1
|
Raji F, Nguyen NN, Nguyen CV, Nguyen AV. Lead (II) ions enable the ion-specific effects of monovalent anions on the molecular structure and interactions at silica/aqueous interfaces. J Colloid Interface Sci 2024; 662:653-662. [PMID: 38367582 DOI: 10.1016/j.jcis.2024.02.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
HYPOTHESIS The adsorption of heavy metal ions such as Pb(II) onto negatively charged minerals such as silica is expected to alter the structure and the interactions at the silica/aqueous interfaces. Besides the solution pH, the inner-sphere sorption of Pb(II) is expected to regulate the surface charge/potential, hypothesized to control the actions of monovalent anions in the aqueous environment. These complex pictures can be probed directly using surface-sensitive sum-frequency generation (SFG) spectroscopy. EXPERIMENTS The pH-dependent water structure within the double layer at silica/aqueous interfaces under the influence of different ions was examined using SFG. The recorded SFG spectra were deconvoluted into the Stern layer (SL) and diffuse layer (DL) using the maximum entropy method in conjunction with the electrical double-layer theory. FINDINGS Standalone monovalent sodium salts do not exhibit ion-specific effects on the silica/aqueous interfaces. However, the mixture of Pb(II) species and each of these salts display profound ion-specific effects on the structure of silica/aqueous interfaces, indicating the role of Pb(II) as an enabler of the ion-specificity of the investigated monovalent anions. The interesting effect arises from a complex interplay between the physical processes (i.e., electrostatic interactions, screening effects, etc.) and chemical processes such as the hydrolysis of Pb(II) ions, ion complexation, protonation and deprotonation of the surface silanol group.
Collapse
Affiliation(s)
- Foad Raji
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Ngoc N Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cuong V Nguyen
- Department of Water and Environmental Regulation, Joondalup, WA 6027, Australia
| | - Anh V Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
2
|
Ma Y, Yu Z, Fu X, Qiu T, Zhao N, Liu H, Huang Z, Liu K. High Breakthrough Pressure in Hydrogels Enabled Ultrastable Treatment of Hypersaline Wastewaters. NANO LETTERS 2024; 24:4202-4208. [PMID: 38547140 DOI: 10.1021/acs.nanolett.4c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Surface effects of low-surface-tension contaminants accumulating at the evaporation surface easily induce wetting in membrane distillation, especially in hypersaline scenarios. Herein, we propose a novel strategy to eliminate the surface effect and redistribute contaminants at the evaporation interface simply by incorporating a layer of hydrogel. The as-fabricated composite membrane exhibits remarkable stability, even when exposed to solution with salt concentration of 5 M and surfactant concentration of 8 mM. Breakthrough pressure of the membrane reaches 20 bar in the presence of surfactants, surpassing commercial hydrophobic membranes by one to two magnitudes. Density functional theory and molecular dynamics simulations reveal the important role of the hydrogel-surfactant interaction in suppressing the surface effect. As a proof of concept, we demonstrate the membrane in stably processing synthetic wastewater containing 144 mg L-1 surfactants, 1 g L-1 mineral oils, and 192 g L-1 NaCl, showing its potential in addressing challenges of hypersaline water treatment.
Collapse
Affiliation(s)
- Yanni Ma
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
| | - Zehua Yu
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
| | - Xifan Fu
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
| | - Tenghui Qiu
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
| | - Na Zhao
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
| | - Huidong Liu
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhi Huang
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
| | - Kang Liu
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
3
|
Lau S, Bilodeau CL. Effect of Monovalent Cations on the Structure and Dynamics of Multimodal Chromatographic Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6694-6702. [PMID: 38518252 PMCID: PMC10993413 DOI: 10.1021/acs.langmuir.3c03294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024]
Abstract
While multimodal (MM) chromatography is a promising approach for purifying proteins, the lack of a fundamental understanding of how ion-ligand interactions govern selectivity limits its use in the biopharmaceutical industry. This study uses molecular dynamics simulations to study the interactions between simple monovalent cations and two commonly used structurally similar multimodal chromatography ligands, the Capto ligand and Nuvia cPrime, immobilized on the surface. On the Capto ligand surface, ion presence and type play a key role in modulating the formation of phenyl rings and carboxylate clusters. The flexible linkage attaching the Capto ligand to the self-assembled monolayer (SAM) surface allowed multiple ligands to form interactions with the small cations, while large cations interacted less strongly, following the order Li+ > Na+ > K+ > Cs+. Thus, smaller cations resulted in greater ordering on the surface and lower ion diffusivities, while larger cations resulted in less ordering and higher ion diffusivities, following the order Li+ < Na+ < K+ < Cs+. In contrast, due to the rigid attachment of Nuvia cPrime to the SAM surfaces, the cations bound less strongly and had a much smaller effect on ligand clustering or ordering. Additionally, ions in the presence of the Nuvia cPrime surface had generally greater diffusivities than those in the presence of the Capto ligand. Overall, the interaction of cations with the multimodal ligands can lead to unique configurations on the SAM that likely contribute to differential behavior in biological separations.
