1
|
Dutta B, Shetake NG, Patra S, Chakravarty R, Vimalnath KV, Chakraborty A, Chakraborty S, Pandey BN, Hassan PA, Barick KC. pH-Responsive magnetic nanocarriers for chelator-free bimodal (MRI/SPECT-CT) image-guided chemo-hyperthermia therapy in human breast carcinoma. J Mater Chem B 2024; 12:11759-11777. [PMID: 39417226 DOI: 10.1039/d4tb00980k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Although chemotherapy with magnetic nanocarriers has witnessed significant advancement in the field of cancer treatment, multimodal diagnosis and combinatorial therapy using a single nanoplatform will have much better efficacy in achieving superior results. Herein, we constructed a smart theranostic system by combining pH-sensitive tartaric acid-stabilized Fe3O4 magnetic nanocarriers (TMNCs) with SPECT imaging and a chemotherapeutic agent for image-guided chemo-hyperthermia therapy. The carboxyl-enriched exteriors of TMNCs provided sites for the conjugation of a chemotherapeutic drug (doxorubicin hydrochloride, DOX) and radiolabeling (141Ce). The usage of 145.4 keV gamma rays made this platform an ideal choice for in vivo SPECT-CT imaging, showing the retention of the nanoformulation in the tumor site even after 28 days. Further, TMNCs showed a very high transverse relaxation rate (r2) of 171 mM-1 s-1, which is higher than that of clinically approved magnetic resonance imaging (MRI) contrast agents such as ferumoxtran (65 mM-1 s-1) and ferumoxides (120 mM-1 s-1). Further, the developed drug-loaded hybrid platform showed significantly higher cytotoxicity towards breast cancer cells, which was augmented by in vitro magnetic hyperthermia. Bright-field microscopy and cell cycle analysis suggested that cell death occurred through induction of G2-M arrest and subsequent apoptosis. These findings clearly suggest the potential of the developed hybrid nanoplatform for image-guided combination therapy.
Collapse
Affiliation(s)
- Bijaideep Dutta
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Neena G Shetake
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Sourav Patra
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
- Radiopharmaceutical Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Rubel Chakravarty
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
- Radiopharmaceutical Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - K V Vimalnath
- Radiopharmaceutical Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Avik Chakraborty
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai 400012, India
| | - Sudipta Chakraborty
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
- Radiopharmaceutical Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - B N Pandey
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - P A Hassan
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - K C Barick
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
2
|
Jin S, Li H, Jiang J, Shi D, Tan W, Song H, Zhu L, Li Y, Qin H, He L. Synthesis of Fe 3O 4 Derived from Acid Mine Drainage (AMD) Sludge and Catalytic Degradation of Tetracycline. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24436-24446. [PMID: 39500509 DOI: 10.1021/acs.langmuir.4c02959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Acid mine drainage (AMD) sludge is waste generated in the process of acid mine wastewater treatment, and the use of AMD sludge to prepare Fe3O4 to activate H2O2 degradation pollutants is an effective means of resource utilization. In this study, the heterogeneous catalyst Fe3O4-based composites were synthesized by a one-step method using AMD sludge as a raw material, and the Fe3O4-based materials before and after catalysis were characterized by powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The effects of several key factors (pH values, H2O2 content, TC concentration, and Fe3O4 content) of tetracycline (TC) degradation were evaluated. The results revealed that the TC removal rate reached up to 95% within 120 min under optimal conditions (pH 3; H2O2, 5 mmol/L; TC concentration, 25 mg/L; Fe3O4 content, 1g/L). Moreover, •OH and •O2- radicals were generated during the Fenton-like degradation process, and the plausible degradation mechanism was discussed. Besides, the Fe3O4 catalyst exhibited fantastic stability after five cycles. In conclusion, this study is expected to promote the resource utilization of industrial sludge and provide a new material for the treatment of antibiotic-contaminated wastewater.
