1
|
Nicola BA, Popescu MN, Gáspár S. Substrate-Controlled Bidirectional Pumping by a Bienzymatic Micropump. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59556-59566. [PMID: 39423049 DOI: 10.1021/acsami.4c12381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The development of autonomous, miniaturized pumps remains a problem of much interest, particularly with a view on microfluidics-based devices with increased portability and simplicity of use by nonspecialists. Spatially localized patches of enzyme imprinted on walls have been shown to induce a hydrodynamic flow when supplied with the corresponding enzyme substrate. Thus, such enzymatic micropumps are seen as a possible way of providing the means for nonmechanical, structurally simple, autonomous pumping. Hereby, we extend the current knowledge of enzymatic micropumps in two ways. First, we introduce β-glucosidase as an enzyme that facilitates building micropumps with robust inward flows in the presence of cellobiose (e.g., 2.51 ± 0.56 μm s-1 in the presence of 80 mM cellobiose). Second, we embed β-glucosidase and urease within the same patch and thus obtain a bienzymatic micropump. The latter exhibits the so far missing capability of bidirectional pumping as it produces inward flows in the presence of cellobiose (e.g., 0.95 ± 0.37 μm s-1 in the presence of 20 mM cellobiose) and outward flows in the presence of urea (e.g., 1.46 ± 0.47 μm s-1 in the presence of 20 mM urea). This bienzymatic micropump is a significant step for the development of biocompatible micropumps with versatile, controlled, and on-demand hydrodynamic pumping capabilities.
Collapse
Affiliation(s)
- Bogdan Adrian Nicola
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania
| | - Mihail N Popescu
- Física Teórica, Universidad de Sevilla, Apdo. 1065, E-41080 Sevilla, Spain
| | - Szilveszter Gáspár
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania
| |
Collapse
|
2
|
Song J, Zhang J, Lin J, Shklyaev OE, Shrestha S, Sapre A, Balazs AC, Sen A. Programming Fluid Motion Using Multi-Enzyme Micropump Systems. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45660-45670. [PMID: 39136387 DOI: 10.1021/acsami.4c07865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In the presence of appropriate substrates, surface-anchored enzymes can act as pumps and propel fluid through microchambers. Understanding the dynamic interplay between catalytic reactions and fluid flow is vital to enhancing the accuracy and utility of flow technology. Through a combination of experimental observations and numerical modeling, we show that coupled enzyme pumps can exhibit flow enhancement, flow suppression, and changes in the directionality (reversal) of the fluid motion. The pumps' ability to regulate the flow path is due to the reaction selectivity of the enzymes; the resultant fluid motion is only triggered by the presence of certain reactants. Hence, the reactants and the sequence in which they are present in the solution and the layout of the enzyme-attached patches form an "instruction set" that guides the flowing solution to specific sites in the system. Such systems can operate as sensors that indicate concentrations of reactants through measurement of the trajectory along which the flow demonstrates a maximal speed. The performed simulations suggest that the solutal buoyancy mechanism causes fluid motion and is responsible for all of the observed effects. More broadly, our studies provide a new route for forming self-organizing flow systems that can yield fundamental insight into nonequilibrium, dynamical systems.
Collapse
Affiliation(s)
- Jiaqi Song
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jianhua Zhang
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jinwei Lin
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Oleg E Shklyaev
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Shanid Shrestha
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Aditya Sapre
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Anna C Balazs
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ayusman Sen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
3
|
Shklyaev OE, Laskar A, Balazs AC. Engineering confined fluids to autonomously assemble hierarchical 3D structures. PNAS NEXUS 2023; 2:pgad232. [PMID: 37497047 PMCID: PMC10367439 DOI: 10.1093/pnasnexus/pgad232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 06/22/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
The inherent coupling of chemical and mechanical behavior in fluid-filled microchambers enables the fluid to autonomously perform work, which in turn can direct the self-organization of objects immersed in the solution. Using theory and simulations, we show that the combination of diffusioosmotic and buoyancy mechanisms produce independently controlled, respective fluid flows: one generated by confining surfaces and the other in the bulk of the solution. With both flows present, the fluid can autonomously join 2D, disconnected pieces to a chemically active, "sticky" base and then fold the resulting layer into regular 3D shapes (e.g. pyramids, tetrahedrons, and cubes). Here, the fluid itself performs the work of construction and thus, this process does not require extensive external machinery. If several sticky bases are localized on the bottom surface, the process can be parallelized, with the fluid simultaneously forming multiple structures of the same or different geometries. Hence, this approach can facilitate the relatively low-cost, mass production of 3D micron to millimeter-sized structures. Formed in an aqueous solution, the assembled structures could be compatible with biological environments, and thus, potentially useful in medical and biochemical applications.
