1
|
Wang R, Liang K, Wang S, Cao Y, Xin Y, Peng Y, Ma X, Zhu B, Wang H, Hao Y. Printable Epsilon-Type Structure Transistor Arrays with Highly Reliable Physical Unclonable Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210621. [PMID: 36734053 DOI: 10.1002/adma.202210621] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/07/2023] [Indexed: 06/18/2023]
Abstract
Printed electronics promises to drive the future data-intensive technologies, with its potential to fabricate novel devices over a large area with low cost on nontraditional substrates. In these emerging technologies, there exists a large digital information flow, which requires secure communication and authentication. Physical unclonable functions (PUFs) offer a promising built-in hardware-security system comparable to biometrical data, which can be constructed by device-specific intrinsic variations in the additive manufacturing process of active devices. However, printed PUFs typically exploit the inherent variation in layer thickness and roughness of active devices. The current in devices with enough significant changes to increase the robustness to external environment noise is still a challenge. Here, printable epsilon-type-structure indium tin oxide transistor arrays are demonstrated to construct high-reliability PUFs by modifying the coffee-ring structure. The epsilon-type structure improves the printing scalability, film quality, and device reliability. Furthermore, the print-induced uncertainty along the channel thickness and length can lead to changes in the carrier concentration. Notably, the randomly distributed printing droplets in a small area significantly increase this uncertainty. As a result, the PUFs exhibit near-ideal uniformity, uniqueness, randomness, and reliability. Additionally, the PUFs are resilient against machine-learning-based attacks with a prediction accuracy of only 55% without postprocessing.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an, 710071, China
| | - Kun Liang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China
| | - Saisai Wang
- Key Laboratory of Wide Band Gap Semiconductor Technology, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710071, China
| | - Yaxiong Cao
- Key Laboratory of Wide Band Gap Semiconductor Technology, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710071, China
| | - Yuhan Xin
- Key Laboratory of Wide Band Gap Semiconductor Technology, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710071, China
| | - Yaqian Peng
- Key Laboratory of Wide Band Gap Semiconductor Technology, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710071, China
| | - Xiaohua Ma
- Key Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an, 710071, China
| | - Bowen Zhu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China
| | - Hong Wang
- Key Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an, 710071, China
| | - Yue Hao
- Key Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an, 710071, China
| |
Collapse
|
2
|
Liu T, Guo R, Fu Y, Zhao J, Ning H, Fang Z, Liang Z, Wei X, Yao R, Peng J. Morphological Regulation of Printed Low-Temperature Conductive Ink. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9955-9966. [PMID: 35894171 DOI: 10.1021/acs.langmuir.2c01249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The unbalanced evaporation of solvents in low-temperature sintered inks for printed electronics leads to a series of problems in the actual printing process, including printed pattern distortion, surface cracking, and the coffee ring effect, which has become a serious obstacle to this technique. Here, we present a comprehensive investigation of the influence of the solvent composition, environmental, and sintering conditions on the complicated pattern formation process of reactive silver inks. The results first showed that only inks with a certain wettability of solvents could form well-defined patterns. Then, the solvent composition and ambient humidity can be adjusted to balance the nonequilibrium evaporative flow within the liquid and thus to obtain a flat liquid film. Combined with the rapid UV sintering process, the particle size, porosity, and roughness could be controlled to produce dense and homogeneous silver films. Finally, we successfully printed silver electrodes with a smooth and dense surface (Rqs ∼ 21 nm in 0.8 × 0.8 mm2 area and less than 1% porosity) under an optimized relative humidity (RH) of 50-60% at room temperature with the solvent composition of IPA (isopropanol)/2,3-BD (2,3-butanediol) = 8:2. In addition, we also demonstrated high-performance Pr-IZO (praseodymium-doped indium-zinc oxide) thin film transistors (TFTs) with a mobility (μsat) of 2.14 cm2/V/s and Ion/Ioff ratio of over 107 using source-drain electrodes printed under optimized conditions.