Collapse
Affiliation(s)
- Sabrina
C. Lau
- Dublin
High School, Dublin, California 94568, United States
| | - Camille L. Bilodeau
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| |
Collapse
|
4
|
Ma X, Li M, Xu X, Sun C. Coupling Effects of Ionic Surfactants and Electrolytes on the Stability of Bulk Nanobubbles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193450. [PMID: 36234578 PMCID: PMC9565236 DOI: 10.3390/nano12193450] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 05/14/2023]
Abstract
As interest in the extensive application of bulk nanobubbles increases, it is becoming progressively important to understand the key factors affecting their anomalous stability. The scientific intrigue over nanobubbles originates from the discrepancy between the Epstein-Plesset prediction and experimental observations. Herein, the coupling effects of ionic surfactants and electrolytes on the stability of bulk nanobubbles is studied. Experimental results show that ionic surfactants not only reduce the surface tension but also promote the accumulation of net charges, which facilitate the nucleation and stabilization of bulk nanobubbles. The addition of an electrolyte in a surfactant solution further results in a decrease in the zeta potential and the number concentration of nanobubbles due to the ion shielding effect, essentially colloidal stability. An adsorption model for the coexistence of ionic surfactants and electrolytes in solution, that specifically considers the effect of the adsorption layer thickness within the framework of the modified Poisson-Boltzmann equation, is developed. A quantitative agreement between the predicted and experimental surface tension is found in a wide range of bulk concentrations. The spatial distribution of the surface potential, surfactant ions and counterions in the vicinity of the interface of bulk nanobubbles are described. Our study intrinsically paves a route to investigate the stability of bulk nanobubbles.
Collapse
|
5
|
Sun K, Nguyen CV, Nguyen NN, Nguyen AV. Flotation surface chemistry of water-soluble salt minerals: from experimental results to new perspectives. Adv Colloid Interface Sci 2022; 309:102775. [PMID: 36152375 DOI: 10.1016/j.cis.2022.102775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022]
Abstract
The flotation separation of water-soluble salt minerals has to be conducted under the condition of saturation in brines which represents a challenging but exciting topic of colloid and surface chemistry. Despite several proposals on explaining the success of this industrial application for many decades, our understanding of the flotation separation is still far from complete yet, owing to the complexity of the highly selective collection of salt crystals by air bubbles in brines. Here, we thoroughly review the experimental results for halogen, oxyanion, and double salts and match them with the proposed theories on the flotation of soluble salts to identify the agreed and disagreed cases. The experimental results show that the flotation of these salts varies from collectors (surfactants applied to control the crystal hydrophobicity) to collectors and is strongly affected by the brine ion composition and pH conditions. We find some exceptional flotation results that cannot be simply explained by the crystal surface charge and wettability. Furthermore, we outline several disputes and discrepancies between the experiments and the theories when different collectors are applied. Apart from the extensive consideration of surface hydration, the presence of external ion species exhibits ubiquitous effects on the surface properties of salt crystals and the colloidal properties of collectors. We conclude that the interactions between salt ions, water molecules, collectors, and salt crystals must be considered more thoroughly, and the activity of collectors at the air-liquid interface should also be the focus. Advanced techniques such as molecular dynamics simulation, atomic force microscopy, X-ray photoelectron spectroscopy, and sum-frequency generation spectroscopy are expected to be promising research tools for future studies.
