Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an, 710072, China.
| | - Pengxiang Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an, 710072, China.
| | - Hanxue Wu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an, 710072, China.
| | - Likun Yan
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China.
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University (NPU), Xi'an, 710072, China.
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, China
| |
Collapse
|
5
|
Wu Z, Fan J, Hu J, Xie W, Sun S, Hu S, Li C, Wang Z, Ituen E. Temperature-responsive salt-resistant poly(sulfobetaine methacrylate)-based emulsifiers for heavy oils. Int J Biol Macromol 2024; 268:131977. [PMID: 38692540 DOI: 10.1016/j.ijbiomac.2024.131977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
The emulsions prepared with most currently reported emulsifiers are stable only at room temperature and are susceptible to demulsification at higher temperatures. This thermal instability prevents their use in high-temperature and high-salt environments encountered oilfield extraction. To address this issue, in this study, two temperature-responsive emulsifiers, PSBMA and CS-PSBMA, were synthesized. Both emulsifiers exhibited the ability to form stable emulsions within the temperature range of 60-80 °C and undergo demulsification at 20-40 °C. A comprehensive investigation was conducted to assess the impact of emulsifier concentration, water-to-oil ratio, and salt ion concentration on the stability of emulsions formed by these two emulsifiers. The results demonstrated their remarkable emulsification capabilities across diverse oil phases. Notably, the novel emulsifier CS-PSBMA, synthesized through the grafting chitosan (CS) onto PSBMA, not only exhibits superior emulsion stability and UCST temperature responsiveness but also significantly enhanced the salt resistance of the emulsion. Remarkably, the emulsion maintained its stability even in the presence of monovalent salt ions at concentrations up to 2 mol/L (equivalent to a mineralization level of 1.33 × 105 mg/L in water) and divalent salt ions at concentrations up to 3 mol/L (equivalent to a mineralization level of 2.7 × 105 mg/L in water). The emulsions stabilized by both emulsifiers are resilient to harsh reservoir conditions and effectively emulsify heavy oils, enabling high-temperature emulsification and low-temperature demulsification. These attributes indicate their promising potential for industrial applications, particularly in the field of enhanced oil recovery.
Collapse
Affiliation(s)
- Ziqi Wu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Junjie Fan
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Jianwen Hu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Wenqing Xie
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Shuangqing Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Institute of Advanced Materials, China University of Petroleum (East China), Qingdao, Shandong 266580, China.
| | - Songqing Hu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Institute of Advanced Materials, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Chunling Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Institute of Advanced Materials, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Zhikun Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Institute of Advanced Materials, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Ekemini Ituen
- Materials and Oilfield Chemistry Research Group, University of Uyo, Uyo, Nigeria
| |
Collapse
|
6
|
Mao Y, Wang Q, Zhang H, Li Y, Wang L. Zwitterion mediated anti-protein adsorption on polypropylene mesh to reduce inflammation for efficient hernia repair. BIOMATERIALS ADVANCES 2024; 158:213769. [PMID: 38266333 DOI: 10.1016/j.bioadv.2024.213769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/26/2024]
Abstract
The effectiveness of polypropylene (PP) mesh is often compromised by severe inflammation. Engineering anti-inflammatory coatings has significant implications for PP mesh to repair unwanted hernias. Here, we presented a facile strategy to develop an anti-fouling coating consisting of zwitterionic poly(carboxybetaine methacrylate) (PCBMA), which could prohibit protein adsorption to endow PP mesh with anti-inflammatory efficacy. The incorporation of PCBMA coating had little impact on the raw features of PP mesh. While the modified mesh PCBMA-PP possessed noticeable hydrophilicity increase and surface charge reduction. The excellent lubricity and surface stability enabled PCBMA-PP to exhibit superior anti-fouling capacity, thus efficiently inhibiting the adsorption of proteins. In vivo experiments showed that incorporating the PCBMA layer could provide PP meshes with outstanding anti-inflammatory effects and tissue compatibility for repairing hernias.