Collapse
Affiliation(s)
- Si Jin
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
- Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Huiling Li
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
- Engineering Technology Center of Wastewater Low-Carbon Treatment and Resource Recovery, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jinyuan Jiang
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
- Engineering Technology Center of Wastewater Low-Carbon Treatment and Resource Recovery, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Dongni Shi
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
- Engineering Technology Center of Wastewater Low-Carbon Treatment and Resource Recovery, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wei Tan
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
- Engineering Technology Center of Wastewater Low-Carbon Treatment and Resource Recovery, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Haoyang Song
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
- Engineering Technology Center of Wastewater Low-Carbon Treatment and Resource Recovery, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ling Zhu
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
- Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Yajun Li
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
- Engineering Technology Center of Wastewater Low-Carbon Treatment and Resource Recovery, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hongke Qin
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
- Engineering Technology Center of Wastewater Low-Carbon Treatment and Resource Recovery, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lei He
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
- Engineering Technology Center of Wastewater Low-Carbon Treatment and Resource Recovery, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
3
|
Fang M, Sun Y, Zhu Y, Chen Q, Chen Q, Liu Y, Zhang B, Chen T, Jin J, Yang T, Zhuang L. The potential of ferrihydrite-synthetic humic-like acid composite as a soil amendment for metal-contaminated agricultural soil: Immobilization mechanisms by combining abiotic and biotic perspectives. ENVIRONMENTAL RESEARCH 2024; 250:118470. [PMID: 38373548 DOI: 10.1016/j.envres.2024.118470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/21/2024]
Abstract
In-situ passivation technique has attracted increasing attention for metal-contaminated agricultural soil remediation. However, metal immobilization mechanisms are mostly illustrated based on metal speciation changes and alterations in soil physicochemical properties from a macroscopic and abiotic perspective. In this study, a ferrihydrite-synthetic humic-like acid composite (FH-SHLA) was fabricated and applied as a passivator for a 90-day soil incubation. The heavy metals immobilization mechanisms of FH-SHLA were investigated by combining both abiotic and biotic perspectives. Effects of FH-SHLA application on soil micro-ecology were also evaluated. The results showed that the 5%FH-SHLA treatment significantly decreased the DTPA-extractable Pb, Cd and Zn by 80.75%, 46.82% and 63.63% after 90 days of incubation (P < 0.05), respectively. Besides, 5% FH-SHLA addition significantly increased soil pH, soil organic matter content and cation exchange capacity (P < 0.05). The SEM, FTIR, and XPS characterizations revealed that the abiotic metal immobilization mechanisms by FH-SHLA included surface complexation, precipitation, electrostatic attraction, and cation-π interactions. For biotic perspective, in-situ microorganisms synergistically participated in the immobilization process via sulfide precipitation and Fe mineral production. FH-SHLA significantly altered the diversity and composition of the soil microbial community, and enhanced the intensity and complexity of the microbial co-occurrence network. Both metal bioavailability and soil physiochemical parameters played a vital role in shaping microbial communities, while the former contributed more. Overall, this study provides new insight into the heavy metal passivation mechanism and demonstrates that FH-SHLA is a promising and environmentally friendly amendment for metal-contaminated soil remediation.
Collapse
Affiliation(s)
- Mingzhi Fang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yucan Sun
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yi Zhu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Qi Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Qianhui Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yifei Liu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Bing Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Tan Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Jun Jin
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Ting Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Linlan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|
4
|
Xue S, Wang Y, Bo W, Wan K, Miao Z. Calcium-doped magnetic humic acid nano particles for the efficient removal of heavy metals from wastewater: the role of Ca. ENVIRONMENTAL TECHNOLOGY 2024; 45:3228-3243. [PMID: 37194989 DOI: 10.1080/09593330.2023.2213832] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/28/2023] [Indexed: 05/18/2023]
Abstract
Ca doping is an effective method for improving the adsorption capacity of HA-Fe aggregates and regulating their structures. Understanding the structural characteristics of Ca-HA-Fe aggregates can help explore their microscopic adsorption effect on heavy metals. However, the heterogeneity of HA results in an incomplete understanding of the structural characteristics of the ternary system of Ca-HA-Fe aggregates and adsorption of the quaternary system of Ca-HA-Fe-Pb/Cu/Cd. In this study, interactions between Ca-HA-Fe ternary and Ca-HA-Fe-Pb/Cu/Cd quaternary systems were discussed from a molecular perspective. The structures of the basic structural units of HA were identified. Density functional theory (DFT) was employed to calculate the stable states of basic structural units of HA and Ca2+. The results showed that hydroxyl and carboxyl groups exhibited the highest capacity to bind with Ca2+. The interactions among Ca, HA, and Fe led to the formation of network aggregates. The binding energies of functional groups for heavy metals and the feasibility of ion exchange were calculated by the method of experiment and DFT. According to the contribution of functional group complexation and ion exchange, the ion exchange values for Pb2+, Cu2+, and Cd2+ were 66.71%, 62.87%, and 60.79%, respectively, which indicated that Ca2+ ion exchange showed considerable potential in enhancing the adsorption capacity of heavy metals.
