1
|
Pal GC, Agrawal M, Siddhartha SS, Sharma CS. Damping the jump of coalescing droplets through substrate compliance. SOFT MATTER 2024; 20:6361-6370. [PMID: 39076071 DOI: 10.1039/d4sm00643g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Sessile droplets coalescing on superhydrophobic surfaces result in spontaneous droplet jumping. Here, through coalescence experiments and fluid-structure interaction simulations for microliter droplets, we demonstrate that such droplet jumping can be damped if the underlying substrate is designed to be compliant. We show that a compliant superhydrophobic substrate with synergistic combinations of low stiffness and inertia deforms rapidly during the coalescence process to minimize the substrate reaction, thus diminishing the jumping velocity. A spring-mass system model for coalescing water droplets is proposed that successfully captures droplet motion and substrate deformation for a wide range of compliant superhydrophobic substrates. These insights can be leveraged to improve the process efficiency in multiple applications, such as designing compliant superhydrophobic substrates for minimizing the scattering of small, nanoliter-sized droplets during atmospheric water harvesting. Lastly, experiments on an exemplar butterfly wing show that droplet jumping velocity reduction can also manifest on natural superhydrophobic substrates due to their inherent compliance.
Collapse
Affiliation(s)
- Gopal Chandra Pal
- Thermofluidics Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140 001, India.
| | - Manish Agrawal
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140 001, India
| | - Saladi Satya Siddhartha
- Thermofluidics Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140 001, India.
| | - Chander Shekhar Sharma
- Thermofluidics Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140 001, India.
| |
Collapse
|
2
|
Tang S, Li Q, Li W, Chen S. Enhancement and Predictable Guidance of Coalescence-Induced Droplet Jumping on V-Shaped Superhydrophobic Surfaces with a Ridge. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39133052 DOI: 10.1021/acs.langmuir.4c01809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Coalescence-induced droplet jumping has attracted significant attention in recent years. However, achieving a high jumping velocity while predictably regulating the jumping direction of the merged droplets by simple superhydrophobic structures remains a challenge. In this work, a novel V-shaped superhydrophobic surface with a ridge is conceived for enhanced and predictably guided coalescence-induced droplet jumping. By conducting experiments and lattice Boltzmann simulations, it is found that the presence of a ridge in the V-shaped superhydrophobic surface can modify the fluid dynamics during the droplet coalescence process, resulting in a much higher droplet jumping velocity than that achieved by the V-shaped superhydrophobic surface without a ridge. The enhancement of the droplet jumping velocity is mainly attributed to the combined effect of the earlier and more sufficient impingement between the liquid bridge and the ridge, as well as the accelerated droplet contraction by redirecting the internal liquid flow toward the jumping direction. A high normalized jumping velocity of V j * ≈ 0.71 is achieved by the newly designed surface, with a 930% increase in the energy conversion efficiency in comparison with that on a flat surface. Moreover, adjusting the opening direction of the V-groove at different groove angles is found to be an effective method to regulate the droplet jumping direction and expand the range of the jumping angle. Particularly, the droplet jumping angle can be well predicted based on the rotational angle (ω) and the groove angle (α), i.e., θj,p ≈ 90° - 0.5α - ω.
