1
|
Smook LA, de Beer S. Molecular Design Strategies to Enhance the Electroresponse of Polyelectrolyte Brushes: Effects of Charge Fraction and Chain Length Dispersity. Macromolecules 2025; 58:1185-1195. [PMID: 39958485 PMCID: PMC11823628 DOI: 10.1021/acs.macromol.4c02579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/13/2024] [Accepted: 01/17/2025] [Indexed: 02/18/2025]
Abstract
Polyelectrolyte brushes are functional surface coatings that react to external stimuli. The response of these brushes in electric fields is nearly immediate as the field acts directly on the charges in the polyion, while the response to bulk stimuli such as temperature, acidity, and ionic composition is intrinsically capped by transport limitations. However, the response of fully charged brushes is limited because large field strengths are required to achieve a response. This limits the application of these brushes to architectures such as small pores or nanojunctions because small biases can generate large field strengths over small distances. Here, we propose a design strategy that enhances the response and lowers the field strength required in these applications. Our coarse-grained simulations highlight two approaches to increase the electroresponse of polyelectrolyte brushes: dispersity in the chain length enhances the electroresponse and a reduction in the number of charged monomers does the same. With these approaches, we increase the relative brush height variation from only 28% to as much as 227% since in partially charged brushes, more chains need to respond to screen the imposed field and the longer chains in disperse brushes can reorganize over large distances. Additionally, we find that disperse brushes show a stratified response where short chains collapse first and long chains stretch first because this stratification minimizes the change in conformational energy. We envision that our insights will enable the application of electroresponsive polyelectrolyte brushes in larger architectures or in small architectures using smaller biases, which could enable a stimulus-responsive pore size modulation that could be used for filtration and molecular separations.
Collapse
Affiliation(s)
- Leon A. Smook
- Department of Molecules and
Materials, MESA+ Institute, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Sissi de Beer
- Department of Molecules and
Materials, MESA+ Institute, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
2
|
Tan S, Zhang Z, Xue Y, Zhao J, Ji J, Wang C, Wu Y. Ionic Liquid Cross-linked Poly( N-isopropylacrylamide) Hydrogel Electrolytes for Self-Protective Flexible Separator-Free Supercapacitors. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Shuai Tan
- School of Chemical Engineering, Sichuan University, Chengdu610045, China
| | - Zechuan Zhang
- School of Chemical Engineering, Sichuan University, Chengdu610045, China
| | - Yuzhen Xue
- School of Chemical Engineering, Sichuan University, Chengdu610045, China
| | - Jingli Zhao
- School of Chemical Engineering, Sichuan University, Chengdu610045, China
| | - Junyi Ji
- School of Chemical Engineering, Sichuan University, Chengdu610045, China
| | - Caihong Wang
- School of Chemical Engineering, Sichuan University, Chengdu610045, China
| | - Yong Wu
- School of Chemical Engineering, Sichuan University, Chengdu610045, China
| |
Collapse
|
3
|
Yan Y, Fang X, Yao N, Gu H, Yang G, Hua Z. Bioinspired Hydrogen Bonds of Nucleobases Enable Programmable Morphological Transformations of Mixed Nanostructures. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yangyang Yan
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xinzi Fang
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Nan Yao
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Haojie Gu
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Guang Yang
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zan Hua
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
4
|
Yuan H, Liu G. Polyelectrolyte Complexation When Considering the Counterion-Mediated Hydrogen Bonding. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8179-8186. [PMID: 35748635 DOI: 10.1021/acs.langmuir.2c01186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, we have investigated a pH-modulated complexation between two oppositely charged strong polyelectrolytes to demonstrate the effect of counterion-mediated hydrogen bonding (CMHB) on polyelectrolyte complexation. We have found that such a pH-modulated complexation cannot be understood without considering the CMHB. Thermodynamically, the effect of CMHB on the polyelectrolyte complexation is manifested by the alteration of both enthalpic and entropic contributions to the free energy change. The pH-dependent intrinsic ion-pairing and complex coacervation processes of the polyelectrolyte complexation can be understood when considering the CMHB. Our study demonstrates that both the extent of polyelectrolyte complex formation in bulk solutions and the formation of polyelectrolyte multilayers on surfaces are controlled by the pH-dependent intrinsic ion-pairing process. Furthermore, on the basis of the pH-dependent intrinsic ion pairing, the properties of the multilayers can be tuned by pH. This work provides a new strategy to control the polyelectrolyte complexation with counterions and will inspire new ideas for building advanced polyelectrolyte materials.
