1
|
Gonçalves RC, Oliveira MB, Mano JF. Exploring the potential of all-aqueous immiscible systems for preparing complex biomaterials and cellular constructs. MATERIALS HORIZONS 2024; 11:4573-4599. [PMID: 39010747 DOI: 10.1039/d4mh00431k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
All-aqueous immiscible systems derived from liquid-liquid phase separation of incompatible hydrophilic agents such as polymers and salts have found increasing interest in the biomedical and tissue engineering fields in the last few years. The unique characteristics of aqueous interfaces, namely their low interfacial tension and elevated permeability, as well as the non-toxic environment and high water content of the immiscible phases, confer to these systems optimal qualities for the development of biomaterials such as hydrogels and soft membranes, as well as for the preparation of in vitro tissues derived from cellular assembly. Here, we overview the main properties of these systems and present a critical review of recent strategies that have been used for the development of biomaterials with increased levels of complexity using all-aqueous immiscible phases and interfaces, and their potential as cell-confining environments for micropatterning approaches and the bioengineering of cell-rich structures. Importantly, due to the relatively recent emergence of these areas, several key design considerations are presented, in order to guide researchers in the field. Finally, the main present challenges, future directions, and adaptability to develop advanced materials with increased biomimicry and new potential applications are briefly evaluated.
Collapse
Affiliation(s)
- Raquel C Gonçalves
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
2
|
Zhou T, Liu Z, Ma X, Cen C, Huang Z, Lu Y, Kong T, Qi C. Thermally-resilient, phase-invertible, ultra-stable all-aqueous compartments by pH-modulated protein colloidal particles. J Colloid Interface Sci 2024; 665:413-421. [PMID: 38537589 DOI: 10.1016/j.jcis.2024.03.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/05/2024] [Accepted: 03/23/2024] [Indexed: 04/17/2024]
Abstract
The essence of compartmentalization in cells is the inspiration behind the engineering of synthetic counterparts, which has emerged as a significant engineering theme. Here, we report the formation of ultra-stable water-in-water (W/W) emulsion droplets. These W/W droplets demonstrate previously unattained stability across a broad pH spectrum and exhibit resilience at temperatures up to 80℃, overcoming the challenge of insufficient robustness in dispersed droplets of aqueous two-phase systems (ATPS). The exceptional robustness is attributed to the strong anchoring of micelle-like casein colloidal particles at the PEO/DEX interface, which maintains stability under varying environmental conditions. The increased surface hydrophobicity of these particles at high temperatures contributes to the formation of thermally-stable droplets, enduring temperatures as high as 80℃. Furthermore, our study illustrates the adaptable affinity of micelle-like casein colloidal particles towards the PEO/DEX-rich phase, enabling the formation of stable DEX-in-PEO emulsions at lower pH levels, and PEO-in-DEX emulsions as the pH rises above the isoelectric point. The robust nature of these W/W emulsions unlocks new possibilities for exploring various biochemical reactions within synthetic subcellular modules and lays a solid foundation for the development of novel biomimetic materials.
Collapse
Affiliation(s)
- Tao Zhou
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen Guangdong 518000, China
| | - Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518000, China
| | - Xudong Ma
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen Guangdong 518000, China
| | - Chaofeng Cen
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong 518000, China
| | - Zhangwei Huang
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen Guangdong 518000, China
| | - Yi Lu
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong 518000, China
| | - Tiantian Kong
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong 518000, China; Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, China.
| | - Cheng Qi
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen Guangdong 518000, China.
