1
|
Mirzaalipour A, Aghamohammadi E, Vakili H, Khodabakhsh M, Unal U, Makki H. Molecular Insight into the Effect of Polymer Topology on Wettability of Block Copolymers: The Case of Amphiphilic Polyurethanes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:62-71. [PMID: 38100712 PMCID: PMC10786039 DOI: 10.1021/acs.langmuir.3c01646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/09/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
The microstructure design of multiblock copolymers is essential for achieving desired interfacial properties in submerged applications. Two major design factors are the chemical composition and polymer topology. Despite a clear relationship between chemical composition and wetting, the effect of polymer topology (i.e., linear vs cross-linked polymers) is not very clear. Thus, in this study, we shed light on the molecular origins of polymer topology on the wetting behavior. To this end, we synthesized linear and three-dimensional (3D) cross-linked network topologies of poly(ethylene glycol) (PEG)-modified polycarbonate polyurethanes with the same amount of hydrophilic PEG groups on the surface (confirmed by X-ray photoelectron spectroscopy (XPS)) and studied the wetting mechanisms through water contact angle (WCA), atomic force microscopy (AFM), and molecular dynamics (MD) simulations. The linear topology exhibited superhydrophilic behavior, while the WCA of the cross-linked polymer was around 50°. AFM analysis (performed on dry and wet samples) suggests that PEG migration toward the interface is the dominant factor. MD simulations confirm the AFM results and unravel the mechanisms: the higher flexibility of PEG in linear topology results in a greater PEG migration to the interface and formation of a thicker interfacial layer (i.e., twice as thick as the cross-linked polymers). Accordingly, water diffusion into the interfacial layer was greater in the case of the linear polymer, leading to better screening of the underneath hydrophobic (polycarbonate) segments.
Collapse
Affiliation(s)
- Alireza Mirzaalipour
- Department
of Polymer and Color Engineering, Amirkabir
University of Technology, 424 Hafez Ave., 159163-4311 Tehran, Iran
| | - Elnaz Aghamohammadi
- Department
of Polymer and Color Engineering, Amirkabir
University of Technology, 424 Hafez Ave., 159163-4311 Tehran, Iran
| | - Helma Vakili
- Polymer
Engineering group, School of Chemical Engineering, College of Engineering, University of Tehran, 1417935840 Tehran, Iran
| | | | - Ugur Unal
- Chemistry
Department, Koc University, Rumelifeneri Yolu, Sariyer 34450 Istanbul, Turkey
- Koc
University Surface Science and Technology Center (KUYTAM), Koc University, Rumelifeneri Yolu, Sariyer 34450 Istanbul, Turkey
| | - Hesam Makki
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| |
Collapse
|
2
|
Shiraki Y, Saito M, Yamada NL, Ito K, Yokoyama H. Adhesion to Untreated Polyethylene and Polypropylene by Needle-like Polyolefin Crystals. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Yoshihiko Shiraki
- Polyurethane Research Laboratory, Tosoh Corporation, 1-8, Kasumi, Yokkaichi, Mie 510-8540, Japan
- Department of Advanced Materials Science, School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 227-8561, Japan
| | - Masayuki Saito
- Department of Advanced Materials Science, School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 227-8561, Japan
| | - Norifumi L. Yamada
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Ibaraki 305-0801, Japan
| | - Kohzo Ito
- Department of Advanced Materials Science, School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 227-8561, Japan
| | - Hideaki Yokoyama
- Department of Advanced Materials Science, School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 227-8561, Japan
| |
Collapse
|
3
|
Ramar P, Raghavendra V, Murugan P, Samanta D. Immobilization of Polymers to Surfaces by Click Reaction for Photocatalysis with Recyclability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13344-13357. [PMID: 36286240 DOI: 10.1021/acs.langmuir.2c00809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A surface-bound photocatalyst offers advantages of reusability and recyclability with ease. While it can be immobilized by spin coating or drop-casting, a more reliable and durable method involves the formation of a self-assembled monolayer (SAM) on a suitable surface using designer molecules. In this paper, we report devising a practical, durable, and recyclable photocatalytic surface using immobilized polytriazoles of diketopyrrolopyrrole (DPP). While the SAM formation techniques were utilized for superior results, conventional coatings of polymers on surfaces were performed for comparison. Different methods confirmed efficient immobilization and high grafting density for the SAM technique. Computational models suggested favorable energy parameters for active materials. Photocatalytic studies were performed using both immobilized polymers and polymers in solution for comparison. These findings are important for understanding various physicochemical characteristics of polytriazole-functionalized surfaces.