Collapse
Affiliation(s)
- Shi Tang
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Qing Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Wanxin Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Shoutian Chen
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
3
|
Li Y, Zhang H, Du J, Min Q, Wu X, Sun L. Coalescence-Induced Self-Propelled Particle Transport with Asymmetry Arrangement. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18184-18193. [PMID: 38556720 DOI: 10.1021/acsami.4c01355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
We experimentally investigated the coalescence-induced droplet-particle jumping phenomenon on a submillimeter scale in symmetric and asymmetric particle arrangements with poly(methyl methacrylate) (PMMA) particles and stainless steel (SS) particles. Coalescence-induced droplet-particle jumping exhibited excellent capability and interesting behavior for both droplet jumping enhancement and particle transport. The particle increased the normalized droplet jumping velocity from 0.250 for no particle case to 0.315 and 0.320 for symmetric and asymmetric particle cases. Compared with similar-sized macrostructures fixed between droplets, better jumping performance with particles may be attributed to avoiding the work of adhesion during droplet-macrostructure separation. Besides, all particles always sunk at the bottom in the symmetric cases, while the stick mode for PMMA particles and sink, wander, and jet modes for SS particles appeared in the asymmetry cases. We revealed that the asymmetric particle arrangement induces an unbalanced surface tension force, which may provide a driving force in the vertical direction. Additionally, a small enough resistive force caused by hydrophobic particles is another necessary condition for the wonder and jet mode. Finally, we realized a significantly superior particle transport in the asymmetric SS particle cases with maximum particle height reaching ∼2.1 mm, ∼12.4 times the particle radius, the most significant vertical self-propelled transport distance currently.
Collapse
Affiliation(s)
- Yanzhi Li
- Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Haixiang Zhang
- Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Jiayu Du
- Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Qi Min
- Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Xinxin Wu
- Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Libin Sun
- Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Li B, Tan W, Liu G, Huang M. Dynamics of Droplet Coalescence on Hydrophobic Fibers in Oil: Morphology and Liquid Bridge Evolution. ACS OMEGA 2023; 8:18019-18028. [PMID: 37251168 PMCID: PMC10210508 DOI: 10.1021/acsomega.3c01209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023]
Abstract
Although droplet self-jumping on hydrophobic fibers is a well-known phenomenon, the influence of viscous bulk fluids on this process is still not fully understood. In this work, two water droplets' coalescence on a single stainless-steel fiber in oil was investigated experimentally. Results showed that lowering the bulk fluid viscosity and increasing the oil-water interfacial tension promoted droplet deformation, reducing the coalescence time of each stage. While the total coalescence time was more influenced by the viscosity and under-oil contact angle than the bulk fluid density. For water droplets coalescing on hydrophobic fibers in oils, the expansion of the liquid bridge can be affected by the bulk fluid, but the expansion dynamics exhibited similar behavior. The drops begin their coalescence in an inertially limited viscous regime and transition to an inertia regime. Larger droplets did accelerate the expansion of the liquid bridge but had no obvious influence on the number of coalescence stages and coalescence time. This study can provide a more profound understanding of the mechanisms underlying the behavior of water droplet coalescence on hydrophobic surfaces in oil.
Collapse
Affiliation(s)
- Bingbing Li
- School
of Energy and Chemical Engineering, Tianjin
Renai College, Boxueyuan,
Tuanbo New Town, Jinghai District, Tianjin 301636, P. R. China
| | - Wei Tan
- School
of Chemical Engineering and Technology, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Tianjin 300354, P. R. China
| | - Guiyu Liu
- School
of Energy and Chemical Engineering, Tianjin
Renai College, Boxueyuan,
Tuanbo New Town, Jinghai District, Tianjin 301636, P. R. China
| | - Mo Huang
- Audit
Department, Jiangxi University of Chinese
Medicine, 1688 Meiling
Dadao, Xinjian District, Nanchang City, Jiangxi Province 330004, P. R. China
| |
Collapse
|
5
|
Li Y, Du J, Wu X, Lu G, Min Q. How macrostructures enhance droplet coalescence jumping: A mechanism study. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
6
|
Gao Y, Ke Z, Yang W, Wang Z, Zhang Y, Wu W. Coalescence-Induced Droplet Jumping on Honeycomb Bionic Superhydrophobic Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9981-9991. [PMID: 35917142 DOI: 10.1021/acs.langmuir.2c01335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Condensation-induced jumping of droplets on superhydrophobic surfaces has received extensive attention because of its great potential for applications in areas such as condensation enhancement and self-cleaning. However, the jumping efficiency of droplets on flat superhydrophobic surfaces is very low, and there is no reliable means of achieving efficient droplet jumping on large scales, which greatly limits its application. To this end, we developed a class of honeycomb bionic superhydrophobic surfaces (HBSS) that enable reliable and efficient droplet jumping on a large scale for the first time and performed experimental and simulation studies on droplet condensation and jumping on this kind of surface. Condensation experiments show that condensate droplets on HBSS can be effectively positioned under the influence of gravity and the uniformity of the droplet diameter is ensured, laying the foundation for achieving efficient jumping. The shape and geometric parameters of HBSS have a significant impact on the droplet jumping efficiency, and the maximum dimensionless jumping velocity of droplet jumping was experimentally measured to be 0.747, corresponding to an efficiency of about 45.25%. Combining with the results of simulation calculations, we found that the surface structure of HBSS can promote more of the excess surface energy to net upward kinetic energy along an extremely efficient and simple pathway (direct conversion), thus achieving an energy conversion efficiency of over 45%.
