1
|
Yin H, Pu B, Jiang H, He H, Han T, Wang W, Yu C, Wang Z, Li X. Highly Active MXene Quantum Dots/CuSe n-p Plasmonic Heterostructures for Ultrafast Photocatalytic Removal of Cr(VI) under Full Solar Spectrum. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24484-24493. [PMID: 39523977 DOI: 10.1021/acs.langmuir.4c03170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Identifying effective plasmonic photocatalysts exhibiting robust activities across the entire solar spectrum poses a significant challenge. CuSe, with its local surface plasmon resonance (LSPR) effect, has garnered attention as a prospective plasmonic photocatalyst. However, severe charge recombination and insufficient light absorption limit its photocatalytic performance. To enhance the performance, constructing CuSe-based n-p plasmonic semiconductor heterostructures is a potential strategy. MXene quantum dots (MQDs), a kind of n-type plasmonic semiconductor with metallic conductivity and a high LSPR effect, are a promising candidate to couple with p-type CuSe. According to the complementary principle, we designed a 0D/2D MQDs/CuSe n-p plasmonic semiconductor, achieved by wrapping CuSe nanosheets with MQDs. This n-p plasmonic heterostructure exhibits a synergistic effect on an enhanced electronic field, facilitating charge transfer and separation, thereby enhancing charge excitation, carrier migration, and photothermal effect. Furthermore, optimizing the MQD loading content leads to an ultrafast photocatalytic reaction rate, achieving 100% Cr(VI) reduction efficiency within just 60 min with a reaction kinetics of 0.069 min-1, surpassing the performance of bare CuSe. Our work presents a promising approach for developing advanced n-p plasmonic heterostructures based on MQDs for wastewater treatment and other photocatalytic applications.
Collapse
Affiliation(s)
- Hongdie Yin
- College of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, China
- Sichuan Tianyu Oleochemical Co., Ltd., Luzhou, Sichuan 646300, China
| | - Biao Pu
- College of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Hanmei Jiang
- College of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Huichao He
- College of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Tao Han
- College of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wenrong Wang
- College of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Chaojun Yu
- Jidong Cement Bishan Co., Ltd., Chongqing 402760, China
| | - Zili Wang
- College of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Xingxin Li
- College of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, China
| |
Collapse
|
2
|
Pattnaik SP, Mohanty UA, Parida K. A timely update on g-C 3N 4-based photocatalysts towards the remediation of Cr(vi) in aqueous streams. RSC Adv 2024; 14:36816-36834. [PMID: 39559584 PMCID: PMC11571119 DOI: 10.1039/d4ra07350a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 10/30/2024] [Indexed: 11/20/2024] Open
Abstract
Hexavalent chromium (Cr(vi)) is a prominent carcinogen. In environmental engineering, the elimination of hexavalent chromium from aqueous media is a noteworthy field of study. In this regard, nanoparticle science and technology have contributed significantly to the photocatalytic reduction of Cr(vi). In this review, a methodical search was undertaken to discover the most recent advancements in the field of photocatalytic reduction of Cr(vi) utilizing g-C3N4 and composites derived from it. This paper deals with the advancements and applications of g-C3N4 and its composites in the Cr(vi) remediation of water-borne pollutants. Different intriguing systems, suggested by various researcher groups, have been discussed. Different characterization techniques often conducted on photocatalysts based on g-C3N4 have also been highlighted so as to gain an understanding of the Cr(vi) removal process. Lastly, the future scope of the g-C3N4-derived photocatalysts, present challenges, and the viability of employing these photocatalysts in an extensive treatment plant have been discussed.