Collapse
Affiliation(s)
- Periyamuthu Ramar
- Polymer Science & Technology Department, CSIR-CLRI, Chennai 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Venkatraman Raghavendra
- Centre for High Computing, CSIR-CLRI, Chennai 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Debasis Samanta
- Polymer Science & Technology Department, CSIR-CLRI, Chennai 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Saito M, Ito K, Yokoyama H. Film thickness and strain rate dependences of the mechanical properties of polystyrene-b-polyisoprene-b-polystyrene block copolymer ultrathin films forming a spherical domain. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Chen J, Luo Z, An R, Marklund P, Björling M, Shi Y. Novel Intrinsic Self-Healing Poly-Silicone-Urea with Super-Low Ice Adhesion Strength. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200532. [PMID: 35318812 DOI: 10.1002/smll.202200532] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Accumulation of snow and ice often causes problems and even dangerous situations for both industry and the general population. Passive de-icing technologies, e.g., hydrophobic, liquid-infused bionic surfaces, have attracted more and more attention compared with active de-icing technologies, e.g., electric heating, hot air heating, due to the passive de-icing technology's lower energy consumption and sustainability footprint. Using passive de-icing coatings seems to be one of the most promising solutions. However, the previously reported de-icing coatings suffer from high ice adhesion strength or short service life caused by wear. An intrinsic self-healing material based on poly-silicone-urea is developed in this work to address these problems. The material is prepared by introducing dynamic disulfide bonds into the hard phase of the polymer. Experimental results indicate that this poly-silicone-urea has a self-healing efficiency of close to 99%. More interestingly, it is found that the coating prepared from this poly-silicone-urea has a super low ice adhesion force, only 7 ± 1 kPa, which is almost the lowest value compared with previous intrinsic self-healing de-/anti-icing reports. This material can maintain low ice adhesion strength after healing. This intrinsic self-healing poly-silicone-urea can meet several practical applications, opening the door for future sustainable anti-/de-icing technologies.
Collapse
Affiliation(s)
- Jun Chen
- Division of Machine Elements, Lulea University of Technology, Lulea, 97187, Sweden
| | - Zhenyang Luo
- College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Rong An
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210037, P. R. China
| | - Pär Marklund
- Division of Machine Elements, Lulea University of Technology, Lulea, 97187, Sweden
| | - Marcus Björling
- Division of Machine Elements, Lulea University of Technology, Lulea, 97187, Sweden
| | - Yijun Shi
- Division of Machine Elements, Lulea University of Technology, Lulea, 97187, Sweden
| |
Collapse
|
6
|
Milnes-Smith E, Stone CA, Willis CR, Perkin S. Surface Reconstruction of Fluoropolymers in Liquid Media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4657-4668. [PMID: 35395153 PMCID: PMC9097541 DOI: 10.1021/acs.langmuir.2c00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Surface reconstruction is the rearrangement of atoms or molecules at an interface in response to a stimulus, driven by lowering the overall free energy of the system. Perfluoroalkyl acrylate polymers with short side chains undergo reconstruction at room temperature when exposed to water. Here, we use contact angle aging to examine the liquid- and temperature- dependency of surface reconstruction of plasma polymerized perfluoroalkyl acrylates. We use a first order kinetic model to examine the dynamics of reconstructive processes. Our results show that, above the bulk melting point of the polymers, the contact angles of both polar and nonpolar (hydrocarbon) liquids show a time dependency well fit by the model. We conclude that surface reconstruction can be driven by the preferential segregation of hydrocarbon and fluorocarbon moieties as well as by polar interactions. This has implications in terms of using fluorocarbons to design oleophobic surfaces (and vice versa) and in terms of designing fluorocarbon and/or hydrocarbon surfaces with switchable wettability.
Collapse
Affiliation(s)
- Eleanor Milnes-Smith
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Corinne A. Stone
- Defence
Science and Technology Laboratory, Porton Down, Salisbury,
Wiltshire SP4 0JQ, United
Kingdom
| | - Colin R. Willis
- Defence
Science and Technology Laboratory, Porton Down, Salisbury,
Wiltshire SP4 0JQ, United
Kingdom
| | - Susan Perkin
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
7
|
Guo Y, Yu Y, Shi K, Zhang W. Synthesis of ABA triblock copolymer nanoparticles by polymerization induced self-assembly and their application as an efficient emulsifier. Polym Chem 2021. [DOI: 10.1039/d0py01498b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
ABA triblock copolymer nanoparticles of PHPMA-b-PS-b-PHPMA were synthesized by PISA and demonstrated to be an efficient emulsifier.
Collapse
Affiliation(s)
- Yakun Guo
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Yuewen Yu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Keyu Shi
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|