Collapse
Affiliation(s)
- Haiyang Yuan
- Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, P. R. China 230026
| | - Guangming Liu
- Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, P. R. China 230026
| |
Collapse
|
5
|
Sun L, Gong J, Xu B, Wang Y, Ding X, Zhang Y, Liu C, Zhao L, Xu B. Ion-Specific Effects on Vesicle-to-Micelle Transitions of an Amino Acid Surfactant Probed by Chemical Trapping. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6295-6304. [PMID: 35476409 DOI: 10.1021/acs.langmuir.1c03415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ion-specific effects widely exist in biological and chemical systems and cannot be explained by classical theories. The complexity of ion-specific effects in protein systems at the molecular level necessitates the use of mimetic models involving smaller molecules, such as amino acids, oligopeptides, and other organic molecules bearing amide bonds. Therefore, it is of theoretical value to determine the effect of additional salts on the aggregation transitions of acyl amino acid surfactants. Herein, the effects of specific tetraalkylammonium ions (TAA+) on sodium lauroyl glycinate (SLG) aggregation were studied by dynamic light scattering (DLS) and transmission electron microscopy. Although previous studies have shown that the kosmotropic TAA+ ions tend to induce micellar growth or micelle-to-vesicle transitions of some anionic surfactants, TAA+ addition in the present study induced partial vesicle-to-micelle transitions in SLG solutions. The chemical trapping (CT) method was employed to estimate changes in the interfacial molarities of water, amide bonds, and carboxylate groups during such transitions. The vesicle-to-micelle transitions were accompanied by a marked rise in interfacial water molarity and a decline in interfacial amide bonds molarity, suggesting that the hydrated TAA+ entered the interfacial region and disrupted hydrogen bonding, thus preventing the SLG monomers from packing tightly. Molecular dynamic simulation was also performed to demonstrate the salt-induced cleavage of amide-amide bonds between SLG headgroups. Furthermore, both CT and DLS results show that the ability of tetraalkylammonium cations to induce such transitions increased with increasing size and hydrophobicity of the cation, which follows the Hofmeister series. The current study offers critical molecular-level evidence for understanding the specific effects of tetraalkylammonium ions on the aggregation transitions of an acyl amino acid surfactant.
Collapse
Affiliation(s)
- Lijie Sun
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Jiani Gong
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Bo Xu
- McIntire School of Commerce, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Yuzhao Wang
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Xiaoxuan Ding
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Yongliang Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Changyao Liu
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Li Zhao
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Baocai Xu
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| |
Collapse
|
6
|
Salminen L, Karjalainen E, Aseyev V, Tenhu H. Phase Separation of Aqueous Poly(diisopropylaminoethyl methacrylate) upon Heating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5135-5148. [PMID: 34752116 PMCID: PMC9069861 DOI: 10.1021/acs.langmuir.1c02224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Poly(diisopropylaminoethyl methacrylate) (PDPA) is a pH- and thermally responsive water-soluble polymer. This study deepens the understanding of its phase separation behavior upon heating. Phase separation upon heating was investigated in salt solutions of varying pH and ionic strength. The effect of the counterion on the phase transition upon heating is clearly demonstrated for chloride-, phosphate-, and citrate-anions. Phase separation did not occur in pure water. The buffer solutions exhibited similar cloud points, but phase separation occurred in different pH ranges and with different mechanisms. The solution behavior of a block copolymer comprising poly(dimethylaminoethyl methacrylate) (PDMAEMA) and PDPA was investigated. Since the PDMAEMA and PDPA blocks phase separate within different pH- and temperature ranges, the block copolymer forms micelle-like structures at high temperature or pH.
Collapse
Affiliation(s)
- Linda Salminen
- Department
of Chemistry, University of Helsinki, P.O. Box 55, A.I. Virtasen aukio
1, FIN-00014 HY Helsinki, Finland
| | - Erno Karjalainen
- VTT
Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT Espoo, Finland
| | - Vladimir Aseyev
- Department
of Chemistry, University of Helsinki, P.O. Box 55, A.I. Virtasen aukio
1, FIN-00014 HY Helsinki, Finland
| | - Heikki Tenhu
- Department
of Chemistry, University of Helsinki, P.O. Box 55, A.I. Virtasen aukio
1, FIN-00014 HY Helsinki, Finland
| |
Collapse
|
7
|
The Anion Binding Affinity Determines the Strength of Anion Specificities of Thermosensitive Polymers. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2633-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|