Collapse
Affiliation(s)
- Shuwen Xue
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, People's Republic of China
| | - Yingwei Wang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, People's Republic of China
| | - Wenting Bo
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, People's Republic of China
| | - Keji Wan
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou, People's Republic of China
| | - Zhenyong Miao
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, People's Republic of China
| |
Collapse
|
5
|
Hu W, Zhang X, Chen M, Rahman ST, Li X, Wang G. Enhancing Cr (VI) Adsorption of Chestnut Shell Biochar through H 3PO 4 Activation and Nickel Doping. Molecules 2024; 29:2220. [PMID: 38792083 PMCID: PMC11124291 DOI: 10.3390/molecules29102220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
A high-efficiency nickel-doped porous biochar (PCNi3) has been successfully synthesized from chestnut shell waste via a two-step chemical activation treatment with H3PO4. The influences of microstructure, surface morphology, elemental composition, surface functional groups, specific surface area, porosity, pore-size distribution, and chemical properties of the surface state on the removal of Cr (VI) from water were thoroughly investigated by using XRD, FESEM, FTIR, Raman, BET, and XPS testing methods, N2 adsorption, and XPS testing techniques respectively. The results indicate that the treatment of H3PO4 activation and nickel doping can effectively improve microstructure characteristics, thus promoting Cr (VI) adsorption capacity. The effects of initial solution pH, solution concentration, time, and temperature on remediation are revealed. The Cr (VI) uptake experiments imply that the adsorption curves of PCNi3 fit well with the Freundlich model, the pseudo-second-order kinetic model, and the Elovich model. The adsorption process of PCNi3 can be regarded as a spontaneous endothermic reaction limited by diffusion among particles and porosity. The adsorption mechanisms of PCNi3 are ion exchange, complexation, electrostatic adsorption, and coprecipitation with the assistance of surface active sites, porosity, Ni0 particles, and Ni7P3. With these advantages, PCNi3 reveals an extraordinary Cr (VI) removal capacity and a strong ability to reduce Cr (VI) to Cr (III).
Collapse
Affiliation(s)
- Wen Hu
- School of Information Engineering, Hubei University of Economics, Wuhan 430205, China
| | - Xiaojing Zhang
- Provincial Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430073, China (S.T.R.)
| | - Ming Chen
- Provincial Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430073, China (S.T.R.)
| | - Sheikh Tamjidur Rahman
- Provincial Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430073, China (S.T.R.)
| | - Xin Li
- Provincial Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430073, China (S.T.R.)
| | - Geming Wang
- Provincial Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430073, China (S.T.R.)
- Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, Jianghan University, Wuhan 430056, China
| |
Collapse
|
6
|
Li S, Luo C, Yan F, Yang Y, Guo B, Wang L, Xu S, Wu F, Ji P. Remediation of Pb(II) and Cd(II) in polluted waters with calcium thioglycolate-modified straw biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122638. [PMID: 37775026 DOI: 10.1016/j.envpol.2023.122638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
The pollution of water bodies by heavy metals (HMs) such as Pb(II) and Cd(II) poses a serious environmental risk. Herein, rice straw biochar (RBC) modified with calcium thioglycolate was used to remove Pb(II) and Cd(II) from aqueous solutions. The adsorption performance of the modified biochar was investigated via adsorption kinetics and isotherm model fitting. Furthermore, scanning electron microscopy (SEM), X-ray energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) were used to elucidate the modification and adsorption mechanisms. The results showed that the modification process loaded sulfur-containing functional groups, calcium carbonate, and calcium oxalate crystals on the biochar surface, considerably enhancing its complexation performance and ion-exchange capacity. The equilibrium adsorption amounts for Pb(II) and Cd(II) reached 124.92 and 65.44 mg g-1 in unary systems, respectively; they reached 121.34 and 39.43 mg g-1 in a binary Pb(II) and Cd(II), respectively. Moreover, the optimal adsorption conditions were as follows: pH = 6, temperature = 25 °C, dosage = 0.8 g L-1, and contact time = 2 h. In the binary Pb(II) and Cd(II) system, the adsorption process obeyed the Langmuir competitive adsorption model, which means that one adsorption site on the modified biochar was effective for only one heavy-metal ion, and the modified biochar was more selective for Pb(II) than for Cd(II). The adsorption mechanism, which was dominated by chemisorption, mainly involved complexation, precipitation, ion exchange, and cation-π interactions. Meanwhile, adsorption and desorption experiments indicated that the modified biochar exhibited satisfactory recycling performance, demonstrating its feasibility as an inexpensive and efficient heavy-metal adsorbent for polluted water.