Collapse
Affiliation(s)
- Ying Mao
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai 201620, China; National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qian Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai 201620, China
| | - Huiru Zhang
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai 201620, China
| | - Yan Li
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai 201620, China.
| | - Lu Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai 201620, China
| |
Collapse
|
7
|
Liang K, Ding C, Li J, Yao X, Yu J, Wu H, Chen L, Zhang M. A Review of Advanced Abdominal Wall Hernia Patch Materials. Adv Healthc Mater 2024; 13:e2303506. [PMID: 38055999 DOI: 10.1002/adhm.202303506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Indexed: 12/08/2023]
Abstract
Tension-free abdominal wall hernia patch materials (AWHPMs) play an important role in the repair of abdominal wall defects (AWDs), which have a recurrence rate of <1%. Nevertheless, there are still significant challenges in the development of tailored, biomimetic, and extracellular matrix (ECM)-like AWHPMs that satisfy the clinical demands of abdominal wall repair (AWR) while effectively handling post-operative complications associated with abdominal hernias, such as intra-abdominal visceral adhesion and abnormal healing. This extensive review presents a comprehensive guide to the high-end fabrication and the precise selection of these advanced AWHPMs. The review begins by briefly introducing the structures, sources, and properties of AWHPMs, and critically evaluates the advantages and disadvantages of different types of AWHPMs for AWR applications. The review subsequently summarizes and elaborates upon state-of-the-art AWHPM fabrication methods and their key characteristics (e.g., mechanical, physicochemical, and biological properties in vitro/vivo). This review uses compelling examples to demonstrate that advanced AWHPMs with multiple functionalities (e.g., anti-deformation, anti-inflammation, anti-adhesion, pro-healing properties, etc.) can meet the fundamental clinical demands required to successfully repair AWDs. In particular, there have been several developments in the enhancement of biomimetic AWHPMs with multiple properties, and additional breakthroughs are expected in the near future.
Collapse
Affiliation(s)
- Kaiwen Liang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
| | - Cuicui Ding
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, P. R. China
| | - Jingyi Li
- School of Basic Medicine, Fujian Medical University, Fuzhou, Fujian, 350122, P. R. China
| | - Xiao Yao
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, P. R. China
| | - Jingjing Yu
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, P. R. China
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
| | - Lihui Chen
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
| | - Min Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
- National Forestry & Grassland Administration Key Laboratory for Plant Fiber Functional Materials, Fuzhou, Fujian, 350000, P. R. China
| |
Collapse
|
8
|
Chu CW, Tsai CH. Surface Modification of Nanopores in an Anodic Aluminum Oxide Membrane through Dopamine-Assisted Codeposition with a Zwitterionic Polymer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5245-5254. [PMID: 38408434 PMCID: PMC10938887 DOI: 10.1021/acs.langmuir.3c03654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Surface modification through dopamine-assisted codeposition with functional zwitterionic polymers can provide a simple and one-step functionalization under ambient conditions with robust and stable dopamine-surface interactions to improve the hydrophilicity of nanoporous membranes, thereby expanding their applicability to nanofiltration, ion transport, and blood purification. However, a significant knowledge gap remains in our comprehension of the mechanisms underlying the formation and deposition of dopamine/polymer aggregated coatings within nanoscale confinement. This study explores a feasible method for membrane modification through the codeposition of dopamine hydrochloride (DA) and poly(sulfobetaine methacrylate) (PSBMA) on nanopores of anodic aluminum oxide (AAO) membranes. Our findings demonstrate that the aggregated coatings of DA and PSBMA nanocomposites can effectively deposit on the surfaces within cylindrical AAO nanopores, significantly enhancing the hydrophilicity of the nanoporous membranes. The morphology and homogeneity of the nanocomposite coatings within the nanopores are further investigated by varying PSBMA molecular weights and AAO pore sizes, revealing that higher molecular weights result in more uniform deposition. This work sheds light on understanding the codeposition of DA and zwitterionic polymers in nanoscale environments, highlighting a straightforward and stable surface modification process of nanoporous membranes involving functional polymers.
