1
|
Zhang S, Liu C, Su M, Zhou D, Tao Z, Wu S, Xiao L, Li Y. Development of citric acid-based biomaterials for biomedical applications. J Mater Chem B 2024; 12:11611-11635. [PMID: 39465414 DOI: 10.1039/d4tb01666a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The development of bioactive materials with controllable preparation is of great significance for biomedical engineering. Citric acid-based biomaterials are one of the few bioactive materials with many advantages such as simple synthesis, controllable structure, biocompatibility, biomimetic viscoelastic mechanical behavior, controllable biodegradability, and further functionalization. In this paper, we review the development of multifunctional citrate-based biomaterials for biomedical applications, and summarize their multifunctional properties in terms of physical, chemical, and biological aspects, and finally the applications of citrate-based biomaterials in biomedical engineering, including bone tissue engineering, skin tissue engineering, drug/cell delivery, vascular and neural tissue engineering, and bioimaging.
Collapse
Affiliation(s)
- Shihao Zhang
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Cailin Liu
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Meng Su
- Wenzhou Institute of Shanghai University, Wenzhou 325000, China
| | - Dong Zhou
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Ziwei Tao
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shiyong Wu
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Lan Xiao
- School of Medicine and Dentistry, Griffith University, QLD 4222, Australia.
| | - Yulin Li
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
- Wenzhou Institute of Shanghai University, Wenzhou 325000, China
| |
Collapse
|
2
|
Kral M, Dendisova M, Svoboda J, Cernescu A, Svecova M, Johnson CM, Pop-Georgievski O, Matejka P. Nano-FTIR spectroscopy of surface confluent polydopamine films - What is the role of deposition time and substrate material? Colloids Surf B Biointerfaces 2024; 235:113769. [PMID: 38306803 DOI: 10.1016/j.colsurfb.2024.113769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Polydopamine (PDA) is a widely used anchoring layer for multiple purposes. While simple to prepare, PDA is characterized by high chemical and topological diversity, which can limit its versatility. Unraveling the formation mechanism and physicochemical properties of continuous confluent layer and adherent nanoparticles on the nanoscale is crucial to further extend the prospective applications of PDA. Utilizing nano-FTIR spectroscopy, we investigate layers of PDA on three different substrates (silicon/silicon dioxide, nitrogen-doped titanium oxide, and gold substrates) at varying times of deposition (ToD). We observed a good correlation between the nano-FTIR and macroscopic FTIR spectra that reflected the changes in the relative abundance of PDA and polymerization intermediates as ToD increased. To gain analytical power, we utilized the principal component analysis (PCA) and extracted additional information from the resulting loadings spectral curves and data distribution in the score plots. We revealed a higher variability of the spectra of ultrathin surface confluent layers compared to the adherent nanoparticles. While the spectra of nanoparticles showed no apparent dependency on either ToD or the substrate material, the spectra of layers were highly affected by the increasing ToD and exhibited a rise in the absorption of PDA. Concomitantly, the spectra of layers grouped according to the substrate material at the lowest ToD point to the fact that the substrate material affects the PDA's initial physicochemical structure. The observed separation gradually diminished with the increasing ToD as the PDA physicochemical structure became less influenced by the substrate material.
Collapse
Affiliation(s)
- Martin Kral
- Department of Physical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, 166 28 Prague 6, Czech Republic
| | - Marcela Dendisova
- Department of Physical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, 166 28 Prague 6, Czech Republic.
| | - Jan Svoboda
- Department of Chemistry and Physics of Surfaces and Interfaces, Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague 6, Czech Republic
| | - Adrian Cernescu
- Attocube systems AG, Eglfinger Weg 2, D-85540 Haar, Munich, Germany
| | - Marie Svecova
- Division of Surface and Corrosion Science, Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - C Magnus Johnson
- Division of Surface and Corrosion Science, Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Ognen Pop-Georgievski
- Department of Chemistry and Physics of Surfaces and Interfaces, Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague 6, Czech Republic
| | - Pavel Matejka
- Department of Physical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, 166 28 Prague 6, Czech Republic
| |
Collapse
|
3
|
Yang R, Zhang X, Chen B, Yan Q, Yin J, Luan S. Tunable backbone-degradable robust tissue adhesives via in situ radical ring-opening polymerization. Nat Commun 2023; 14:6063. [PMID: 37770451 PMCID: PMC10539349 DOI: 10.1038/s41467-023-41610-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023] Open
Abstract
Adhesives with both robust adhesion and tunable degradability are clinically and ecologically vital, but their fabrication remains a formidable challenge. Here we propose an in situ radical ring-opening polymerization (rROP) strategy to design a backbone-degradable robust adhesive (BDRA) in physiological environment. The hydrophobic cyclic ketene acetal and hydrophilic acrylate monomer mixture of the BDRA precursor allows it to effectively wet and penetrate substrates, subsequently forming a deep covalently interpenetrating network with a degradable backbone via redox-initiated in situ rROP. The resulting BDRAs show good adhesion strength on diverse materials and tissues (e.g., wet bone >16 MPa, and porcine skin >150 kPa), higher than that of commercial cyanoacrylate superglue (~4 MPa and 56 kPa). Moreover, the BDRAs have enhanced tunable degradability, mechanical modulus (100 kPa-10 GPa) and setting time (seconds-hours), and have good biocompatibility in vitro and in vivo. This family of BDRAs expands the scope of medical adhesive applications and offers an easy and environmentally friendly approach for engineering.
