1
|
Lteif S, Akkaoui K, Abou Shaheen S, Chaaban M, Weigand S, Schlenoff JB. Gummy Nanoparticles with Glassy Shells in Electrostatic Nanocomposites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9611-9620. [PMID: 35877784 DOI: 10.1021/acs.langmuir.2c01019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanocomposites with unusual and superior properties often contain well-dispersed nanoparticles. Polydimethylsiloxane, PDMS, offers a fluidlike or rubbery (when cross-linked) response, which complements the high-modulus nature of inorganic nanofillers. Systems using PDMS as the nanoparticulate, rather than the continuous, phase are rare because it is difficult to make PDMS nanoparticles. Aqueous dispersions of hydrophobic polymer nanoparticles must survive the considerable contrast in hydrophobicity between water and the polymer component. This challenge is often met with a shell of hydrophilic polymer or by adding surfactant. In the present work, two critical advances for making and using aqueous colloidal dispersions of PDMS are reported. First, PDMS nanoparticles with charged amino end groups were prepared by flash nanoprecipitation in aqueous solutions. Adding a negative polyelectrolyte, poly(styrene sulfonate), PSS, endowed the nanoparticles with a glassy shell, stabilizing them against aggregation. Second, when compressed into a nanocomposite, the small amount of PSS leads to a large increase in bulk modulus. X-ray scattering studies revealed the hierarchical nanostructuring within the composite, with a 4 nm PDMS micelle as the smallest unit. This class of nanoparticle and nanocomposite presents a new paradigm for stabilizing liquidlike building blocks for nanomaterials.
Collapse
Affiliation(s)
- Sandrine Lteif
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| | - Khalil Akkaoui
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| | - Samir Abou Shaheen
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| | - Maya Chaaban
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| | - Steven Weigand
- DND-CAT Synchrotron Research Center, Northwestern University, APS/ANL 432-A005, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Joseph B Schlenoff
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
2
|
Yeshchenko OA, Kutsevol NV, Tomchuk AV, Khort PS, Virych PA, Chumachenko VA, Kuziv YI, Marinin AI, Cheng L, Nie G. Thermoresponsive Zinc TetraPhenylPorphyrin Photosensitizer/Dextran Graft Poly(N-IsoPropylAcrylAmide) Copolymer/Au Nanoparticles Hybrid Nanosystem: Potential for Photodynamic Therapy Applications. NANOMATERIALS 2022; 12:nano12152655. [PMID: 35957085 PMCID: PMC9370275 DOI: 10.3390/nano12152655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 01/27/2023]
Abstract
The thermoresponsive Zinc TetraPhenylPorphyrin photosensitizer/Dextran poly (N-isopropylacrylamide) graft copolymer/Au Nanoparticles (ZnTPP/D-g-PNIPAM/AuNPs) triple hybrid nanosystem was synthesized in aqueous solution as a nanodrug for potential use in thermally driven and controlled photodynamic therapy applications. The aqueous solution of the nanosystem has demonstrated excellent stability in terms of aggregation and sedimentation several days after preparation. Optimal concentrations of the components of hybrid nanosystem providing the lowest level of aggregation and the highest plasmonic enhancement of electronic processes in the photosensitizer molecules have been determined. It has been revealed that the shrinking of D-g-PNIPAM macromolecule during a thermally induced phase transition leads to the release of both ZnTPP molecules and Au NPs from the ZnTPP/D-g-PNIPAM/AuNPs macromolecule and the strengthening of plasmonic enhancement of the electronic processes in ZnTPP molecules bound with the polymer macromolecule. The 2.7-fold enhancement of singlet oxygen photogeneration under resonant with surface plasmon resonance has been observed for ZnTPP/D-g-PNIPAM/AuNPs proving the plasmon nature of such effect. The data obtained in vitro on wild strains of Staphylococcus aureus have proved the high potential of such nanosystem for rapid photodynamic inactivation of microorganisms particular in wounds or ulcers on the body surface.