Collapse
Affiliation(s)
- Sambhu Prasad Pattnaik
- Centre for Nano Science and Nano Technology, Institute of Technical Education and Research, Siksha 'O' Anusandhan (Deemed to be University) Bhubaneswar 751030 India +919776645909 +919437647766
| | - Upali Aparajita Mohanty
- Centre for Nano Science and Nano Technology, Institute of Technical Education and Research, Siksha 'O' Anusandhan (Deemed to be University) Bhubaneswar 751030 India +919776645909 +919437647766
| | - Kulamani Parida
- Centre for Nano Science and Nano Technology, Institute of Technical Education and Research, Siksha 'O' Anusandhan (Deemed to be University) Bhubaneswar 751030 India +919776645909 +919437647766
| |
Collapse
|
3
|
Safari F, Poursalehi R, Delavari H. Urea-driven g-C 3N 4 nanostructures for highly efficient photoreduction of Cr(vi) under visible LED light: effects of calcination temperature. RSC Adv 2024; 14:26943-26953. [PMID: 39193279 PMCID: PMC11348859 DOI: 10.1039/d4ra00859f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Graphitic carbon nitride (g-C3N4) nanostructures were synthesized via the calcination of urea at various temperatures ranging between 400 and 600 °C and were utilized for photoreduction of Cr(vi) in aqueous medium. Due to the low adsorption of Cr(vi) on the g-C3N4 surface, a more accurate assessment of the photocatalytic performance of the samples was carried out. Although the characterization showed that the specific surface of samples increased as the calcination temperature increased, the most efficient product in terms of the photoreduction duration of Cr(vi) was produced through the calcination process carried out at 450 °C, which reduced the concentration by more than 99% in 40 minutes. These results demonstrate that the structural and surface properties of g-C3N4 are critical factors that impact the photocatalytic performance. Alongside the calcination temperatures, the concentration of citric acid as a hole scavenger, the source of illumination, pH levels, and the recycling ability of the produced specimen at 450 °C were also investigated. Conspicuously, the photocatalyst works better when more citric acid is present and the pH level decreases. Out of all the cases studied regarding the light source, the 400 nm LED light source was found to be the most efficient. Additionally, even after going through the photoreduction process four times, the photocatalyst still remained highly efficient.
Collapse
Affiliation(s)
- Faramarz Safari
- Nanotechnology Group, Faculty of Engineering and Technology, Tarbiat Modares University Tehran Iran
| | - Reza Poursalehi
- Nanotechnology Group, Faculty of Engineering and Technology, Tarbiat Modares University Tehran Iran
| | - Hamid Delavari
- Nanotechnology Group, Faculty of Engineering and Technology, Tarbiat Modares University Tehran Iran
| |
Collapse
|
4
|
Zhang W, Zhang X, Zhang L, Ma J, Yin X, Tian Y, Wang C, Wang Q. A 3D hierarchical TiO 2/CaIn 2S 4/C 3N 4arrays photoanode with dual-heterojunction for enhanced photoelectrochemical performance. NANOTECHNOLOGY 2024; 35:155402. [PMID: 38198715 DOI: 10.1088/1361-6528/ad1d17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
A novel 3D hierarchical TiO2/CaIn2S4/C3N4arrays with dual heterojunctions photoanode is constructed by stepwise deposition of CaIn2S4nanosheets and ultrathin C3N4onto the well-aligned TiO2nanorods arrays. Integrating the merit of the superior ability of CaIn2S4and C3N4to harvest visible light, dual type-Ⅱ heterojunction band structure and one-dimensional ordered nanostructures, the TiO2/CaIn2S4/C3N4photoanode exhibits simultaneous significant improvements in visible-light harvesting, charge separation and electron transfer capability. At 1.23 V (versus reversible hydrogen electrode) under AM 1.5 G irradiation, the TiO2/CaIn2S475/C3N4photoanode exhibits a photocurrent density of 4.5 mA cm-2, which is 5.2 and 51.1-fold higher than that of TiO2/CaIn2S475 and pristine TiO2photoanode, respectively. Moreover, the applied bias photo-to-current efficiency (ABPE) of the TiO2/CaIn2S475/C3N4photoanode reaches 3.5% at 0.36 V (versus reversible hydrogen electrode). These results are helpful for fabricating more efficient heterostructure photoelectrodes.