Collapse
Affiliation(s)
- Kangkang Sun
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cuong V Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ngoc N Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Anh V Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
6
|
Lbadaoui-Darvas M, Idrissi A, Jedlovszky P. Computer Simulation of the Surface of Aqueous Ionic and Surfactant Solutions. J Phys Chem B 2022; 126:751-765. [PMID: 34904437 PMCID: PMC9161821 DOI: 10.1021/acs.jpcb.1c08553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The surface of aqueous solutions of simple salts was not the main focus of scientific attention for a long while. Considerable interest in studying such systems has only emerged in the past two decades, following the pioneering finding that large halide ions, such as I-, exhibit considerable surface affinity. Since then, a number of issues have been clarified; however, there are still several unresolved points (e.g., the effect of various salts on lateral water diffusion at the surface) in this respect. Computer simulation studies of the field have largely benefited from the appearance of intrinsic surface analysis methods, by which the particles staying right at the boundary of the two phases can be unambiguously identified. Considering complex ions instead of simple ones opens a number of interesting questions, both from the theoretical point of view and from that of the applications. Besides reviewing the state-of-the-art of intrinsic surface analysis methods as well as the most important advances and open questions concerning the surface of simple ionic solutions, we focus on two such systems in this Perspective, namely, the surface of aqueous mixtures of room temperature ionic liquids and that of ionic surfactants. In the case of the former systems, for which computer simulation studies have still scarcely been reported, we summarize the theoretical advances that could trigger such investigations, which might well be of importance also from the point of view of industrial applications. Computer simulation methods are, on the other hand, widely used in studies of the surface of surfactant solutions. Here we review the most important theoretical advances and issues to be addressed and discuss two areas of applications, namely, the inclusion of information gathered from such simulations in large scale atmospheric models and the better understanding of the airborne transmission of viruses, such as SARS-CoV-2.
Collapse
Affiliation(s)
- Mária Lbadaoui-Darvas
- Laboratory
of Atmospheric Processes and their Impacts, EPFL, CH-1015 Lausanne, Switzerland
| | - Abdenacer Idrissi
- CNRS,
UMR 8516 -LASIRe - Laboratoire Avancé de Spectroscopie pour
les Interactions la Réactivité et l’environnement, University of Lille, F-5900 Lille, France
| | - Pál Jedlovszky
- Department
of Chemistry, Eszterházy Károly
University, Leányka utca 6, H-3300 Eger, Hungary,
| |
Collapse
|
7
|
Warszyński P, Szyk-Warszyńska L, Wilk KA, Lamch Ł. Adsorption of cationic multicharged surfactants at liquid/gas interface. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Nguyen CV, Peng M, Duignan TT, Nguyen AV. Salting-Up of Surfactants at the Surface of Saline Water as Detected by Tensiometry and SFG and Supported by Molecular Dynamics Simulation. J Phys Chem B 2022; 126:1063-1075. [PMID: 35103476 DOI: 10.1021/acs.jpcb.1c08114] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Surfactant adsorption at the air-water interface is critical to many industrial processes but its dependence on salt ions is still poorly understood. Here, we investigate the adsorption of sodium dodecanoate onto the air-water interface using model saline waters of Li+ or Cs+ at pH values 8 and 11. Both cations enhance the surfactant adsorption, as expected, but their largest effects on the adsorption also depend on pH. Specifically, surface tension measurements, sum-frequency generation spectroscopy, and microelectrophoresis show that small (hard) Li+ enhances the surfactant adsorption more than large (soft) Cs+ at pH 11. This effect is fully reversed at pH 8. We argue that this salting-up (increasing adsorption) reversal is attributable to the conversion of the neutralized carboxylic (-COOH) headgroup at pH 8 into the charged carboxylate (-COO-) headgroup at pH 11, which, respectively, interact with Cs+ and Li+ favorably. Molecular dynamics simulation shows that the affinity of Cs+ to the interface is decreased and eventually overtaken by Li+ as the carboxylic groups are deprotonated. This study highlights the importance of the charge and size of salt ions in selecting surfactants and electrolytes for industrial applications.