Collapse
Affiliation(s)
- Chien-Wei Chu
- Department of Chemical Engineering, Feng Chia University, Xitun District, Taichung 40724, Taiwan
| | - Chia-Hsuan Tsai
- Department of Chemical Engineering, Feng Chia University, Xitun District, Taichung 40724, Taiwan
| |
Collapse
|
9
|
Li JL, Han YB, Yang GY, Tian M, Shi CS, Tian D. Inflammation in Hernia and the epigenetic control. Semin Cell Dev Biol 2024; 154:334-339. [PMID: 37080853 DOI: 10.1016/j.semcdb.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/13/2023] [Accepted: 04/01/2023] [Indexed: 04/22/2023]
Abstract
Inflammation is much more intrinsic to hernia then is what is generally appreciated. The occurrence of hernias is associated with swelling, stress and inflammation. Surgery remains an important intervention to treat hernias and for many years, post-surgical levels of inflammatory cytokines have been evaluated to compare the different strategies for their comparative advantages. All surgical procedures elicit some sort of inflammatory response and moreover the meshes used for hernia repair are also associated with elevated inflammatory response, although some favor predominantly a pro-inflammatory response while the other meshes favor anti-inflammatory response. An estimated more than 90% of hernia repairs involve some meshes with polypropylene considered as the gold standard. Efforts are underway to modulate polypropylene meshes associated inflammation through use of alternative materials as well as modifications to polypropylene meshes themselves. In the last one decade, miRNAs have entered hernia research and the data on a role of miRNAs in different hernias is slowly emerging, providing the first evidence of epigenetics in hernia. Some reports are connecting miRNAs with inflammation in hernia. All these aspects, such as, surgery-related to mesh-related inflammation as well as miRNA-related inflammation, are discussed in this article to present an up-to-date information on the topic.
Collapse
Affiliation(s)
- Jin-Long Li
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ying-Bo Han
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Gui-Yun Yang
- Department of Operating Room, The Second Hospital of Jilin University, Changchun, China
| | - Miao Tian
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| | - Chang-Sai Shi
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Dan Tian
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
10
|
Wang X, Wei H, Ou Y, Li Z, Luo F, Tan H, Li J. Polypropylene composite mesh modified by polyurethane gel with ROS scavenging and anti-inflammatory effects for pelvic floor repair. Colloids Surf B Biointerfaces 2023; 230:113518. [PMID: 37690226 DOI: 10.1016/j.colsurfb.2023.113518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023]
Abstract
Development of an inflammation modulating polypropylene (PP) mesh in pelvic floor repair is an urgent clinical need. This is because PP mesh for pelvic floor repair can cause a series of complications related to foreign body reactions (FBR) in postoperative period. Therefore, we successfully prepared PP composite mesh that can scavenge reactive oxygen species (ROS) and inhibit inflammation to moderate FBR by a simple method. First, a pregel layer was formed on PP mesh by dip coating. Among them, polyurethane with polythioketal (PTK) is an excellent ROS scavenger, and dopamine methacrylamide (DMA) improves the stability of the coating and synergistically scavenges ROS. Then, a composite mesh (optimal PU50-PP) was obtained by photopolymerization. The results showed that the polyurethane gel layer was able to scavenge more than 90% of free radicals and about 75% of intracellular ROS. In vitro, PU50-PP mesh significantly scavenged ROS and resisted macrophage adhesion. After implantation in the posterior vaginal wall of rats, PU50-PP eliminated 53% of ROS, inhibited inflammation (decreased IL-6, increased IL-10), and dramatically reduced collagen deposition by about 64%, compared to PP mesh. Thus, the composite PP mesh with ROS scavenging and anti-inflammatory properties provides a promising approach for mitigating FBR.
Collapse
Affiliation(s)
- Xiaofei Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hongxiu Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yangcen Ou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
11
|
Najm A, Niculescu AG, Rădulescu M, Gaspar BS, Grumezescu AM, Beuran M. Novel Material Optimization Strategies for Developing Upgraded Abdominal Meshes. Int J Mol Sci 2023; 24:14298. [PMID: 37762601 PMCID: PMC10531784 DOI: 10.3390/ijms241814298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Over 20 million hernias are operated on globally per year, with most interventions requiring mesh reinforcement. A wide range of such medical devices are currently available on the market, most fabricated from synthetic polymers. Yet, searching for an ideal mesh is an ongoing process, with continuous efforts directed toward developing upgraded implants by modifying existing products or creating innovative systems from scratch. In this regard, this review presents the most frequently employed polymers for mesh fabrication, outlining the market available products and their relevant characteristics, further focusing on the state-of-the-art mesh approaches. Specifically, we mainly discuss recent studies concerning coating application, nanomaterials addition, stem cell seeding, and 3D printing of custom mesh designs.