Collapse
Affiliation(s)
- Oleg E Shklyaev
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, 3700 O'Hara Street Benedum Hall of Engineering, Pittsburgh, PA 15261, USA
| | - Abhrajit Laskar
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, 3700 O'Hara Street Benedum Hall of Engineering, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
4
|
Nguindjel ADC, de Visser PJ, Winkens M, Korevaar PA. Spatial programming of self-organizing chemical systems using sustained physicochemical gradients from reaction, diffusion and hydrodynamics. Phys Chem Chem Phys 2022; 24:23980-24001. [PMID: 36172850 PMCID: PMC9554936 DOI: 10.1039/d2cp02542f] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022]
Abstract
Living organisms employ chemical self-organization to build structures, and inspire new strategies to design synthetic systems that spontaneously take a particular form, via a combination of integrated chemical reactions, assembly pathways and physicochemical processes. However, spatial programmability that is required to direct such self-organization is a challenge to control. Thermodynamic equilibrium typically brings about a homogeneous solution, or equilibrium structures such as supramolecular complexes and crystals. This perspective addresses out-of-equilibrium gradients that can be driven by coupling chemical reaction, diffusion and hydrodynamics, and provide spatial differentiation in the self-organization of molecular, ionic or colloidal building blocks in solution. These physicochemical gradients are required to (1) direct the organization from the starting conditions (e.g. a homogeneous solution), and (2) sustain the organization, to prevent it from decaying towards thermodynamic equilibrium. We highlight four different concepts that can be used as a design principle to establish such self-organization, using chemical reactions as a driving force to sustain the gradient and, ultimately, program the characteristics of the gradient: (1) reaction-diffusion coupling; (2) reaction-convection; (3) the Marangoni effect and (4) diffusiophoresis. Furthermore, we outline their potential as attractive pathways to translate chemical reactions and molecular/colloidal assembly into organization of patterns in solution, (dynamic) self-assembled architectures and collectively moving swarms at the micro-, meso- and macroscale, exemplified by recent demonstrations in the literature.
Collapse
Affiliation(s)
| | - Pieter J de Visser
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| | - Mitch Winkens
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| | - Peter A Korevaar
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Alam M, Gill AK, Varshney R, Miglani C, Tiwari N, Patra D. Polymer multilayer films regulate macroscopic fluid flow and power microfluidic devices via supramolecular interactions. SOFT MATTER 2022; 18:5605-5614. [PMID: 35861047 DOI: 10.1039/d2sm00510g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Self-powered supramolecular micropumps could potentially provide a solution for powerless microfluidic devices where the fluid flow can be manipulated via modulating non-covalent interactions. An attempt has been made to fabricate thin-film-based micropumps by depositing a β-cyclodextrin ('host') functionalized polymer on a glass slide via layer-by-layer assembly. These supramolecular micropumps turned on the fluid flow upon addition of 'guest' molecules to the multilayer films. The flow velocity was tuned using the concentration of the guest molecules as well as the number of host layers inside the multilayer films. Numerical modelling reveals that the solutal buoyancy, which originates from host-guest complexation, is primarily responsible for the fluid flow. In view of its potential application in self-powered devices, the thin-film-based micropump was integrated into a microfluidic device to show molecular and colloidal transport over long distances.
Collapse
Affiliation(s)
- Mujeeb Alam
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India.
| | - Arshdeep Kaur Gill
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India.
| | - Rohit Varshney
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India.
| | - Chirag Miglani
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India.
| | - Naveen Tiwari
- Indian Institute of Technology-Kanpur, Uttar Pradesh 208016, India
| | - Debabrata Patra
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India.