Collapse
Affiliation(s)
- Shaohua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chi Luo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fan Yan
- Lvliang City Ecological Environmental Protection Bureau, Lvliang, 032100, Shanxi, China
| | - Yue Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Bin Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lu Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shaoquan Xu
- Qinghai Delingha Agriculture and Animal Husbandry Comprehensive Service Center, Room 304, Jinghuawan Office Building, Chaidamu West Road, Delingha, 817099, Qinghai, China
| | - Feng Wu
- Northwest Bureau of China Metallurgical Geology Bureau, Xi'an, 710119, Shaanxi, China
| | - Puhui Ji
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
7
|
Teng R, Jiang J, Shi D, Li H. Synthesis of Acid Mine Drainage (AMD) Sludge-Derived Al-Fe 3O 4 as Fenton-like Catalysts for the Efficient Degradation of Tetracycline. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14275-14283. [PMID: 37625249 DOI: 10.1021/acs.langmuir.3c01555] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
In recent years, the development of environmentally friendly solid catalysts derived from sludge for the efficient removal of pollutants from wastewater has triggered widespread attention. Acid mine drainage (AMD) sludge is a waste produced in the process of acid mine wastewater treatment and contains multitudes of valuable metal resources. Hence it provides the original conditions for the synthesis of metal-based Fenton catalysts. In this article, the Fenton-like catalyst Al-Fe3O4 derived from AMD sludge was first synthesized by acid leaching coprecipitation methods, and the relationship among catalyst properties and pH, growth temperature, and growth time during coprecipitation was explored. Transmission electron microscope (TEM)/vibrating sample magnetometer (VSM)/particulate size description analyzer (DLS) results showed that the Al-Fe3O4 catalyst with high purity, large particle size, and strong magnetic properties was obtained under the conditions of pH 10, reaction temperature 60 °C, and growth for 45 min. In addition, the introduction of Al active sites promoted the activation of H2O2 and improved the catalytic activity of Al-Fe3O4, and the degradation efficiency of tetracycline was up to 93.9% within 60 min, which was 1.94 times that of pure Fe3O4. Moreover, Al-Fe3O4 exhibited excellent recyclability after four adsorption-desorption cycles. Hence, this study is expected to promote the resource utilization of industrial sludge and provide a new idea for the rapid removal of TC from aqueous solution.
Collapse
Affiliation(s)
- Ran Teng
- Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jinyuan Jiang
- Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Dongni Shi
- Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Huiling Li
- Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
8
|
Kochar C, Taneja L, Kumar Yadav P, Yadav M, Swarupa Tripathy S. Incorporation of MgO-humic acid in iron oxide based magnetic composite facilitates for effective remediation of lead, arsenic and bacterial effect in water. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
9
|
The potential of ferrihydrite-synthetic humic-like acid composite to remove metal ions from contaminated water: Performance and mechanism. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Tian J, Guo K, Sun Y, Lin R, Chen T, Zhang B, Liu Y, Yang T. Solvent-Free Synthesis of Magnetic Sewage Sludge-Derived Biochar for Heavy Metal Removal from Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:155. [PMID: 36612475 PMCID: PMC9820038 DOI: 10.3390/ijerph20010155] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The commonly used two-step and one-pot synthesis methods for producing biochar require the use of iron salt solutions, resulting in the undesirable consequences of energy consumption for dewatering and potential pollution risks. To address this drawback, a magnetic sewage sludge-derived biochar (MSBC-2) was synthesized by a solvent-free method in this study. The pseudo-second-order kinetic model and Langmuir model provided the best fit to the experimental data, implying a monolayered chemisorption process of Pb2+, Cd2+and Cu2+ onto MSBC-2. As the reaction temperature increased from 25 °C to 45 °C, the maximum adsorption capacities increased from 113.64 mg·g−1 to 151.52 mg·g−1 for Pb2+, from 101.01 mg·g−1 to 109.89 mg·g−1 for Cd2+ and from 57.80 mg·g−1 to 74.07 mg·g−1 for Cu2+, respectively. Thermodynamic parameters (ΔG0 < 0, ΔS0 > 0, ΔH0 > 0) revealed that the adsorption processes of all three metals by MSBC-2 were favourable, spontaneous and endothermic. Surface complexation, cation-π interaction, ion exchange and electrostatic attraction mechanisms were involved in the adsorption of Pb2+, Cd2+ and Cu2+ onto MSBC-2. Overall, this study will provide a new perspective for the synthesis of magnetic biochar and MSBC-2 shows great potential as an adsorbent for heavy metal removal.