Collapse
Affiliation(s)
- Alfred Najm
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.N.); (B.S.G.); (M.B.)
- Emergency Hospital Floreasca Bucharest, 014461 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Marius Rădulescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.N.); (B.S.G.); (M.B.)
- Emergency Hospital Floreasca Bucharest, 014461 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Mircea Beuran
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.N.); (B.S.G.); (M.B.)
- Emergency Hospital Floreasca Bucharest, 014461 Bucharest, Romania
| |
Collapse
|
12
|
Saiding Q, Chen Y, Wang J, Pereira CL, Sarmento B, Cui W, Chen X. Abdominal wall hernia repair: from prosthetic meshes to smart materials. Mater Today Bio 2023; 21:100691. [PMID: 37455815 PMCID: PMC10339210 DOI: 10.1016/j.mtbio.2023.100691] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/15/2023] [Accepted: 06/03/2023] [Indexed: 07/18/2023] Open
Abstract
Hernia reconstruction is one of the most frequently practiced surgical procedures worldwide. Plastic surgery plays a pivotal role in reestablishing desired abdominal wall structure and function without the drawbacks traditionally associated with general surgery as excessive tension, postoperative pain, poor repair outcomes, and frequent recurrence. Surgical meshes have been the preferential choice for abdominal wall hernia repair to achieve the physical integrity and equivalent components of musculofascial layers. Despite the relevant progress in recent years, there are still unsolved challenges in surgical mesh design and complication settlement. This review provides a systemic summary of the hernia surgical mesh development deeply related to abdominal wall hernia pathology and classification. Commercial meshes, the first-generation prosthetic materials, and the most commonly used repair materials in the clinic are described in detail, addressing constrain side effects and rational strategies to establish characteristics of ideal hernia repair meshes. The engineered prosthetics are defined as a transit to the biomimetic smart hernia repair scaffolds with specific advantages and disadvantages, including hydrogel scaffolds, electrospinning membranes, and three-dimensional patches. Lastly, this review critically outlines the future research direction for successful hernia repair solutions by combing state-of-the-art techniques and materials.
Collapse
Affiliation(s)
- Qimanguli Saiding
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, 200030, PR China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Yiyao Chen
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, 200030, PR China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Catarina Leite Pereira
- I3S – Instituto de Investigação e Inovação Em Saúde and INEB – Instituto de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Bruno Sarmento
- I3S – Instituto de Investigação e Inovação Em Saúde and INEB – Instituto de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- IUCS – Instituto Universitário de Ciências da Saúde, CESPU, Rua Central de Gandra 1317, 4585-116, Gandra, Portugal
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Xinliang Chen
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, 200030, PR China
| |
Collapse
|
13
|
Carboxymethyl chitosan/sodium alginate hydrogels with polydopamine coatings as promising dressings for eliminating biofilm and multidrug-resistant bacteria induced wound healing. Int J Biol Macromol 2023; 225:923-937. [PMID: 36427613 DOI: 10.1016/j.ijbiomac.2022.11.156] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Microorganisms induced wound infection and the accompanying excessive inflammatory response is the daunting problems in wound treatment. Due to the lack of corresponding biological functions, traditional wound dressings cannot effectively protect the wound and are prone to induce local infection, excessive inflammation, and vascular damage, resulting in prolonged unhealing. Here, a mussel-inspired strategy was adopted to prepare a multifunctional hydrogel created by H2O2/CuSO4-induced rapid polydopamine (PDA) deposition on carboxymethyl chitosan (CMC)/sodium alginate (Alg) based hydrogel, termed as CAC/PDA/Cu(H2O2). The prepared CAC/PDA/Cu(H2O2) hydrogel features excellent biocompatibility, adequate mechanical properties, and good degradability. Moreover, the CAC/PDA/Cu(H2O2) hydrogel can not only realize antibacterial, and anti-inflammatory effects, but also promote angiogenesis to accelerate wound healing in vitro thanks to the composite PDA/Cu(H2O2) coatings. Significantly, CAC/PDA/Cu(H2O2) hydrogel illustrates excellent therapeutic effects in Methicillin-resistant Staphylococcus aureus (MRSA) induced-rat infection models, which can efficiently eliminate MRSA, dramatically reduce inflammatory expression, promote angiogenesis, and ultimately shorten the wound healing time. CAC/PDA/Cu(H2O2) hydrogel exhibited the best wound healing rate on days 7 (80.63 ± 2.44 %), 11 (92.45 ± 2.26 %), and 14 (97.86 ± 0.66 %). Thus, the multifunctional hydrogel provides a facile and efficient approach to wound management and represents promising potential in the therapy for wound healing.
