1
|
Serkhacheva NS, Prokopov NI, Lysenko EA, Kozhunova EY, Chernikova EV. Modern Trends in Polymerization-Induced Self-Assembly. Polymers (Basel) 2024; 16:1408. [PMID: 38794601 PMCID: PMC11125046 DOI: 10.3390/polym16101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Polymerization-induced self-assembly (PISA) is a powerful and versatile technique for producing colloidal dispersions of block copolymer particles with desired morphologies. Currently, PISA can be carried out in various media, over a wide range of temperatures, and using different mechanisms. This method enables the production of biodegradable objects and particles with various functionalities and stimuli sensitivity. Consequently, PISA offers a broad spectrum of potential commercial applications. The aim of this review is to provide an overview of the current state of rational synthesis of block copolymer particles with diverse morphologies using various PISA techniques and mechanisms. The discussion begins with an examination of the main thermodynamic, kinetic, and structural aspects of block copolymer micellization, followed by an exploration of the key principles of PISA in the formation of gradient and block copolymers. The review also delves into the main mechanisms of PISA implementation and the principles governing particle morphology. Finally, the potential future developments in PISA are considered.
Collapse
Affiliation(s)
- Natalia S. Serkhacheva
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, pr. Vernadskogo, 86, 119571 Moscow, Russia;
| | - Nickolay I. Prokopov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, pr. Vernadskogo, 86, 119571 Moscow, Russia;
| | - Evgenii A. Lysenko
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
| | - Elena Yu. Kozhunova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, bld. 2, 119991 Moscow, Russia
| | - Elena V. Chernikova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
| |
Collapse
|
2
|
Hurst PJ, Graham AA, Patterson JP. Gaining Structural Control by Modification of Polymerization Rate in Ring-Opening Polymerization-Induced Crystallization-Driven Self-Assembly. ACS POLYMERS AU 2022; 2:501-509. [PMID: 36536891 PMCID: PMC9756957 DOI: 10.1021/acspolymersau.2c00027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/17/2023]
Abstract
Polymerization-induced self-assembly (PISA) has become an important one pot method for the preparation of well-defined block copolymer nanoparticles. In PISA, morphology is typically controlled by changing molecular architecture and polymer concentration. However, several computational and experimental studies have suggested that changes in polymerization rate can lead to morphological differences. Here, we demonstrate that catalyst selection can be used to control morphology independent of polymer structure and concentration in ring-opening polymerization-induced crystallization-driven self-assembly (ROPI-CDSA). Slower rates of polymerization give rise to slower rates of self-assembly, resulting in denser lamellae and more 3D structures when compared to faster rates of polymerization. Our explanation for this is that the fast samples transiently exist in a nonequilibrium state as self-assembly starts at a higher solvophobic block length when compared to the slow polymerization. We expect that subsequent examples of rate variation in PISA will allow for greater control over morphological outcome.
Collapse
Affiliation(s)
- Paul Joshua Hurst
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697-2025, United States
| | - Annissa A. Graham
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697-2025, United States
| | - Joseph P. Patterson
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697-2025, United States
- Department
of Materials Science and Engineering, University
of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
3
|
Petrov A, Chertovich AV, Gavrilov AA. Phase Diagrams of Polymerization-Induced Self-Assembly Are Largely Determined by Polymer Recombination. Polymers (Basel) 2022; 14:polym14235331. [PMID: 36501725 PMCID: PMC9736918 DOI: 10.3390/polym14235331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
In the current work, atom transfer radical polymerization-induced self-assembly (ATRP PISA) phase diagrams were obtained by the means of dissipative particle dynamics simulations. A fast algorithm for determining the equilibrium morphology of block copolymer aggregates was developed. Our goal was to assess how the chemical nature of ATRP affects the self-assembly of diblock copolymers in the course of PISA. We discovered that the chain growth termination via recombination played a key role in determining the ATRP PISA phase diagrams. In particular, ATRP with turned off recombination yielded a PISA phase diagram very similar to that obtained for a simple ideal living polymerization process. However, an increase in the recombination probability led to a significant change of the phase diagram: the transition between cylindrical micelles and vesicles was strongly shifted, and a dependence of the aggregate morphology on the concentration was observed. We speculate that this effect occurred due to the simultaneous action of two factors: the triblock copolymer architecture of the terminated chains and the dispersity of the solvophobic blocks. We showed that these two factors affected the phase diagram weakly if they acted separately; however, their combination, which naturally occurs during ATRP, affected the ATRP PISA phase diagram strongly. We suggest that the recombination reaction is a key factor leading to the complexity of experimental PISA phase diagrams.