Collapse
Affiliation(s)
- Wei Zhang
- College of Physical Science and Technology, Bohai University, Jinzhou 121013, People's Republic of China
- Institute of Ocean Research, Bohai University, Jinzhou 121013, People's Republic of China
| | - Xing Zhang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, People's Republic of China
| | - Lina Zhang
- College of Physical Science and Technology, Bohai University, Jinzhou 121013, People's Republic of China
- Institute of Ocean Research, Bohai University, Jinzhou 121013, People's Republic of China
| | - Jinwen Ma
- College of Physical Science and Technology, Bohai University, Jinzhou 121013, People's Republic of China
- Institute of Ocean Research, Bohai University, Jinzhou 121013, People's Republic of China
| | - Xiaotong Yin
- College of Physical Science and Technology, Bohai University, Jinzhou 121013, People's Republic of China
| | - Yuxin Tian
- College of Physical Science and Technology, Bohai University, Jinzhou 121013, People's Republic of China
| | - Chuang Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, People's Republic of China
| | - Qiushi Wang
- College of Physical Science and Technology, Bohai University, Jinzhou 121013, People's Republic of China
| |
Collapse
|
5
|
Nikitha M, Elanchezhiyan SS, Meenakshi S. Photodegradation of rhodamine-B in aqueous environment using visible-active gC 3N 4@CS-MoS 2 nanocomposite. ENVIRONMENTAL RESEARCH 2023; 238:117032. [PMID: 37673121 DOI: 10.1016/j.envres.2023.117032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/07/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
Rapid industrial expansion leads to environmental pollution especially in an aqueous environment. Photocatalytic degradation is one of the most efficient and environmentally friendly techniques used to treat industrial pollution due to its complete degradation capability of a variety of water contaminants to their non-toxic state. Graphitic carbon nitride (gC3N4) and molybdenum disulfide (MoS2) provide efficient dye degradation, but MoS2 has few disadvantages. Hence, chitosan (CS) supported gC3N4-MoS2 hybrid nanocomposite was developed in this study to reduce these issues by accelerating the degradation of dye molecules such as rhodamine-B under visible light. The prepared gC3N4@CS-MoS2 hybrid nanocomposite was thoroughly characterized using various analytical tools including FTIR, XRD, SEM, EDX, XPS, UV-Visible, and PL spectra. Several influencing parameters such as irradiation time, initial pH, dosage, and initial dye concentration were optimized by batch mode. The photodegradation of rhodamine-B could be induced by the heterogeneous gC3N4@CS-MoS2-water hybrid nanocomposite. The narrow band gap of gC3N4@CS-MoS2 (1.80 eV) makes it suitable for effective degradation of rhodamine-B due to more active in the visible region and attained its highest degradation efficiency of 99% after 40 min at pH 8 with minimum dosage of 60 mg. The possible degradation mechanism was tentatively proposed for rhodamine-B dye molecules from aqueous environment. The present work shows a novel photocatalyst for the purification and detoxification of dye molecules as well as other water contaminants found in polluted wastewater.
Collapse
Affiliation(s)
- M Nikitha
- Department of Chemistry, The Gandhigram Rural Institute-Deemed to be University, Gandhigram, 624 302, Tamil Nadu, India.
| | - S Sd Elanchezhiyan
- Sethu Institute of Technology, Department of Chemistry, Kariapatti, Virthunagar District, Tamil Nadu, India.
| | - S Meenakshi
- Department of Chemistry, The Gandhigram Rural Institute-Deemed to be University, Gandhigram, 624 302, Tamil Nadu, India.
| |
Collapse
|
6
|
Sivakumar S, Thangadurai TD, Nataraj D. Role of Interfacial AuNPs in Solid-state Direct Z-scheme MoS2/Au/g-C3N4 Heterojunction Nanocomposite’s Pollutant Degradation activity under sunlight. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
7
|
Sivakumar S, Daniel Thangadurai T, Manjubaashini N, Nataraj D. Two-dimensional z-type MoS2/g-C3N4 semiconductor heterojunction nanocomposites for industrial methylene blue dye degradation under daylight. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
López YC, Ortega GA, Reguera E. Hazardous ions decontamination: From the element to the material. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
|
9
|
Highly efficient noble metal-free g-C3N4@NixSy nanocomposites for catalytic reduction of nitrophenol, azo dyes and Cr(VI). INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Govinda raj M, Vijayakumar E, Preetha R, Narendran MG, Abigail Jennifer G, Varathan E, Neppolian B, Ganesh VK, John Bosco A. Experimental investigation into the π-conjugated HT-g-C3N4/MoS2 (X) evokes the electron transport in type-II heterojunction to achieve high photocatalytic antibiotic removal under visible-light irradiation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Wang B, Wang Z, Bai C, Yang H, Sun H, Lu G, Liang S, Liu Z. Synergistic Generation of Radicals by Formic Acid/H 2O 2/g-C 3N 4 Nanosheets for Ultra-efficient Oxidative Photodegradation of Rhodamine B. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2872-2884. [PMID: 35195422 DOI: 10.1021/acs.langmuir.1c03201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Water pollution is a global challenge endangering people's health. In this work, an ultra-efficient photodegradation system of Rhodamine B (RhB) has been established using a graphitic carbon nitride nanosheet (CNNS) as the semiconductor photocatalyst, from which energy is harvested on both the conduction band and valence band by formic acid and hydrogen peroxide, respectively. The optimized FA/H2O2/CNNS system increases the apparent photodegradation rate of RhB by 25 folds, from 0.0198 to 0.4975 min-1. Through a comprehensive investigation with reactive oxygen species scavengers, electron paramagnetic resonance, high-performance liquid chromatography-mass spectrometry, etc., an oxidative mechanism for RhB photodegradation has been proposed, which combines enhanced charge carrier migration and synergistic generation of multiple radicals. Comparable performance improvements have also been observed for similar systems with different semiconductors, suggesting that such a catalytic system could afford a general approach to enhance semiconductor-catalyzed photodegradation.