Collapse
|
14
|
Qiao Y, Zhang Q, Wang Q, Li Y, Wang L. Chrysanthemum–like hierarchitectures decorated on polypropylene hernia mesh and their anti-inflammatory effects. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
15
|
Hu H, Sun H, Jiang Z, Wang S, Liu C, Zou M, Ju R, Feng Z, Liu W, Wang T, Han B. Study on repair of abdominal wall defect rats with hernia mesh coated with chitosan-based photosensitive hydrogel. Carbohydr Polym 2022; 291:119577. [DOI: 10.1016/j.carbpol.2022.119577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/15/2022] [Accepted: 05/03/2022] [Indexed: 11/02/2022]
|
16
|
Mei Y, Yu K, Yazdani-Ahmadabadi H, Lange D, Kizhakkedathu JN. Hydrophilic Polymer-Guided Polycatecholamine Assembly and Surface Deposition. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39577-39590. [PMID: 35975924 DOI: 10.1021/acsami.2c10749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mussel-inspired surface chemistry based on polycatecholamines and polyphenols has been widely applied as a facile and universal method for modifying surfaces. Specifically, the catecholamine-assisted codeposition as a one-step strategy is a versatile strategy used to impart surface functionalities. Despite successful incorporation of numerous functional agents, very little understanding has emerged over the years regarding the mechanism behind their coassembly and codeposition. Here, we employed six different ultrahigh molecular weight hydrophilic polymers of diverse chemistry and architecture and three catecholamines and a polyphenol for investigating the coassembly and codeposition process. The chemistry of the polymers is found to influence the strength of the interaction between the polycatecholamine and the hydrophilic polymers, thus playing an important role in the aqueous self-assembly in solution to nanoaggregates, its formation kinetics, steric stabilization, and surface deposition. Additionally, the codeposition method was used as a platform for developing antifouling and antibiofilm coatings and evaluating their efficiency. Both the chemistry of hydrophilic polymers and the type of the catecholamine influence the antibiofilm properties of the coating. Our studies demonstrated that significant opportunities exist to further define the surface coating process and polycatecholamine self-assembly process by altering the polycatecholamine-hydrophilic polymer interactions.
Collapse
Affiliation(s)
- Yan Mei
- Centre for Blood Research and Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Kai Yu
- Centre for Blood Research and Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | - Dirk Lange
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research and Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
17
|
A review of recent developments of polypropylene surgical mesh for hernia repair. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Kim Y, Thuy LT, Kim Y, Seong M, Cho WK, Choi JS, Kang SM. Coordination-Driven Surface Zwitteration for Antibacterial and Antifog Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1550-1559. [PMID: 35057617 DOI: 10.1021/acs.langmuir.1c03009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The enhancement of surface wettability by hydrophilic polymer coatings has been of great interest because it has been used to address several technical challenges such as biofouling and surface fogging. Among the hydrophilic polymers, zwitterionic polymers have been extensively utilized to coat solid surfaces due to their excellent capability to bind water molecules, thereby forming dense hydration layers on the solid surfaces. For these zwitterionic polymers to function appropriately on the solid surfaces, techniques for fixing polymers onto the solid surface with high efficiency are required. Herein, we report a new approach to graft zwitterionic polymers onto solid substrates. The approach is based on the mussel-inspired surface chemistry and metal coordination. It consists of polydopamine coating and the coordination-driven grafting of the zwitterionic polymers. Polydopamine coating enables the versatile surface immobilization of catechols. Zwitterionic polymers are then easily fixed onto the catechol-immobilized surface by metal-mediated crosslinking reactions. Using this approach, nanometer-thick zwitterionic polymer layers that are highly resistant to bacterial adhesion and fog generation could be successfully fabricated on solid substrates in a substrate-independent manner.