Collapse
Affiliation(s)
- Cuong V Nguyen
- School of Chemical Engineering and ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals (UQ Node), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mengsu Peng
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Timothy T Duignan
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Anh V Nguyen
- School of Chemical Engineering and ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals (UQ Node), The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
9
|
Judd KD, Gonzalez NM, Yang T, Cremer PS. Contact Ion Pair Formation Is Not Necessarily Stronger than Solvent Shared Ion Pairing. J Phys Chem Lett 2022; 13:923-930. [PMID: 35050629 DOI: 10.1021/acs.jpclett.1c03576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Vibrational sum frequency spectroscopy (VSFS) and pressure-area Langmuir trough measurements were used to investigate the binding of alkali metal cations to eicosyl sulfate (ESO4) surfactants in monolayers at the air/water interface. The number density of sulfate groups could be tuned by mixing the anionic surfactant with eicosanol. The equilibrium dissociation constant for K+ to the fatty sulfate interface showed 10 times greater affinity than for Li+ and approximately 3 times greater than for Na+. All three cations formed solvent shared ion pairs when the mole fraction of ESO4 was 0.33 or lower. Above this threshold charge density, Li+ formed contact ion pairs with the sulfate headgroups, presumably via bridging structures. By contrast, K+ only bound to the sulfate moieties in solvent shared ion pairing configurations. The behavior for Na+ was intermediate. These results demonstrate that there is not necessarily a correlation between contact ion pair formation and stronger binding affinity.
Collapse
Affiliation(s)
- Kenneth D Judd
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nicole M Gonzalez
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tinglu Yang
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Paul S Cremer
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
10
|
Nie Z, Li C, Tian S, Ning P, Yang D, Li Y. An insight into mineral waste pulp for sulfur dioxide removal: A novel synergy-coordination mechanism involving surfactant. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Gregory KP, Wanless EJ, Webber GB, Craig VSJ, Page AJ. The electrostatic origins of specific ion effects: quantifying the Hofmeister series for anions. Chem Sci 2021; 12:15007-15015. [PMID: 34976339 PMCID: PMC8612401 DOI: 10.1039/d1sc03568a] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
Life as we know it is dependent upon water, or more specifically salty water. Without dissolved ions, the interactions between biological molecules are insufficiently complex to support life. This complexity is intimately tied to the variation in properties induced by the presence of different ions. These specific ion effects, widely known as Hofmeister effects, have been known for more than 100 years. They are ubiquitous throughout the chemical, biological and physical sciences. The origin of these effects and their relative strengths is still hotly debated. Here we reconsider the origins of specific ion effects through the lens of Coulomb interactions and establish a foundation for anion effects in aqueous and non-aqueous environments. We show that, for anions, the Hofmeister series can be explained and quantified by consideration of site-specific electrostatic interactions. This can simply be approximated by the radial charge density of the anion, which we have calculated for commonly reported ions. This broadly quantifies previously unpredictable specific ion effects, including those known to influence solution properties, virus activities and reaction rates. Furthermore, in non-aqueous solvents, the relative magnitude of the anion series is dependent on the Lewis acidity of the solvent, as measured by the Gutmann Acceptor Number. Analogous SIEs for cations bear limited correlation with their radial charge density, highlighting a fundamental asymmetry in the origins of specific ion effects for anions and cations, due to competing non-Coulombic phenomena.
Collapse
Affiliation(s)
- Kasimir P Gregory
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle Callaghan New South Wales 2308 Australia
| | - Erica J Wanless
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle Callaghan New South Wales 2308 Australia
| | - Grant B Webber
- School of Engineering, The University of Newcastle Callaghan New South Wales 2308 Australia
| | - Vincent S J Craig
- Department of Applied Mathematics, Research School of Physics, Australian National University Canberra ACT 0200 Australia
| | - Alister J Page
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle Callaghan New South Wales 2308 Australia
| |
Collapse
|
12
|
Hantal G, Sega M, Horvai G, Jedlovszky P. Contribution of Different Molecules and Moieties to the Surface Tension in Aqueous Surfactant Solutions. II: Role of the Size and Charge Sign of the Counterions. J Phys Chem B 2021; 125:9005-9018. [PMID: 34319728 DOI: 10.1021/acs.jpcb.1c04216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the role of the counterion species in surfactant solutions is a complicated task, made harder by the fact that, experimentally, it is not possible to vary independently bulk and surface quantities. Here, we perform molecular dynamics simulations at constant surface coverage of the liquid/vapor interface of lithium, sodium, potassium, rubidium, and cesium dodecyl sulfate aqueous solutions. We investigate the effect of counterion type and charge sign on the surface tension of the solution, analyzing the contribution of different species and moieties to the lateral pressure profile. The observed trends are qualitatively compatible with the Hofmeister series, with the notable exception of sodium. We point out a possible shortcoming of what is at the moment, in our experience, the most realistic nonpolarizable force field (CHARMM36) that includes the parametrization for the whole series of alkali counterions. In the artificial system where the counterion and surfactant charges are inverted in sign, the counterions become considerably harder. This charge inversion changes considerably the surface tension contributions of the counterions, surfactant headgroups, and water molecules, stressing the key role of the hardness of the counterions in this respect. However, the hydration free energy gain of the counterions, occurring upon charge inversion, is compensated by the concomitant free energy loss of the headgroups and water molecules, leading to a negligible change in the surface tension of the entire system.