Collapse
Affiliation(s)
- Jiayi Tian
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Kexin Guo
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yucan Sun
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Ruoxi Lin
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Tan Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Bing Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yifei Liu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Ting Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
11
|
Zhao Z, Lei R, Zhang Y, Cai T, Han B. Defect controlled MOF-808 for seawater uranium capture with high capacity and selectivity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Preparation of In Situ ZIF-9 Grown on Sodium Alginate/Polyvinyl Alcohol Hydrogels for Enhancing Cu (II) Adsorption from Aqueous Solutions. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02463-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Wang Z, Yao Y, Yang Y. Fulvic acid-like substance-Ca(II) complexes improved the utilization of calcium in rice: Chelating and absorption mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113502. [PMID: 35447470 DOI: 10.1016/j.ecoenv.2022.113502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Water-soluble chelated calcium has been widely used in agriculture as a fertilizer to improve the absorption and utilization of calcium by plants. This paper prepared a new organic mineral fertilizer, based on fulvic acid-like substance chelated calcium (PFA-Ca2+ complex), using optimal parameters (i.e., pH, time, temperature, and Ca2+ concentration) to achieve a high chelation efficiency. The absorption, utilization, and distribution of the PFA-Ca2+ complex in rice roots were analyzed using laser scanning confocal microscopy (LSCM). Our results demonstrated that the optimal PFA-Ca2+ complex chelating efficiency (87%) was achieved at an initial Ca2+ concentration of 0.1 mol L-1, an equilibration time of 120 min, a pH of 5.0, and a temperature of 40 °C. The chelating reaction of a fulvic acid-like substance with Ca2+ primarily occurred on phenol hydroxyl, alcohol hydroxyl, and carboxyl groups. The PFA-Ca2+ complex was primarily enriched in the roots' pericycle, cortical, and epidermis cells, in both chelating and non-chelating forms. To our knowledge, this is the first report investigating how the PFA-Ca2+complex affects transformation in plants, which has significant implications for research on plant nutrition and nutrient distribution.
Collapse
Affiliation(s)
- Zhonghua Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled-Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Daizong Road No. 61, Taian, Shandong 271018, China
| | - Yuanyuan Yao
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled-Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Daizong Road No. 61, Taian, Shandong 271018, China
| | - Yuechao Yang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled-Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Daizong Road No. 61, Taian, Shandong 271018, China; Department of Soil and Water Science, Tropical Research and Education Center, University of Florida, Homestead, FL 33031, United States.
| |
Collapse
|
14
|
Wu Q, Wang D, Zhang J, Chen C, Ge H, Xu H, Cai D, Wu Z. Synthesis of Iron-Based Carbon Microspheres with Tobacco Waste Liquid and Waste Iron Residue for Cd(II) Removal from Water and Soil. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5557-5567. [PMID: 35451849 DOI: 10.1021/acs.langmuir.2c00125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein, a novel magnetic iron-based carbon microsphere was prepared by cohydrothermal treatment of tobacco waste liquid (TWL) and waste iron residue (WIR) to form WIR@TWL. After that, WIR@TWL was coated with sodium polyacrylate (S.P.) to fabricate WIR@TWL@SP, whose removal efficiency for bivalent cadmium (Cd(II)) was studied in water and soil. As a result, WIR@TWL@SP possessed a high Cd(II) removal efficiency, which could reach 98.5% within 2 h. The adsorption process was consistent with the pseudo-second-order kinetic model because of the higher value of adjusted R2 (0.99). The thermodynamic data showed that the adsorption process was spontaneous (ΔG° < 0) and exothermic (ΔH° = 32.42 KJ·mol-1 > 0). Cd(II) removal mechanisms also include cation exchange, electrostatic attraction, hydrogen-bond interaction, and cation-π interaction. Notably, pot experiments demonstrated that WIR@TWL@SP could effectively reduce Cd absorption by plants in water and soil. Thus, this study offers an effective method for remediating Cd(II)-contaminated water and soil and may have a practical application value.
Collapse
Affiliation(s)
- Qingchuan Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Dongfang Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Jia Zhang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Chaowen Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Hongjian Ge
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - He Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Dongqing Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Zhengyan Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| |
Collapse
|