Collapse
Affiliation(s)
- Yohan Kim
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Le Thi Thuy
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yejin Kim
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Minjin Seong
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Woo Kyung Cho
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Joon Sig Choi
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sung Min Kang
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
19
|
Xu D, Fang M, Wang Q, Qiao Y, Li Y, Wang L. Latest Trends on the Attenuation of Systemic Foreign Body Response and Infectious Complications of Synthetic Hernia Meshes. ACS APPLIED BIO MATERIALS 2022; 5:1-19. [PMID: 35014826 DOI: 10.1021/acsabm.1c00841] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Throughout the past few years, hernia incidence has remained at a high level worldwide, with more than 20 million people requiring hernia surgery each year. Synthetic hernia meshes play an important role, providing a microenvironment that attracts and harbors host cells and acting as a permanent roadmap for intact abdominal wall reconstruction. Nevertheless, it is still inevitable to cause not-so-trivial complications, especially chronic pain and adhesion. In long-term studies, it was found that the complications are mainly caused by excessive fibrosis from the foreign body reaction (FBR) and infection resulting from bacterial colonization. For a thorough understanding of their complex mechanism and providing a richer background for mesh development, herein, we discuss different clinical mesh products and explore the interactions between their structure and complications. We further explored progress in reducing mesh complications to provide varied strategies that are informative and instructive for mesh modification in different research directions. We hope that this work will spur hernia mesh designers to step up their efforts to develop more practical and accessible meshes by improving the physical structure and chemical properties of meshes to combat the increasing risk of adhesions, infections, and inflammatory reactions. We conclude that further work is needed to solve this pressing problem, especially in the analysis and functionalization of mesh materials, provided of course that the initial performance of the mesh is guaranteed.
Collapse
Affiliation(s)
- Danyao Xu
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.,Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Meiqi Fang
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.,Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Qian Wang
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.,Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Yansha Qiao
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.,Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Yan Li
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.,Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.,Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|
20
|
Marinaro F, Silva JM, Barros AA, Aroso IM, Gómez-Blanco JC, Jardin I, Lopez JJ, Pulido M, de Pedro MÁ, Reis RL, Sánchez-Margallo FM, Casado JG, López E. A Fibrin Coating Method of Polypropylene Meshes Enables the Adhesion of Menstrual Blood-Derived Mesenchymal Stromal Cells: A New Delivery Strategy for Stem Cell-Based Therapies. Int J Mol Sci 2021; 22:13385. [PMID: 34948187 PMCID: PMC8706515 DOI: 10.3390/ijms222413385] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022] Open
Abstract
Polypropylene (PP) mesh is well-known as a gold standard of all prosthetic materials of choice for the reinforcement of soft tissues in case of hernia, organ prolapse, and urinary incontinence. The adverse effects that follow surgical mesh implantation remain an unmet medical challenge. Herein, it is outlined a new approach to allow viability and adhesion of human menstrual blood-derived mesenchymal stromal cells (MenSCs) on PP surgical meshes. A multilayered fibrin coating, based on fibrinogen and thrombin from a commercial fibrin sealant, was optimized to guarantee a homogeneous and stratified film on PP mesh. MenSCs were seeded on the optimized fibrin-coated meshes and their adhesion, viability, phenotype, gene expression, and immunomodulatory capacity were fully evaluated. This coating guaranteed MenSC viability, adhesion and did not trigger any change in their stemness and inflammatory profile. Additionally, MenSCs seeded on fibrin-coated meshes significantly decreased CD4+ and CD8+ T cell proliferation, compared to in vitro stimulated lymphocytes (p < 0.0001). Hence, the proposed fibrin coating for PP surgical meshes may allow the local administration of stromal cells and the reduction of the exacerbated inflammatory response following mesh implantation surgery. Reproducible and easy to adapt to other cell types, this method undoubtedly requires a multidisciplinary and translational approach to be improved for future clinical uses.
