1
|
Kato K, Uchida Y, Kaneda T, Tachibana T, Ohtani S, Ogoshi T. Alkoxylated Fluoranthene-Fused [3.3.3]Propellanes: Facile Film Formation against High π-Core Content. Chem Asian J 2024; 19:e202400080. [PMID: 38380847 DOI: 10.1002/asia.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
Solid-state assembling modes are as crucial as the chemical structures of single molecules for real applications. In this work, solid-state structures and phase-transition temperatures are investigated for a series of fluoranthene-fused [3.3.3]propellanes consisting of a rigid three-dimensional (3D) π-core and varying lengths of alkoxy groups. Compounds in this series with n-butoxy or longer alkoxy groups take an amorphous state at room temperature. In these molecules, rotatable biaryl-type bonds are not incorporated and high D3h molecular symmetry is retained. Therefore, π-fused [3.3.3]propellanes present a unique platform for amorphous molecular materials with low ratios of flexible alkoxy atoms to rigid π-core ones.
Collapse
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yuta Uchida
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Tomoya Kaneda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Tomoki Tachibana
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
2
|
Bichan NG, Ovchenkova EN, Mozgova VA, Ksenofontov AA, Kudryakova NO, Shelaev IV, Gostev FE, Lomova TN. Donor-Acceptor Complexes of (5,10,15,20-Tetra(4-methylphenyl)porphyrinato)cobalt(II) with Fullerenes C 60: Self-Assembly, Spectral, Electrochemical and Photophysical Properties. Molecules 2022; 27:8900. [PMID: 36558032 PMCID: PMC9783012 DOI: 10.3390/molecules27248900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The noncovalent interactions of (5,10,15,20-tetra(4-methylphenyl)porphinato)cobalt(II) (CoTTP) with C60 and 1-N-methyl-2-(pyridin-4-yl)-3,4-fullero[60]pyrrolidine (PyC60) were studied in toluene using absorption and fluorescence titration methods. The self-assembly in the 2:1 complexes (the triads) (C60)2CoTTP and (PyC60)2CoTTP was established. The bonding constants for (C60)2CoTTP and (PyC60)2CoTTP are defined to be (3.47 ± 0.69) × 109 and (1.47 ± 0.28) × 1010 M-2, respectively. 1H NMR, IR spectroscopy, thermogravimetric analysis and cyclic voltammetry data have provided very good support in favor of efficient complex formation in the ground state between fullerenes and CoTTP. PyC60/C60 fluorescence quenching in the PyC60/C60-CoTTP systems was studied and the fluorescence lifetime with various CoTTP additions was determined. The singlet oxygen quantum yield was determined for PyC60 and the intensity decrease in the 1O2 phosphorescence for C60 and PyC60 with the CoTTP addition leading to the low efficiency of intercombination conversion for the formation of the 3C60* triplet excited state was found. Using femtosecond transient absorption measurements in toluene, the photoinduced electron transfer from the CoTTP in the excited singlet state to fullerene moiety was established. Quantum chemical calculations were used for the determination of molecular structure, stability and the HOMO/LUMO energy levels of the triads as well as to predict the localization of frontier orbitals in the triads.
Collapse
Affiliation(s)
- Nataliya G. Bichan
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya Str. 1, 153045 Ivanovo, Russia
| | - Ekaterina N. Ovchenkova
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya Str. 1, 153045 Ivanovo, Russia
| | - Varvara A. Mozgova
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya Str. 1, 153045 Ivanovo, Russia
| | - Alexander A. Ksenofontov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya Str. 1, 153045 Ivanovo, Russia
| | - Nadezhda O. Kudryakova
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya Str. 1, 153045 Ivanovo, Russia
| | - Ivan V. Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Kosigin Str. 4, 119991 Moscow, Russia
| | - Fedor E. Gostev
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Kosigin Str. 4, 119991 Moscow, Russia
| | - Tatyana N. Lomova
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya Str. 1, 153045 Ivanovo, Russia
| |
Collapse
|
3
|
Facile synthesis of defect-rich Fe-N-C hybrid from fullerene/ferrotetraphenylporphyrin as efficient oxygen reduction electrocatalyst for Zn-air battery. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Morisue M, Ohno N, Saito G, Kawanishi M. Trimethylsilanolate-Promoted Activation of Alkynyl Trimethylsilanes: Hiyama-Type Sonogashira Cross-Coupling for the Synthesis of Arylene–Ethynylene-Linked Porphyrin Arrays. J Org Chem 2022; 87:3123-3134. [DOI: 10.1021/acs.joc.1c02879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mitsuhiko Morisue
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Nanase Ohno
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Genki Saito
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Miho Kawanishi
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|