Collapse
Affiliation(s)
- Bingdi Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
| | - Zhida Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
| | - Chengkun Bai
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
| | - Haoqi Yang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
- Roll Forging Research Institute, College of Materials Science and Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
| | - Hang Sun
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
| | - Guolong Lu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
| | - Song Liang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
| | - Zhenning Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
12
|
Wang XL, Zhang Y, Chen YZ, Wang Y, Wang X. Two polymolybdate-directed Zn( ii) complexes tuned by a new bis-pyridine-bis-amide ligand with a diphenylketone spacer for efficient ampere sensing and dye adsorption. CrystEngComm 2022. [DOI: 10.1039/d2ce00697a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two polymolybdate-based Zn(ii) complexes were constructed from a new bis-pyridine-bis-amide ligand, which can be used as electrocatalysts and electrochemical sensors for Cr(vi), KBrO3, H2O2 and AA, and exhibit selective adsorption of CV and MB.
Collapse
Affiliation(s)
- Xiu-Li Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Yue Zhang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Yong-Zhen Chen
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Yue Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Xiang Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| |
Collapse
|
13
|
Zhang Y, Liu Q, Ma W, Liu H, Zhu J, Wang L, Pei H, Liu Q, Yao J. Insight into the synergistic adsorption-reduction character of chromium(VI) onto poly(pyrogallol-tetraethylene pentamine) microsphere in synthetic wastewater. J Colloid Interface Sci 2021; 609:825-837. [PMID: 34839912 DOI: 10.1016/j.jcis.2021.11.086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023]
Abstract
Facile fabrication of the ultra-high-performance adsorbent can effectively ameliorate the Cr(VI)-pollution elimination in sewage control. Herein, a simple synthesis strategy is proposed to tap a versatile chelating resin poly(pyrogallol-tetraethylene pentamine) (PPTA) with respect to Cr(VI) removal from solution. Multiple changing factors which affect the adsorption behavior of PPTA are explored sequentially, such as initial pH, adsorbate concentration, adsorbent dosage, temperature, foreign ions, etc. The microstructure and functional mechanism of synthetic adsorbent are investigated systematically by means of various characterizations including TEM, EDS, FT-IR, XPS, etc. Consequently, the as-prepared PPTA-3 microsphere by reactant ratio of 1: 1 represents a brilliant synergistic adsorption and reduction result for Cr(VI) by the drastic electrostatic interaction of -NH3+ and -OH2+ groups, including satisfactory removal efficiency which closes to 100 % in low concentration, favorable specificity for the influence from coexistent ions (Mo(VI), Mn(VII), Cl-, Cr(III), etc), and passable recyclability. Following the surpassingly fitting with Langmuir isotherm model, its maximum capacity reaches 714.29 mg g-1 at 30 °C. The removal performance is essentially in agreement with the pseudo-second-order kinetics, simultaneously, suffers the rate-limiting impact depending on intra-particle diffusion process. In brief, this newly developed chelating resin presents an effective means with regard to the Cr(VI)-wastewater treatment or other uses in the future.
Collapse
Affiliation(s)
- Yan Zhang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Qiang Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China.
| | - Wei Ma
- School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600, People's Republic of China
| | - Hanxiao Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Jingwen Zhu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Likai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Hongchang Pei
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Qinze Liu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China.
| | - Jinshui Yao
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| |
Collapse
|