Collapse
Affiliation(s)
- Oleg A. Yeshchenko
- Physics Department, Taras Shevchenko National University of Kyiv, 60 Volodymyrska Str., 01601 Kyiv, Ukraine; (A.V.T.); (P.S.K.)
- Correspondence: (O.A.Y.); (G.N.)
| | - Nataliya V. Kutsevol
- Chemistry Department, Taras Shevchenko National University of Kyiv, 60 Volodymyrska Str., 01601 Kyiv, Ukraine; (N.V.K.); (P.A.V.); (V.A.C.); (Y.I.K.)
- Institute Charles Sadron, 23 Rue du Loess, 67200 Strasbourg, France
| | - Anastasiya V. Tomchuk
- Physics Department, Taras Shevchenko National University of Kyiv, 60 Volodymyrska Str., 01601 Kyiv, Ukraine; (A.V.T.); (P.S.K.)
| | - Pavlo S. Khort
- Physics Department, Taras Shevchenko National University of Kyiv, 60 Volodymyrska Str., 01601 Kyiv, Ukraine; (A.V.T.); (P.S.K.)
| | - Pavlo A. Virych
- Chemistry Department, Taras Shevchenko National University of Kyiv, 60 Volodymyrska Str., 01601 Kyiv, Ukraine; (N.V.K.); (P.A.V.); (V.A.C.); (Y.I.K.)
| | - Vasyl A. Chumachenko
- Chemistry Department, Taras Shevchenko National University of Kyiv, 60 Volodymyrska Str., 01601 Kyiv, Ukraine; (N.V.K.); (P.A.V.); (V.A.C.); (Y.I.K.)
| | - Yulia I. Kuziv
- Chemistry Department, Taras Shevchenko National University of Kyiv, 60 Volodymyrska Str., 01601 Kyiv, Ukraine; (N.V.K.); (P.A.V.); (V.A.C.); (Y.I.K.)
- Institute Charles Sadron, 23 Rue du Loess, 67200 Strasbourg, France
| | - Andrey I. Marinin
- Problem Research Laboratory, National University of Food Technology, 68 Volodymyrska Str., 01601 Kyiv, Ukraine;
| | - Lili Cheng
- Guangxi Universities Key Lab of Complex System Optimization and Big Data Processing, Yulin Normal University, Yulin 537000, China;
| | - Guochao Nie
- Guangxi Universities Key Lab of Complex System Optimization and Big Data Processing, Yulin Normal University, Yulin 537000, China;
- Correspondence: (O.A.Y.); (G.N.)
| |
Collapse
|
3
|
Zhao Y, Sarhan RM, Eljarrat A, Kochovski Z, Koch C, Schmidt B, Koopman W, Lu Y. Surface-Functionalized Au-Pd Nanorods with Enhanced Photothermal Conversion and Catalytic Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17259-17272. [PMID: 35389208 DOI: 10.1021/acsami.2c00221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bimetallic nanostructures comprising plasmonic and catalytic components have recently emerged as a promising approach to generate a new type of photo-enhanced nanoreactors. Most designs however concentrate on plasmon-induced charge separation, leaving photo-generated heat as a side product. This work presents a photoreactor based on Au-Pd nanorods with an optimized photothermal conversion, which aims to effectively utilize the photo-generated heat to increase the rate of Pd-catalyzed reactions. Dumbbell-shaped Au nanorods were fabricated via a seed-mediated growth method using binary surfactants. Pd clusters were selectively grown at the tips of the Au nanorods, using the zeta potential as a new synthetic parameter to indicate the surfactant remaining on the nanorod surface. The photothermal conversion of the Au-Pd nanorods was improved with a thin layer of polydopamine (PDA) or TiO2. As a result, a 60% higher temperature increment of the dispersion compared to that for bare Au rods at the same light intensity and particle density could be achieved. The catalytic performance of the coated particles was then tested using the reduction of 4-nitrophenol as the model reaction. Under light, the PDA-coated Au-Pd nanorods exhibited an improved catalytic activity, increasing the reaction rate by a factor 3. An analysis of the activation energy confirmed the photoheating effect to be the dominant mechanism accelerating the reaction. Thus, the increased photothermal heating is responsible for the reaction acceleration. Interestingly, the same analysis shows a roughly 10% higher reaction rate for particles under illumination compared to under dark heating, possibly implying a crucial role of localized heat gradients at the particle surface. Finally, the coating thickness was identified as an essential parameter determining the photothermal conversion efficiency and the reaction acceleration.