Collapse
Affiliation(s)
- Artem Petrov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence:
| | - Alexander V. Chertovich
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
- Semenov Federal Research Center for Chemical Physics, 119991 Moscow, Russia
| | - Alexey A. Gavrilov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
- Semenov Federal Research Center for Chemical Physics, 119991 Moscow, Russia
| |
Collapse
|
4
|
Wang J, Zhu B, Wang Y, Hao Y, Zhang J, Li Z. Polymer pattern-induced self-assembly of inorganic nanoparticles. SOFT MATTER 2021; 18:97-106. [PMID: 34870666 DOI: 10.1039/d1sm01388b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Functional assemblies of inorganic nanoparticles (NPs) are widely studied owing to their collective electromagnetic properties and various application from nanodrugs and bioimaging. In most cases, the superstructures of NPs are prepared with the assistance of templates or external fields. Therefore, how to prepare the functional assemblies of NPs more simply remains a challenge. Here, a free-template assembly strategy for preparing the superstructures of NPs is proposed in our work. In our strategy, we design poly(glycerol monomethacrylate)-b-poly(2-hydroxypropyl methacrylate) (PGMA-b-PHPMA) coated NPs. Then, using the polymerization-induced self-assembly (PISA), hydrophobic PHPMA blocks resulted in the phase separation to form the orderly patterns, which is expected to induced NPs to self-assemble into the orderly superstructures. By DPD simulations, we find that the disk, ring, composite superstructures can be obtained by regulating the graft density, verifying that our assembly strategy of NPs is feasible. Even more interesting is that NPs are also distributed in an orderly way on the surface of aggregations to form the orderly NP patterns. Besides that, the thermodynamics, dynamics, and structure details in the self-assembly process of HINPs are shown in our work, providing a new idea and elaborate physical picture for the following preparation of the superstructure of NPs.
Collapse
Affiliation(s)
- Junfeng Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Bojin Zhu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Yining Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Yujian Hao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Zhen Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| |
Collapse
|
5
|
Zheng X, Pan D, Chen X, Wu L, Chen M, Wang W, Zhang H, Gong Q, Gu Z, Luo K. Self-Stabilized Supramolecular Assemblies Constructed from PEGylated Dendritic Peptide Conjugate for Augmenting Tumor Retention and Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102741. [PMID: 34623034 PMCID: PMC8596125 DOI: 10.1002/advs.202102741] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/22/2021] [Indexed: 02/05/2023]
Abstract
Supramolecular self-assemblies of dendritic peptides with well-organized nanostructures have great potential as multifunctional biomaterials, yet the complex self-assembly mechanism hampers their wide exploration. Herein, a self-stabilized supramolecular assembly (SSA) constructed from a PEGylated dendritic peptide conjugate (PEG-dendritic peptide-pyropheophorbide a, PDPP), for augmenting tumor retention and therapy, is reported. The supramolecular self-assembly process of PDPP is concentration-dependent with multiple morphologies. By tailoring the concentration of PDPP, the supramolecular self-assembly is driven by noncovalent interactions to form a variety of SSAs (unimolecular micelles, oligomeric aggregates, and multi-aggregates) with different sizes from nanometer to micrometer. SSAs at 100 nm with a spherical shape possess extremely high stability to prolong blood circulation about 4.8-fold higher than pyropheophorbide a (Ppa), and enhance tumor retention about eight-fold higher than Ppa on day 5 after injection, which leads to greatly boosting the in vivo photodynamic therapeutic efficiency. RNA-seq demonstrates that these effects of SSAs are related to the inhibition of MET-PI3K-Akt pathway. Overall, the supramolecular self-assembly mechanism for the synthetic PEGylated dendritic peptide conjugate sheds new light on the development of supramolecular assemblies for tumor therapy.
Collapse
Affiliation(s)
- Xiuli Zheng
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041China
- National Engineering Research Center for BiomaterialsSichuan UniversityChengdu610064China
| | - Dayi Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041China
| | - Xiaoting Chen
- Animal Experimental Center of West China HospitalCore Facility of West China HospitalSichuan UniversityChengdu610041China
| | - Lei Wu
- Animal Experimental Center of West China HospitalCore Facility of West China HospitalSichuan UniversityChengdu610041China
| | - Miao Chen
- West China School of MedicineWest China College of StomatologySichuan UniversityChengdu610041China
| | - Wenjia Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041China
| | - Hu Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041China
- Amgen Bioprocessing CentreKeck Graduate InstituteClaremontCA91711USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041China
- Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceResearch Unit of PsychoradiologyChinese Academy of Medical SciencesChengdu610041China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041China
- National Engineering Research Center for BiomaterialsSichuan UniversityChengdu610064China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041China
- National Engineering Research Center for BiomaterialsSichuan UniversityChengdu610064China
- Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceResearch Unit of PsychoradiologyChinese Academy of Medical SciencesChengdu610041China
| |
Collapse
|
6
|
Wang J, Li J, Wang Y, Li Z, Zhang J. Polymerization-Induced Self-Assembly of Comb-like Amphiphilic Copolymers into Onion-like Vesicles. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Junfeng Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Jiawei Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Yining Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Zhen Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| |
Collapse
|