1
|
Thosar AU, Cai Y, Marks SM, Vicars Z, Choi J, Pallath A, Patel AJ. On the engulfment of antifreeze proteins by ice. Proc Natl Acad Sci U S A 2024; 121:e2320205121. [PMID: 38833468 PMCID: PMC11181090 DOI: 10.1073/pnas.2320205121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/16/2024] [Indexed: 06/06/2024] Open
Abstract
Antifreeze proteins (AFPs) are remarkable biomolecules that suppress ice formation at trace concentrations. To inhibit ice growth, AFPs must not only bind to ice crystals, but also resist engulfment by ice. The highest supercooling, [Formula: see text], for which AFPs are able to resist engulfment is widely believed to scale as the inverse of the separation, [Formula: see text], between bound AFPs, whereas its dependence on the molecular characteristics of the AFP remains poorly understood. By using specialized molecular simulations and interfacial thermodynamics, here, we show that in contrast with conventional wisdom, [Formula: see text] scales as [Formula: see text] and not as [Formula: see text]. We further show that [Formula: see text] is proportional to AFP size and that diverse naturally occurring AFPs are optimal at resisting engulfment by ice. By facilitating the development of AFP structure-function relationships, we hope that our findings will pave the way for the rational design of AFPs.
Collapse
Affiliation(s)
- Aniket U. Thosar
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Yusheng Cai
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Sean M. Marks
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Zachariah Vicars
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Jeongmoon Choi
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Akash Pallath
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Amish J. Patel
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
2
|
Pal P, Aich R, Chakraborty S, Jana B. Molecular Factors of Ice Growth Inhibition for Hyperactive and Globular Antifreeze Proteins: Insights from Molecular Dynamics Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15132-15144. [PMID: 36450094 DOI: 10.1021/acs.langmuir.2c02149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The molecular mechanism behind the ice growth inhibition by antifreeze proteins (AFPs) is yet to be understood completely. Also, what physical parameters differentiate between the AFP and non-AFP are largely unknown. Thus, to get an atomistic overview of the differential antifreeze activities of different classes of AFPs, we have studied ice growth from different ice surfaces in the presence of a moderately active globular type III AFP and a hyperactive spruce budworm (sbw) AFP. Results are compared with the observations of ice growth simulations in the presence of topologically similar non-AFPs using all-atom molecular dynamics simulations. Simulation data suggest that the ice surface coverage is a critical factor in ice growth inhibition. Due to the presence of an ice binding surface (IBS), AFPs form a high affinity complex with ice, accompanied by a transition of hydration water around the IBS from clathrate-like to ice-like. Several residues around the periphery of the IBS anchor the AFP to the curved ice surface mediated by multiple strong hydrogen bonds, stabilizing the complex immensely. In the high surface coverage regime, the slow unbinding kinetics dominates over the ice growth kinetics and thus facilitates the ice growth inhibition. Due to the non-availability of a proper IBS, non-AFPs form a low-affinity complex with the growing ice surface. As a result, the non-AFPs are continuously repelled by the surface. If the concentration of AFPs is low, then the effective surface coverage is reduced significantly. In this low surface coverage regime, AFPs can also behave like impurities and are engulfed by the growing ice crystal.
Collapse
Affiliation(s)
- Prasun Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Rahul Aich
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sandipan Chakraborty
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
3
|
Rautenberg A, Lamprecht A. Spray-freeze-dried lyospheres: Solid content and the impact on flowability and mechanical stability. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Stovbun SV, Skoblin AA, Shilkina NG, Lomakin SM, Zlenko DV. A gel lattice alters the phase state of a solvent. SOFT MATTER 2022; 18:5815-5822. [PMID: 35899804 DOI: 10.1039/d2sm00767c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Some low-molecular-weight substances are able to self-assemble into fiber-like structures (strings) to form gels. One of the examples of such substances is trifluoroacetylated alpha-aminoalcohols (TFAAAs) able to gelate in many organic solvents. Here we report the formation and describe the properties of a layer of an altered solvent covering the strings' surface. The altered solvent layer has a different refractive index and melts at a temperature about several degrees lower than that of the bulk solvent. Moreover, the bulk solvent's melting temperature was also decreased by values far beyond the one expected according to Raoult's law. Based on the Gibbs-Thomson equation it is possible to derive the thickness of the special layer as well as the average gel lattice parameters, which were very stable across the variety of systems investigated.