| |
Collapse
|
3
|
Sun Y, Wang Y, Xie Y, Li T, Wang Y, Zhang X, Xia B, Huang J, Wang S, Dong W. Ultra-stable pickering emulsion stabilized by anisotropic pea protein isolate-fucoidan conjugate particles through Maillard reaction. Int J Biol Macromol 2024; 264:130589. [PMID: 38437935 DOI: 10.1016/j.ijbiomac.2024.130589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Bio-based emulsifiers hold significant importance in various industries, particularly in food, cosmetics, pharmaceuticals and other related fields. In this study, pea protein isolate (PPI) and fucoidan (FUD) were conjugated via the Maillard reaction, which is considered safe and widely used in the preparation of food particle. The PPI-FUD conjugated particles exhibit an anisotropic non-spherical structure, thereby possessing a high detachment energy capable of preventing emulsion coalescence and Ostwald ripening. Compared to emulsions previously prepared in other studies (< 500 mM), the Pickering emulsion stabilized by PPI-FUD conjugate particles demonstrates outstanding ionic strength resistance (up to 5000 mM). Furthermore, when encapsulating curcumin, the Pickering emulsion protects the curcumin from oxidation. Additionally, the formulated emulsions demonstrated the capability to incorporate up to 60 % (v/v) oil phase, revealing remarkable performance in terms of storage stability, pH stability, and thermal stability.
Collapse
Affiliation(s)
- Yue Sun
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yijie Wang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yunpeng Xie
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Ting Li
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yang Wang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Xuhui Zhang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Bihua Xia
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jing Huang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Shibo Wang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
4
|
Pu C, Luo Y, Sun Y, Zhang J, Cui H, Li M, Sun Q, Tang W. Water in water emulsion stabilized by liposomes developed from whey protein isolate and xanthan gum: Environmental stability and photoprotection effect for riboflavin. Int J Biol Macromol 2024; 262:130036. [PMID: 38354924 DOI: 10.1016/j.ijbiomac.2024.130036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
The purpose of this work is to explore the feasibility of water in water (W/W) emulsion stabilized with liposomes as a water-soluble nutraceutical carrier. A W/W emulsion system composed of xanthan gum (XG) and whey protein isolate (WPI) with different amount (0.2 %, 0.4 %, and 0.6 %) of liposomes as stabilizer was constructed. Fast green staining observation showed that XG was the internal phase and WPI was the continuous phase respectively. Confocal laser scanning microscopy revealed that with the increase of liposomes concentration from 0.4 % to 0.6 %, the interface thickness of the W/W emulsions was approximately twice that of the 0.2 % liposome-stabilized emulsion.The emulsions remained stable under neutral and weakly alkaline conditions. The droplet sizes of the emulsions were little affected by ionic strength. The binding constant (Ka) for XG to riboflavin (12.22) was approximately 5 times that for WPI to riboflavin (2.46), suggesting that riboflavin had a stronger binding affinity for the XG molecule compared to WPI. The fluorescence spectra of riboflavin showed that 0.4 % and 0.6 % liposome stabilized emulsions could effectively retard the photodegradation of riboflavin under ultraviolet irradiation. The successful construction of liposomes stabilized W/W emulsion provides a novel strategy for delivering water-soluble bioactive substances.
Collapse
Affiliation(s)
- Chuanfen Pu
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Yongxue Luo
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yue Sun
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Jie Zhang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Hanwen Cui
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Man Li
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qingjie Sun
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenting Tang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
5
|
Xie Y, Liu C, Zhang J, Li Y, Li B, Liu S. Crosslinking alginate at water-in-water Pickering emulsions interface to control the interface structure and enhance the stress resistance of the encapsulated probiotics. J Colloid Interface Sci 2024; 655:653-663. [PMID: 37976739 DOI: 10.1016/j.jcis.2023.10.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
HYPOTHESIS The strategies for stabilizing water-in-water (W/W) emulsions include the adsorption of solid particles at the water-water interface and the generation of interfacial films. We hypothesize that if sodium alginate is crosslinked at the water-water interface of W/W Pickering emulsions, the microstructure and rheological properties of the emulsions could be improved, thus enhancing the activity of encapsulated probiotics in simulated gastrointestinal digestion. EXPERIMENTS The W/W Pickering emulsions comprised a dispersed maltodextrin (MD) phase in a continuous hydroxypropyl methylcellulose (HPMC) phase. The crosslinking W/W Pickering emulsion with fine-tuned internal structure was designed by leaching the CaCO3 particles packed in the dispersed phase to release Ca2+ crosslinked with sodium alginate. FINDINGS Confocal laser scanning microscope results revealed sodium alginate crosslinked with Ca2+ at the W/W interface. The rheological results of the crosslinking W/W Pickering emulsions suggested that the loss modulus (G″) was higher than the energy storage modulus (G'). The microstructure indicated that the emulsions formed a dense porous network structure after crosslinking conditions. The viable cell count of Lactobacillus helveticus CICC 22536 (LC) encapsulated in crosslinking W/W Pickering emulsion after simulated gastrointestinal digestion was 7.563 × 107 CFU/mL, which was three orders of magnitude higher than that of naked cells.