Collapse
Affiliation(s)
- Federica Marinaro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (J.C.G.-B.); (M.P.); (M.Á.d.P.); (E.L.)
| | - Joana M. Silva
- 3B’s Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (J.M.S.); (A.A.B.); (I.M.A.); (R.L.R.)
- ICVS/3B’s-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Alexandre A. Barros
- 3B’s Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (J.M.S.); (A.A.B.); (I.M.A.); (R.L.R.)
- ICVS/3B’s-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Ivo M. Aroso
- 3B’s Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (J.M.S.); (A.A.B.); (I.M.A.); (R.L.R.)
- ICVS/3B’s-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Juan C. Gómez-Blanco
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (J.C.G.-B.); (M.P.); (M.Á.d.P.); (E.L.)
| | - Isaac Jardin
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, 10003 Cáceres, Spain; (I.J.); (J.J.L.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Cáceres, Spain;
| | - Jose J. Lopez
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, 10003 Cáceres, Spain; (I.J.); (J.J.L.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Cáceres, Spain;
| | - María Pulido
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (J.C.G.-B.); (M.P.); (M.Á.d.P.); (E.L.)
| | - María Ángeles de Pedro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (J.C.G.-B.); (M.P.); (M.Á.d.P.); (E.L.)
| | - Rui L. Reis
- 3B’s Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (J.M.S.); (A.A.B.); (I.M.A.); (R.L.R.)
- ICVS/3B’s-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Francisco Miguel Sánchez-Margallo
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (J.C.G.-B.); (M.P.); (M.Á.d.P.); (E.L.)
- Centro de Investigación en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Javier G. Casado
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Cáceres, Spain;
- Centro de Investigación en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Immunology Unit, Department of Physiology, University of Extremadura, 10003 Cáceres, Spain
| | - Esther López
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (J.C.G.-B.); (M.P.); (M.Á.d.P.); (E.L.)
| |
Collapse
|
21
|
Surgical mesh coatings for infection control and temperature sensing: An in-vitro investigation. OPENNANO 2021. [DOI: 10.1016/j.onano.2021.100032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Qiao Y, Zhang Q, Wang Q, Lin J, Wang J, Li Y, Wang L. Synergistic Anti-inflammatory Coating "Zipped Up" on Polypropylene Hernia Mesh. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35456-35468. [PMID: 34293859 DOI: 10.1021/acsami.1c09089] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Violent inflammation has impeded worry-free application of polypropylene (PP) hernia meshes. Efficient anti-inflammatory coatings are urgently needed to alter the situation. Here, we present a zipper-like, two-layer coating with an intermediate antioxidant layer (I) and an outer antifouling layer (II) to endow PP meshes with synergistic anti-inflammatory effects. The controllable antioxidant ability of layer I was obtained by modulating the assembly cycle of the metal-phenolic network (MPN) composed of tannic acid (TA) and Fe3+. Polyzwitterionic (PMAD) brush-based layer II was generated upon multiple interactions between the catechol side groups of PMAD and layer I. To consolidate the entire assembly architecture, aryloxy radical coupling was initiated through alkali-catalyzed oxidation. The reaction is similar to a "zipping up" process to construct covalent bonds in the I-II interface and layer I by coupling adjacent catechol groups, which facilely achieved grafting and cross-linking. The obtained coating (PMAD-TA/Fe) did not affect the original properties of the PP mesh and remained stable during cyclic tensile testing or degradation. Most importantly, the excellent antioxidant and antifouling capacities enabled PMAD-TA/Fe-PP to exhibit desirable anti-inflammatory effects and reduce collagen deposition when compared with the bare material. The synergistic anti-inflammatory coating eliminates a major hindrance in the design of biocompatible meshes, and its potential application in developing medical implants with low immunogenicity is promising.