| |
Collapse
|
6
|
Chen X, Xu Y, Zhou C, Lou K, Peng Y, Zhang HP, Wang W. Unraveling the physiochemical nature of colloidal motion waves among silver colloids. SCIENCE ADVANCES 2022; 8:eabn9130. [PMID: 35613263 PMCID: PMC9132452 DOI: 10.1126/sciadv.abn9130] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Traveling waves are common in biological and synthetic systems, including the recent discovery that silver (Ag) colloids form traveling motion waves in H2O2 and under light. Here, we show that this colloidal motion wave is a heterogeneous excitable system. The Ag colloids generate traveling chemical waves via reaction-diffusion, and either self-propel through self-diffusiophoresis ("ballistic waves") or are advected by diffusio-osmotic flows from gradients of neutral molecules ("swarming waves"). Key results include the experimental observation of traveling waves of OH- with pH-sensitive fluorescent dyes and a Rogers-McCulloch model that qualitatively and quantitatively reproduces the key features of colloidal waves. These results are a step forward in elucidating the Ag-H2O2-light oscillatory system at individual and collective levels. In addition, they pave the way for using colloidal waves either as a platform for studying nonlinear phenomena, or as a tool for colloidal transport and for information transmission in microrobot ensembles.
Collapse
Affiliation(s)
- Xi Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yankai Xu
- School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Zhou
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Kai Lou
- Guangzhou Kayja-Optics Technology Co. Ltd., Guangzhou 511458, China
| | - Yixin Peng
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - H. P. Zhang
- School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Corresponding author. (W.W.); (H.P.Z.)
| | - Wei Wang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Corresponding author. (W.W.); (H.P.Z.)
| |
Collapse
|
7
|
Manna RK, Gentile K, Shklyaev OE, Sen A, Balazs AC. Self-Generated Convective Flows Enhance the Rates of Chemical Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1432-1439. [PMID: 35029999 DOI: 10.1021/acs.langmuir.1c02593] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In chemical solutions, the products of catalytic reactions can occupy different volumes compared to the reactants and thus give rise to local density variations in the fluid. These density variations generate solutal buoyancy forces, which are exerted on the fluid and thus "pump" the fluid to flow. Herein, we examine if the reaction-induced pumping accelerates the chemical reaction by transporting the reactants to the catalyst at a rate faster than passive diffusion. Using both simulations and experiments, we show a significant increase in reaction rate when reaction-generated convective flow is present. In effect, through a feedback loop, catalysts speed up reactions not only by lowering the energy barrier but also by increasing the collision frequency between the reactants and the catalyst.
Collapse
Affiliation(s)
- Raj Kumar Manna
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Kayla Gentile
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Oleg E Shklyaev
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Ayusman Sen
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Anna C Balazs
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
8
|
Shikha, Shandilya E, Priyanka, Maiti S. Directional migration propensity of calf thymus DNA in a gradient of metal ions. Chem Commun (Camb) 2022; 58:9353-9356. [DOI: 10.1039/d2cc03160d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The migration propensity and spatially modulated surface deposition of calf thymus DNA have been reported in response to gradients of different monovalent and divalent ions.
Collapse
Affiliation(s)
- Shikha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Ekta Shandilya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Priyanka
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| |
Collapse
|
9
|
Deshwal A, Gill AK, Nain S, Patra D, Maiti S. Inhibitory effect of nucleotides on acetylcholine esterase activity and its microflow-based actuation in blood plasma. Chem Commun (Camb) 2022; 58:3501-3504. [DOI: 10.1039/d2cc00029f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The inhibitory effect of nucleotides on the catalytic activity of acetylcholine esterase (AChE) was rationalized and similar inhibition trend was observed when analyzing the macroscopic fluid flow generated by surface...
Collapse
|
10
|
Munteanu RE, Popescu MN, Gáspár S. The impact of geometrical confinement in a slab on the behavior of tracer particles near active glucose oxidase micropump. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04744-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractPatches of surface-immobilized and catalytically active enzyme, immersed into a solution with the corresponding substrate, induce flow in the solution. Such systems are currently investigated as a promising direction in the development of self-powered micropumps that could operate autonomously within microfluidic devices. Here, we investigate the influence of confinement, within a slab of height H, on the response exhibited by silica tracer particles sedimented near a chemically active glucose oxidase patch which is immersed into a glucose solution of very low ionic strength. Irrespective of the value H, within the range explored in this study, a region depleted of tracers forms around the patch. When H is not much larger than the radius of the patch, the rate of growth of the depletion zone depends on H; somewhat surprisingly, this dependence is influenced by the glucose concentration. The results are discussed within the context of a simple model for a chemically active patch.
Collapse
|