Collapse
Affiliation(s)
- György Hantal
- Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Peter Jordan Straße 82, A-1190 Vienna, Austria.,Department of Chemistry, Eszterházy Károly University, Leányka utca 6, H-3300 Eger, Hungary
| | - Marcello Sega
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11),Fürther Straße 248, D-90429 Nürnberg, Germany
| | - George Horvai
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért tér 4, H-1111 Budapest, Hungary
| | - Pál Jedlovszky
- Department of Chemistry, Eszterházy Károly University, Leányka utca 6, H-3300 Eger, Hungary
| |
Collapse
|
13
|
Zhang S, Peng B, Wang W. Temperature-Responsive Hydrogel Carrier for Reducing Adsorption Loss of Petroleum Sulfonates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9809-9816. [PMID: 34343430 DOI: 10.1021/acs.langmuir.1c01374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As an effective anionic surfactant for chemical flooding, petroleum sulfonate (PS) is often used in conjunction with alkalis to reduce the adsorption loss of PS onto rock and clay surfaces. However, alkali injection can lead to scaling, aggravate the water-sensitive effect of clays, and accelerate polymer hydrolysis. Here, a temperature-responsive biohydrogel-based carrier (XLK) was designed to protect PS from adsorption onto geological features. XLK, an aqueous mixture containing 0.5% xanthan gum, 0.5% locust bean gum, and 2% KCl, was a gel at room temperature and transformed gradually into a sol above 50 °C (sol/gel transition temperature, Tsol/gel). Below the Tsol/gel, most PS was retained in the gel, preventing the adsorption of PS onto quartz sand. Above the Tsol/gel, PS was released into the surrounding medium. After it had been loaded with PS, the storage modulus (G', Pa) of XLK increased from 102 to 103 and the loss modulus (G″, Pa) increased from 101 to 102. Environmental scanning electron microscopy micrographs showed that PS filled gaps within the cross-linked network structure of XLK. Compared with the aqueous XLK formulation, the addition of hydrolyzed polyacrylamide (HPAM) decreased the melt rate of XLK and the interfacial tension (IFT) of PS. Among the constituents of XLK loaded with PS, KCl had the most obvious effect of lowering the shear modulus of HPAM. Sufficient amounts of KCl were effective in reducing the IFT of PS to ultralow levels (10-3 mN/m).
Collapse
Affiliation(s)
- Shengwei Zhang
- Beijing Key Laboratory for Greenhouse Gas Storage and CO2-EOR, Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, China
| | - Bo Peng
- Beijing Key Laboratory for Greenhouse Gas Storage and CO2-EOR, Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, China
| | - Weijie Wang
- Beijing Key Laboratory for Greenhouse Gas Storage and CO2-EOR, Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, China
| |
Collapse
|
14
|
Peng M, Duignan TT, Nguyen CV, Nguyen AV. From Surface Tension to Molecular Distribution: Modeling Surfactant Adsorption at the Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2237-2255. [PMID: 33559472 DOI: 10.1021/acs.langmuir.0c03162] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Surfactants are centrally important in many scientific and engineering fields and are used for many purposes such as foaming agents and detergents. However, many challenges remain in providing a comprehensive understanding of their behavior. Here, we provide a brief historical overview of the study of surfactant adsorption at the air-water interface, followed by a discussion of some recent advances in this area from our group. The main focus is on incorporating an accurate description of the adsorption layer thickness of surfactant at the air-water interface. Surfactants have a wide distribution at the air-water interface, which can have a significant effect on important properties such as the surface excess, surface tension, and surface potential. We have developed a modified Poisson-Boltzmann (MPB) model to describe this effect, which we outline here. We also address the remaining challenges and future research directions in this area. We believe that experimental techniques, modeling, and simulation should be combined to form a holistic picture of surfactant adsorption at the air-water interface.
Collapse
Affiliation(s)
- Mengsu Peng
- School of Chemical Engineering, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Timothy T Duignan
- School of Chemical Engineering, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cuong V Nguyen
- School of Chemical Engineering, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Anh V Nguyen
- School of Chemical Engineering, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|