Collapse
Affiliation(s)
- Taijiang Liu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Runpeng Guo
- Adlai E. Stevenson High School, Lincolnshire, Illinois 60069, United States
| | - Yubin Fu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jie Zhao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Honglong Ning
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zhiqiang Fang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhihao Liang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Xiaoqin Wei
- Southwest Institute of Technology and Engineering, Chongqing 400039, China
| | - Rihui Yao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Junbiao Peng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
3
|
Lu D, Zhang W, Kloo L, Belova L. Inkjet-Printed Electron Transport Layers for Perovskite Solar Cells. MATERIALS 2021; 14:ma14247525. [PMID: 34947118 PMCID: PMC8704523 DOI: 10.3390/ma14247525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022]
Abstract
Inkjet printing emerged as an alternative deposition method to spin coating in the field of perovskite solar cells (PSCs) with the potential of scalable, low-cost, and no-waste manufacturing. In this study, the materials TiO2, SrTiO3, and SnO2 were inkjet-printed as electron transport layers (ETLs), and the PSC performance based on these ETLs was optimized by adjusting the ink preparation methods and printing processes. For the mesoporous ETLs inkjet-printed from TiO2 and SrTiO3 nanoparticle inks, the selection of solvents for dispersing nanoparticles was found to be important and a cosolvent system is beneficial for the film formation. Meanwhile, to overcome the low current density and severe hysteresis in SrTiO3-based devices, mixed mesoporous SrTiO3/TiO2 ETLs were also investigated. In addition, inkjet-printed SnO2 thin films were fabricated by using a cosolvent system and the effect of the SnO2 ink concentrations on the device performance was investigated. In comparison with PSCs based on TiO2 and SrTiO3 ETLs, the SnO2-based devices offer an optimal power conversion efficiency (PCE) of 17.37% in combination with a low hysteresis. This work expands the range of suitable ETL materials for inkjet-printed PSCs and promotes the commercial applications of inkjet printing techniques in PSC manufacturing.
Collapse
Affiliation(s)
- Dongli Lu
- Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden;
| | - Wei Zhang
- Department of Chemistry, Applied Physical Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden; (W.Z.); (L.K.)
| | - Lars Kloo
- Department of Chemistry, Applied Physical Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden; (W.Z.); (L.K.)
| | - Liubov Belova
- Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden;
- Correspondence:
| |
Collapse
|
4
|
Application of Laser Treatment in MOS-TFT Active Layer Prepared by Solution Method. MICROMACHINES 2021; 12:mi12121496. [PMID: 34945352 PMCID: PMC8704860 DOI: 10.3390/mi12121496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 01/08/2023]
Abstract
The active layer of metal oxide semiconductor thin film transistor (MOS-TFT) prepared by solution method, with the advantages of being a low cost and simple preparation process, usually needs heat treatment to improve its performance. Laser treatment has the advantages of high energy, fast speed, less damage to the substrate and controllable treatment area, which is more suitable for flexible and large-scale roll-to-roll preparation than thermal treatment. This paper mainly introduces the basic principle of active layer thin films prepared by laser treatment solution, including laser photochemical cracking of metastable bonds, laser thermal effect, photoactivation effect and laser sintering of nanoparticles. In addition, the application of laser treatment in the regulation of MOS-TFT performance is also described, including the effects of laser energy density, treatment atmosphere, laser wavelength and other factors on the performance of active layer thin films and MOS-TFT devices. Finally, the problems and future development trends of laser treatment technology in the application of metal oxide semiconductor thin films prepared by solution method and MOS-TFT are summarized.
Collapse
|
5
|
Balani SB, Ghaffar SH, Chougan M, Pei E, Şahin E. Processes and materials used for direct writing technologies: A review. RESULTS IN ENGINEERING 2021; 11:100257. [DOI: https:/doi.org/10.1016/j.rineng.2021.100257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
|
6
|
Balani SB, Ghaffar SH, Chougan M, Pei E, Şahin E. Processes and materials used for direct writing technologies: A review. RESULTS IN ENGINEERING 2021; 11:100257. [DOI: 10.1016/j.rineng.2021.100257] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
|
7
|
Abstract
With the rapid development of flexible electronic devices (especially flexible LCD/OLED), flexible transparent electrodes (FTEs) with high light transmittance, high electrical conductivity, and excellent stretchability have attracted extensive attention from researchers and businesses. FTEs serve as an important part of display devices (touch screen and display), energy storage devices (solar cells and super capacitors), and wearable medical devices (electronic skin). In this paper, we review the recent progress in the field of FTEs, with special emphasis on metal materials, carbon-based materials, conductive polymers (CPs), and composite materials, which are good alternatives to the traditional commercial transparent electrode (i.e., indium tin oxide, ITO). With respect to production methods, this article provides a detailed discussion on the performance differences and practical applications of different materials. Furthermore, major challenges and future developments of FTEs are also discussed.
Collapse
|