Collapse
Affiliation(s)
- Yunxiao Xie
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Cui Liu
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Zhang
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Li
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Li
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shilin Liu
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
6
|
Waldmann L, Nguyen DNT, Arbault S, Nicolai T, Benyahia L, Ravaine V. Tuning the bis-hydrophilic balance of microgels: A tool to control the stability of water-in-water emulsions. J Colloid Interface Sci 2024; 653:581-593. [PMID: 37738931 DOI: 10.1016/j.jcis.2023.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023]
Abstract
HYPOTHESIS The stability of purely aqueous emulsions (W/W) formed by mixing incompatible polymers, can be achieved through the Pickering effect of particles adsorption at the interface. However, there is, as yet, no guideline regarding the chemical nature of the particles to predict whether they will stabilize a particular W/W emulsion. Bis-hydrophilic soft microgels, made of copolymerized poly(N-isopropylacrylamide) (pNIPAM) and dextran (Dex), act as very efficient stabilizers for PEO/Dextran emulsions, because the two polymers have an affinity for each polymer phase. EXPERIMENTS The ratio between both components of the microgels is varied in order to modulate the bis-hydrophilic balance, the content of Dex compared to pNIPAM varying from 0 to 60 wt%. The partition between the two aqueous phases and the adsorption of microgels at the W/W interface is measured by confocal microscopy. The stability of emulsions is assessed via turbidity measurements and microstructural investigations under sedimentation or compression. FINDINGS The adsorption of particles and their partitioning is found to evolve progressively as a function of bis-hydrophilic balance. At room temperature, the stability of the resulting W/W emulsions also depends on the bis-hydrophilic balance with a maximum of stability for the particles containing 50%wt of Dex, for the Dex-in-PEO emulsions, while the PEO-in-Dex become stable above this value. The thermo-responsiveness of the microgels translates into stability inversion of the emulsions below 50 wt% of Dex in the microgels, whereas above 50 wt%, no emulsion is stable. This work paves the way of a guideline to design efficient and responsive W/W stabilizers.
Collapse
Affiliation(s)
- Léa Waldmann
- Bordeaux INP, ISM, UMR 5255 CNRS - Univ. Bordeaux, F-33400 Talence, France; Univ. Bordeaux, CNRS, Bordeaux INP, CBMN UMR 5248, F-33600 Pessac, France
| | - Do-Nhu-Trang Nguyen
- IMMM, UMR 6283 CNRS - Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France
| | - Stéphane Arbault
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN UMR 5248, F-33600 Pessac, France
| | - Taco Nicolai
- IMMM, UMR 6283 CNRS - Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France
| | - Lazhar Benyahia
- IMMM, UMR 6283 CNRS - Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France
| | - Valérie Ravaine
- Bordeaux INP, ISM, UMR 5255 CNRS - Univ. Bordeaux, F-33400 Talence, France.