Collapse
Affiliation(s)
- Yansha Qiao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Qian Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Qian Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Jing Lin
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Junshuo Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yan Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|
23
|
Qiao Y, Zhang Q, Wang Q, Li Y, Wang L. Filament-anchored hydrogel layer on polypropylene hernia mesh with robust anti-inflammatory effects. Acta Biomater 2021; 128:277-290. [PMID: 33866036 DOI: 10.1016/j.actbio.2021.04.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/18/2022]
Abstract
The efficacy of implanted polypropylene (PP) hernia meshes is often compromised by an inflammatory response. Thus, engineering an anti-inflammatory mesh has significant implications for hernioplasty. Here, we report a facile strategy to develop a filament-anchored hydrogel layer (FAHL) on PP mesh (FAHL-P). The network of FAHL, made up of chondroitin sulfate and gelatin (CG), provided a biomimetic surface with immunoregulatory properties. The use of tannic acid (TA) as a crosslinker for CG additionally enhanced its anti-inflammatory properties. In addition, the fabrication protocol ensured that the hydrogel maintained the properties of the knitted mesh and the firmly adherent FAHL during general handling (dry state) and in the simulated body environment (wet state). CG/TA-PP killed 99.99% of S. aureus and retained 73% of its original antioxidant properties after 7 d. The FAHL durably performed with a controlled release of TA for 15 d. The strong anti-inflammatory effects of FAHL-P reduced collagen deposition and increased vascularization, which promoted native tissue generation. The fabrication strategy has potential applications in hernioplasty and may provide new insights into the design of other anti-inflammatory implants. STATEMENT OF SIGNIFICANCE: A hydrogel layer with robust anti-inflammatory effects was anchored firmly on mesh filament for hernia repair. Requiring no drug loading, this chondroitin sulphate -gelatin (CG) based hydrogel itself could inhibit the immunological attack owing to the biomimetic microenvironment created by the CG. Moreover, the hydrogel's crosslinker (tannic acid) content served as an effective scavenger for reducing pro-inflammatory factors, significantly mitigating the inflammation. Interestingly, the antibacterial effect of such hydrogel layer was also observed. In terms of the synergistic outcome of the design, our mesh can remarkably attenuate inflammation and promote constructive tissue regeneration in vivo. Furthermore, considering the relatively simple and easily scaled up formulation process, our strategy may indeed have great potential in alleviating post-implantation outcomes.
Collapse
|
24
|
Zhang Q, Qiao Y, Li C, Lin J, Han H, Li X, Mao J, Wang F, Wang L. Chitosan/gelatin-tannic acid decorated porous tape suture with multifunctionality for tendon healing. Carbohydr Polym 2021; 268:118246. [PMID: 34127225 DOI: 10.1016/j.carbpol.2021.118246] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/31/2021] [Accepted: 05/19/2021] [Indexed: 12/28/2022]
Abstract
The inferior tendon healing after surgery is inextricably linked to the surgical suture. Poor load transfer along the suture often results in a high tendon re-tear rate. Besides, the severe inflammation and infection induced by sutures even cause a second surgery. Herein, to alleviate the above-mentioned issues, a multifunctional suture was fabricated by decorating chitosan/gelatin-tannic acid (CS/GE-TA) on the porous tape suture. The porous tape suture ensured the required mechanical properties and sufficient space for tissue integration. Compared to the pristine suture, the CS/GE-TA decorated suture (TA100) presented a 332% increase in pull-out force from the tendon, indicating potentially decreased re-tear rates. Meanwhile, TA100 showed superior anti-inflammatory and antibacterial performances. In vivo experiments further proved that TA100 could not only reduce inflammatory action but also facilitate collagen deposition and blood vessel formation. These results indicate that the multifunctional sutures are promising candidates for accelerating tendon healing.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Yansha Qiao
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Chaojing Li
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Jing Lin
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Hui Han
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xiaoli Li
- Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
| | - Jifu Mao
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China.
| | - Fujun Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China.
| |
Collapse
|