Collapse
Affiliation(s)
- Yan Gao
- Advanced Manufacturing School, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Zhaoqing Ke
- Advanced Manufacturing School, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Wei Yang
- Advanced Manufacturing School, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Zhiqiang Wang
- Advanced Manufacturing School, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Ying Zhang
- Advanced Manufacturing School, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Wei Wu
- ALD Research Institute, ALD Group Limited, Shenzhen 518108, Guangdong, China
| |
Collapse
|
7
|
Wang X, Xu B, Chen Z, Del Col D, Li D, Zhang L, Mou X, Liu Q, Yang Y, Cao Q. Review of droplet dynamics and dropwise condensation enhancement: Theory, experiments and applications. Adv Colloid Interface Sci 2022; 305:102684. [PMID: 35525088 DOI: 10.1016/j.cis.2022.102684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/21/2022] [Accepted: 04/23/2022] [Indexed: 02/06/2023]
Abstract
Droplet dynamics and condensation phenomena are widespread in nature and industrial applications, and the fundamentals of various technological applications. Currently, with the rapid development of interfacial materials, microfluidics, micro/nano fabrication technology, as well as the intersection of fluid mechanics, interfacial mechanics, heat and mass transfer, thermodynamics and reaction kinetics and other disciplines, the preparation and design of various novel functional surfaces have contributed to the local modulation of droplets (including nucleation, jumping and directional migration) and the improvement of condensation heat transfer, further deepening the understanding of relevant mechanisms. The wetting and dynamic characteristics of droplets involve complex solid-liquid interfacial interactions, so that the local modulation of microdroplets and the extension of enhanced condensation heat transfer by means of complex micro/nano structures and hydrophilic/hydrophobic properties is one of the current hot topics in heat and mass transfer research. This work presents a detailed review of several scientific issues related to the droplet dynamics and dropwise condensation heat transfer under the influence of multiple factors (including fluid property, surface structure, wettability, temperature external field, etc.). Firstly, the basic theory of droplet wetting on the solid wall is introduced, and the mechanism of solid-liquid interfacial interaction involving droplet jumping and directional migration on the functional surfaces under the various influencing factors is discussed. Optimizing the surface structure for the local modulation of droplets is of guidance for condensation heat transfer. Secondly, we summarize the existing theoretical models of dropwise condensation applicable to various functional surfaces and briefly outline the current numerical models for simulating dropwise condensation at different scales, as well as the fabricating techniques of coatings and functional surfaces for enhancing heat transfer. Finally, the relevant problems and challenges are summarized and future research is discussed.