| |
Collapse
|
7
|
Xie Y, Ruan M, Zhang J, Kibtia M, Li L, Li B, Zhang Y, Liu S. Water-in-water Pickering emulsion stabilized by cellulose nanocrystals as space-confined encapsulating systems: From establishment to stability. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
8
|
Bahraseman NM, Shekarchizadeh H, Goli SAH. Segregative phase separation of gelatin and tragacanth gum solution and Mickering stabilization of their water-in-water emulsion with microgel particles prepared by complex coacervation. Int J Biol Macromol 2023; 237:124250. [PMID: 36996955 DOI: 10.1016/j.ijbiomac.2023.124250] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/10/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
This study aimed to investigate the segregative interaction of gelatin (G) and tragacanth gum (TG) and the stabilization of their water-in-water (W/W) emulsion by G-TG complex coacervate particles. Segregation was studied at different pHs, ionic strengths and biopolymer concentrations. Results showed that incompatibility was affected by increasing the biopolymer concentrations. So, three reigns were demonstrated in the phase diagram of the salt-free samples. NaCl significantly changed the phase behavior via enhancement of self-association of polysaccharide and changing solvent quality due to the charge screening effect of ions. The W/W emulsion prepared from these two biopolymers and stabilized with G-TG complex particles was stable for at least one week. The microgel particles improved emulsion stability by adsorption to the interface and creating a physical barrier. A fibrous and network-like structure of the G-TG microgels was observed by scanning electron microscopy images suggesting the Mickering emulsion stabilization mechanism. It was confirmed that the bridging flocculation between the microgel polymers led to phase separation after the stability period. Biopolymer incompatibility investigation is a useful tool to obtain beneficial knowledge for preparation new food formulation, especially no contain oil emulsions for low- calorie diets.
Collapse
|
9
|
Esquena J. Recent advances on water-in-water emulsions in segregative systems of two water-soluble polymers. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.101010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
10
|
Xue Y, Dong J, Li X. Fabricating switchable Pickering emulsions by dynamic covalent copolymer amphiphiles. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130399] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
You KM, Murray BS, Sarkar A. Tribology and rheology of water-in-water emulsions stabilized by whey protein microgels. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
12
|
Merland T, Waldmann L, Guignard O, Tatry MC, Wirotius AL, Lapeyre V, Garrigue P, Nicolai T, Benyahia L, Ravaine V. Thermo-induced inversion of water-in-water emulsion stability by bis-hydrophilic microgels. J Colloid Interface Sci 2022; 608:1191-1201. [PMID: 34735854 DOI: 10.1016/j.jcis.2021.10.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022]
Abstract
HYPOTHESIS Stabilization of water-in-water (W/W) emulsions resulting from the separation of polymeric phases such as dextran (DEX) and poly(ethyleneoxide) (PEO) is highly challenging, because of the very low interfacial tensions between the two phases and because of the interface thickness extending over several nanometers. In the present work, we present a new type of stabilizers, based on bis-hydrophilic, thermoresponsive microgels, incorporating in the same structure poly(N-isopropylacrylamide) (pNIPAM) chains having an affinity for the PEO phase and dextran moieties. We hypothesize that these particles allow better control of the stability of the W/W emulsions. EXPERIMENTS The microgels were synthesized by copolymerizing the NIPAM monomer with a multifunctional methacrylated dextran. They were characterized by dynamic light scattering, zeta potential measurements and nuclear magnetic resonance as a function of temperature. Microgels with different compositions were tested as stabilizers of droplets of the PEO phase dispersed in the DEX phase (P/D) or vice-versa (D/P), at different concentrations and temperatures. FINDINGS Only microgels with the highest DEX content revealed excellent stabilizing properties for the emulsions by adsorbing at the droplet surface, thus demonstrating the fundamental role of bis-hydrophilicity. At room temperature, both pNIPAM and DEX chains were swollen by water and stabilized better D/P emulsions. However, above the volume phase transition temperature (VPTT ≈ 32 °C) of pNIPAM the microgels shrunk and stabilized better P/D emulsions. At all temperatures, excess microgels partitioned more to the PEO phase. The change in structure and interparticle interaction induced by heating can be exploited to control the W/W emulsion stability.
Collapse
Affiliation(s)
- Théo Merland
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS - Le Mans Université, 1, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Léa Waldmann
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Oksana Guignard
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | | | | | - Véronique Lapeyre
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Patrick Garrigue
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Taco Nicolai
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS - Le Mans Université, 1, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Lazhar Benyahia
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS - Le Mans Université, 1, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.
| | - Valérie Ravaine
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France.
| |
Collapse
|