Collapse
Affiliation(s)
- Ran Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Binggang Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Qiuyan Yan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
4
|
Dikshit KV, Visal AM, Janssen F, Larsen A, Bruns CJ. Pressure-Sensitive Supramolecular Adhesives Based on Lipoic Acid and Biofriendly Dynamic Cyclodextrin and Polyrotaxane Cross-Linkers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17256-17267. [PMID: 36926820 DOI: 10.1021/acsami.3c00927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Slide-ring materials are polymer networks with mobile cross-links that exhibit impressive stress dissipation and fracture resistance owing to the pulley effect. On account of their remarkable ability to dissipate the energy of deformation, these materials have found their way into advanced materials such as abrasion-resistant coatings and elastic battery electrode binders. In this work, we explore the role of mobile cross-links on the properties of a biofriendly pressure-sensitive adhesive made using composites of cyclodextrin-based macromolecules and poly(lipoic acid). We modify cyclodextrin-based hosts and polyrotaxanes with pendant groups of lipoic acid (a commonly ingested antioxidant) to incorporate them as cross-links in poly(lipoic acid) networks obtained by simple heating in open air. By systematically varying the adhesive formulations while probing their mechanical and adhesive properties, we uncover trends in structure-property relationships that enable one to tune network properties and access biofriendly, high-tack adhesives.
Collapse
Affiliation(s)
- Karan Vivek Dikshit
- Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Aseem Milind Visal
- Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Femke Janssen
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Alexander Larsen
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Carson J Bruns
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- ATLAS Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
5
|
Chen L, Ma J, Chen Y, Huang C, Zheng Z, Gao Y, Jiang Z, Wei X, Peng Y, Yu S, Yang L. Polydopamine modified acellular dermal matrix sponge scaffold loaded with a-FGF: Promoting wound healing of autologous skin grafts. BIOMATERIALS ADVANCES 2022; 136:212790. [PMID: 35929322 DOI: 10.1016/j.bioadv.2022.212790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/20/2022] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Despite increasing potentials as a skin regeneration template (DRT) to guide tissue healing, acellular dermal matrix (ADM) is still challenged by issues (like dense architecture, low cellular adhesion and poor vascularization), contributing to necrosis and shedding of upper transplanted skins. Modified with polydopamine (PDA), a novel and porous DRT capable of drug delivery was designed using porcine-derived ADM (PADMS) gels, termed PDA-PADMS. However, it was unclear whether it could efficiently deliver human acidic fibroblast growth factor (a-FGF) and regenerate skin defects. Herein, after being fabricated and optimized with PADMS gels in different ratios (1:6, 1:7, 1:8), PDA-PADMS loading a-FGF (PDA-PADMS-FGF) was evaluated by the morphology, physical& chemical properties, drug release and in-vitro biological evaluations, followed by full-thickness skin defects implanted with PDA-PADMS-FGF covered by transplanted skins. Apart from containing abundant collagen and elastin, porous PADMS (with a loose and uniform structure) was demonstrated to possess controlled release of a-FGF and biocompatibility attributed to PDA coating. Consistent with augmented cellular migration and proliferation in vitro, PDA-PADMS-FGF also accelerated wound healing and reduced scarring, improving collagen arrangement and neovascularization. In conclusion, PDA-PADMS-FGF has a good potential and application prospect as a matrix material for wound repair.
Collapse
Affiliation(s)
- Lianglong Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, PR China
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, PR China
| | - Yujia Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, PR China
| | - Chaoyang Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, PR China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, PR China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, PR China
| | - Ziwei Jiang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, PR China
| | - Xuerong Wei
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, PR China
| | - Yujie Peng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, PR China
| | - Shengxiang Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, PR China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, PR China.
| |
Collapse
|