Collapse
Affiliation(s)
- Yuhang Zhao
- Department for Electrochemical Energy Storage, Helmholtz Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Radwan M Sarhan
- Department for Electrochemical Energy Storage, Helmholtz Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Alberto Eljarrat
- Department of Physics & IRIS Adlershof, Humboldt-Universitätzu zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Zdravko Kochovski
- Department for Electrochemical Energy Storage, Helmholtz Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Christoph Koch
- Department of Physics & IRIS Adlershof, Humboldt-Universitätzu zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Bernd Schmidt
- Institute of Chemistry, University of Potsdam, 14467 Potsdam, Germany
| | - Wouter Koopman
- Institute of Physics and Astronomy, University of Potsdam, 14467 Potsdam, Germany
| | - Yan Lu
- Department for Electrochemical Energy Storage, Helmholtz Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Institute of Chemistry, University of Potsdam, 14467 Potsdam, Germany
| |
Collapse
|
4
|
LaNasa JA, Neuman A, Riggleman RA, Hickey RJ. Investigating Nanoparticle Organization in Polymer Matrices during Reaction-Induced Phase Transitions and Material Processing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42104-42113. [PMID: 34432429 DOI: 10.1021/acsami.1c14830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Controlling nanoparticle organization in polymer matrices has been and is still a long-standing issue and directly impacts the performance of the materials. In the majority of instances, simply mixing nanoparticles and polymers leads to macroscale aggregation, resulting in deleterious effects. An alternative method to physically blending independent components such as nanoparticle and polymers is to conduct polymerizations in one-phase monomer/nanoparticle mixtures. Here, we report on the mechanism of nanoparticle aggregation in hybrid materials in which gold nanoparticles are initially homogeneously dispersed in a monomer mixture and then undergo a two-step aggregation process during polymerization and material processing. Specifically, oleylamine-functionalized gold nanoparticles (AuNP) are first synthesized in a methyl methacrylate (MMA) solution and then subsequently polymerized by using a free radical polymerization initiated with azobis(isobutyronitrile) (AIBN) to create hybrid AuNP and poly(methyl methacrylate) (PMMA) materials. The resulting products are easily pressed to obtain bulk films with nanoparticle organization defined as either well-dispersed or aggregated. Polymerizations are performed at various temperatures (T) and MMA volume fractions (ΦMMA) to systematically influence the final nanoparticle dispersion state. During the polymerization of MMA and subsequent material processing, the initially homogeneous AuNP/MMA mixture undergoes macrophase separation between PMMA and oleylamine during the polymerization, yet the AuNP are dispersed in the oleylamine phase. The nanoparticles then aggregate within the oleylamine phase when the materials are processed via vacuum drying and pressing. Nanoparticle organization is tracked throughout the polymerization and processing steps by using a combination of transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). The resulting dispersion state of AuNPs in PMMA bulk films is ultimately dictated by the thermodynamics of mixing between the PMMA and oleylamine phases, but the mechanism of nanoparticle aggregation occurs in two steps that correspond to the polymerization and processing of the materials. Flory-Huggins mixing theory is used to support the PMMA and oleylamine phase separation. The reported results highlight how the integration of nonequilibrium processing and mean-field approximations reveal nanoparticle aggregation in hybrid materials synthesized by using reaction-induced phase transitions.