Collapse
Affiliation(s)
- Sergey V Stovbun
- N.N. Semenov Institute of Chemical Physics, RAS, 119334, Kosygina 4/1, Moscow, Russia.
| | - Aleksey A Skoblin
- N.N. Semenov Institute of Chemical Physics, RAS, 119334, Kosygina 4/1, Moscow, Russia.
| | - Natalia G Shilkina
- N.N. Semenov Institute of Chemical Physics, RAS, 119334, Kosygina 4/1, Moscow, Russia.
| | - Sergey M Lomakin
- N.N. Semenov Institute of Chemical Physics, RAS, 119334, Kosygina 4/1, Moscow, Russia.
- N.M. Emanuel Institute of Biochemical Physics, RAS, 119334, Kosygina 4, Moscow, Russia
| | - Dmitry V Zlenko
- N.N. Semenov Institute of Chemical Physics, RAS, 119334, Kosygina 4/1, Moscow, Russia.
- M.V. Lomonosov Moscow State University, Faculty of Biology, 119234, Lenin Hills 1/24, Moscow, Russia
- A.N. Severtson Institute of Ecology and Evolution, 119071, Lenin Avenue, 33, Moscow, Russia
| |
Collapse
|
5
|
Kämäräinen T, Kadota K, Tse JY, Uchiyama H, Yamanaka S, Tozuka Y. Modulating the Pore Architecture of Ice-Templated Dextran Microparticles Using Molecular Weight and Concentration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6741-6751. [PMID: 35579967 DOI: 10.1021/acs.langmuir.2c00721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spray freeze drying (SFD) is an ice templating method used to produce highly porous particles with complex pore architectures governed by ice nucleation and growth. SFD particles have been advanced as drug carrier systems, but the quantitative description of the morphology formation in the SFD process is still challenging. Here, the pore space dimensions of SFD particles prepared from aqueous dextran solutions of varying molecular weights (40-200 kDa) and concentrations (5-20%) are analyzed using scanning electron microscopy. Coexisting morphologies composed of cellular and dendritic motifs are obtained, which are attributed to variations in the ice growth mechanism determined by the SFD system and modulation of these mechanisms by given precursor solution properties leading to changes in their pore dimensions. Particles with low-aspect ratio cellular pores showing variation of around 0.5-1 μm in diameter with precursor composition but roughly constant with particle diameter are ascribed to a rapid growth regime with high nucleation site density. Image analysis suggests that the pore volume decreases with dextran solid content. Dendritic pores (≈2-20 μm in diameter) with often a central cellular region are identified with surface nucleation and growth followed by a slower growth regime, leading to the overall dendrite surface area scaling approximately linearly with the particle diameter. The dendrite lamellar spacing depends on the concentration according to an inverse power law but is not significantly influenced by molecular weight. Particles with highly elongated cellular pores without lamellar formation show intermediate pore dimensions between the above two limiting morphological types. Analysis of variance and post hoc tests indicate that dextran concentration is the most significant factor in affecting the pore dimensions. The SFD dextran particles herein described could find use in pulmonary drug delivery due to their high porosity and biocompatibility of the matrix material.
Collapse
Affiliation(s)
- Tero Kämäräinen
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Jun Yee Tse
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Hiromasa Uchiyama
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Shinya Yamanaka
- Division of Applied Sciences, Muroran Institute of Technology, Mizumoto-cho 27-1, Muroran 050-8585, Japan
| | - Yuichi Tozuka
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| |
Collapse
|
6
|
Warren M, Galpin I, Bachtiger F, Gibson MI, Sosso GC. Ice Recrystallization Inhibition by Amino Acids: The Curious Case of Alpha- and Beta-Alanine. J Phys Chem Lett 2022; 13:2237-2244. [PMID: 35238571 PMCID: PMC9007522 DOI: 10.1021/acs.jpclett.1c04080] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Extremophiles produce macromolecules which inhibit ice recrystallization, but there is increasing interest in discovering and developing small molecules that can modulate ice growth. Realizing their potential requires an understanding of how these molecules function at the atomistic level. Here, we report the discovery that the amino acid l-α-alanine demonstrates ice recrystallization inhibition (IRI) activity, functioning at 100 mM (∼10 mg/mL). We combined experimental assays with molecular simulations to investigate this IRI agent, drawing comparison to β-alanine, an isomer of l-α-alanine which displays no IRI activity. We found that the difference in the IRI activity of these molecules does not originate from their ice binding affinity, but from their capacity to (not) become overgrown, dictated by the degree of structural (in)compatibility within the growing ice lattice. These findings shed new light on the microscopic mechanisms of small molecule cryoprotectants, particularly in terms of their molecular structure and overgrowth by ice.
Collapse
Affiliation(s)
- Matthew
T. Warren
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- Warwick
Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Iain Galpin
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Fabienne Bachtiger
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- Warwick
Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Gabriele C. Sosso
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|