Collapse
Affiliation(s)
- Xin Wang
- School of Energy and Environment, Southeast University, Nanjing, PR China
| | - Bo Xu
- School of Energy and Environment, Southeast University, Nanjing, PR China
| | - Zhenqian Chen
- School of Energy and Environment, Southeast University, Nanjing, PR China; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, PR China; Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, School of Energy and Environment, Southeast University, Nanjing, PR China.
| | - Davide Del Col
- Department of Industrial Engineering, University of Padua, Italy
| | - Dong Li
- School of Energy and Power Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
| | - Leigang Zhang
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, PR China
| | - Xinzhu Mou
- School of Energy and Environment, Southeast University, Nanjing, PR China
| | - Qiusheng Liu
- Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing, PR China
| | - Yang Yang
- Engineering and technology center for space applications, Chinese academy of sciences, Beijing, PR China
| | - Qian Cao
- Engineering and technology center for space applications, Chinese academy of sciences, Beijing, PR China
| |
Collapse
|
8
|
Liu C, Zhao M, Lu D, Sun Y, Song L, Zheng Y. Laplace Pressure Difference Enhances Droplet Coalescence Jumping on Superhydrophobic Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6923-6933. [PMID: 35451848 DOI: 10.1021/acs.langmuir.2c00412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Coalescence-induced droplet jumping has great prospects in many applications. Nevertheless, the applications are vastly limited by a low jumping velocity. Conventional methods to enhance the droplet coalescence jumping velocity are enabled by protruding structures with superhydrophobic surfaces. However, the jumping velocity improvement is limited by the height of protruding structures. Here, we present rationally designed limitation structures with superhydrophobic surfaces to achieve a dimensionless jumping velocity, Vj* ≈ 0.64. The mechanism of enhancing the jumping velocity is demonstrated through the study of numerical simulations and geometric parameters of limitation structures, providing guidelines for optimized structures. Experimental and numerical results indicate that the mechanism consists of the combined action of the velocity vectors' redirection and the Laplace pressure difference within deformed droplets trapped in limitation structures. On the basis of previous research on the mechanisms of protruding structures and our study, we successfully exploited those mechanisms to further improve the jumping velocity by combining the limitation structure with the protruding structure. Experimentally, we attained a dimensionless jumping velocity of Vj* ≈ 0.74 with an energy conversion efficiency of η ≈ 48%, breaking the jumping velocity limit. This work not only demonstrates a new mechanism for achieving a high jumping velocity and energy conversion efficiency but also sheds lights on the effect of limitation structures on coalescence hydrodynamics and elucidates a method to further enhance the jumping velocity based on protruding structures.
Collapse
Affiliation(s)
- Chuntian Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Meirong Zhao
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Dunqiang Lu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yukai Sun
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Le Song
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yelong Zheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
9
|
Liu Y, Li X, Lu C, Yuan Z, Liu C, Zhang J, Zhao L. High-Efficiency Directional Ejection of Coalesced Drops on a Circular Groove. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4028-4035. [PMID: 35319209 DOI: 10.1021/acs.langmuir.2c00023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Coalescence-induced drop jumping has received significant attention in the past decade. However, its application remains challenging as a result of the low energy conversion efficiency and uncontrollable drop jumping direction. In this work, we report the high-efficiency coalescence-induced drop jumping with tunable jumping direction via rationally designed millimeter-sized circular grooves. By increasing the surface-droplet impact site area and restricting the oscillatory deformation, the energy conversion efficiency of the jumping droplet reaches 43.5%, 600% as high as the conventional superhydrophobic surfaces. The droplet jumping direction can be tuned from 90° to 60° by varying the principal curvature of the circular groove, while the energy conversion efficiency remains unchanged. We show through theoretical analysis and numerical simulations that the directional jumping mainly originates from reallocation of droplet momentum enabled by the asymmetric liquid bridge impact. Our study demonstrates a simple yet effective method for fast, efficient, and directional droplet removal, which warrants promising applications in jumping droplet condensation, water harvesting, anti-icing, and self-cleaning.
Collapse
Affiliation(s)
- Yahua Liu
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, Jilin 130022, People's Republic of China
| | - Xiaojie Li
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Chenguang Lu
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Zichao Yuan
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Cong Liu
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Junqiu Zhang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, Jilin 130022, People's Republic of China
| | - Lei Zhao
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| |
Collapse
|