Collapse
Affiliation(s)
| | - Anastasia Neuman
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert A Riggleman
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | |
Collapse
|
5
|
Branda F, Bifulco A, Jehnichen D, Parida D, Pauer R, Passaro J, Gaan S, Pospiech D, Durante M. Structure and Bottom-up Formation Mechanism of Multisheet Silica-Based Nanoparticles Formed in an Epoxy Matrix through an In Situ Process. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8886-8893. [PMID: 34275300 PMCID: PMC8397334 DOI: 10.1021/acs.langmuir.1c01363] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/08/2021] [Indexed: 05/25/2023]
Abstract
Organic/inorganic hybrid composite materials with the dispersed phases in sizes down to a few tens of nanometers raised very great interest. In this paper, it is shown that silica/epoxy nanocomposites with a silica content of 6 wt % may be obtained with an "in situ" sol-gel procedure starting from two precursors: tetraethyl orthosilicate (TEOS) and 3-aminopropyl-triethoxysilane (APTES). APTES also played the role of a coupling agent. The use of advanced techniques (bright-field high-resolution transmission electron microscopy, HRTEM, and combined small- and wide-angle X-ray scattering (SAXS/WAXS) performed by means of a multirange device Ganesha 300 XL+) allowed us to evidence a multisheet structure of the nanoparticles instead of the gel one typically obtained through a sol-gel route. A mechanism combining in a new manner well-assessed knowledge regarding sol-gel chemistry, emulsion formation, and Ostwald ripening allowed us to give an explanation for the formation of the observed lamellar nanoparticles.
Collapse
Affiliation(s)
- Francesco Branda
- Department
of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Naples 80125, Italy
| | - Aurelio Bifulco
- Department
of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Naples 80125, Italy
| | - Dieter Jehnichen
- Department
Nanostructured Materials, Leibniz-Institut
für Polymerforschung Dresden e. V., Hohe Str. 6, Dresden 01069, Germany
| | - Dambarudhar Parida
- Laboratory
for Advanced Fibers, Empa Swiss Federal
Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St., Gallen 9014, Switzerland
| | - Robin Pauer
- Advanced
Materials and Surfaces, Empa, Swiss Federal
Laboratories for Materials Science and Technology, Dubendorf CH-8600, Switzerland
| | - Jessica Passaro
- Department
of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Naples 80125, Italy
| | - Sabyasachi Gaan
- Laboratory
for Advanced Fibers, Empa Swiss Federal
Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St., Gallen 9014, Switzerland
| | - Doris Pospiech
- Department
Polymer Structures, Leibniz-Institut für
Polymerforschung Dresden e. V., Hohe Str. 6, Dresden 01069, Germany
| | - Massimo Durante
- Department
of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Naples 80125, Italy
| |
Collapse
|
6
|
Shi H, Wang H, Lu H, Zhang X, Zhang Z. Magnetic Field-Induced Orientation of Modified Boron Nitride Nanosheets in Epoxy Resin with Improved Flame and Wear Resistance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8222-8231. [PMID: 34210130 DOI: 10.1021/acs.langmuir.1c00927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, self-lubricating boron nitride nanosheets (BNNs) were decorated with flame-retardant zinc ferrite (ZnFe2O4), followed by stearic acid modification to obtain magnetic and hydrophobic properties. Under the external magnetic field, the obtained ZnFe2O4-BNNs can be well ordered into one-dimensional orientation in the epoxy resin (EP) matrix-enabling improved flame retardant properties. Compared to a randomly oriented ZnFe2O4-BNN equivalent, the well-orientated ZnFe2O4-BNNs (at 10% mass fraction) reduce the peak heat release rate and CO production by 47 and 51%, respectively. Furthermore, the ZnFe2O4-BNN/EP composite monoliths demonstrate excellent durability, displaying continued superhydrophobicity under Taber abrasion, high external pressure, knife scratch, long-term exposure to acids/bases, and harsh UV irradiation. In addition, the result shows that the well-oriented ZnFe2O4-BNN/EP composite demonstrates better tribological performance and the friction coefficient is reduced by 76.9%.
Collapse
Affiliation(s)
- Huili Shi
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Huanhuan Wang
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China
| | - Haitao Lu
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China
| | - Xia Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Qingdao Center of Resource Chemistry & New Materials, Qingdao 266000, China
| | - Zhijun Zhang
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China
| |
Collapse
|