1
|
Yamazaki H, Sugawara R, Takayama Y. Development of label-free light-controlled gene expression technologies using mid-IR and terahertz light. Front Bioeng Biotechnol 2024; 12:1324757. [PMID: 39465004 PMCID: PMC11502365 DOI: 10.3389/fbioe.2024.1324757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Gene expression is a fundamental process that regulates diverse biological activities across all life stages. Given its vital role, there is an urgent need to develop innovative methodologies to effectively control gene expression. Light-controlled gene expression is considered a favorable approach because of its ability to provide precise spatiotemporal control. However, current light-controlled technologies rely on photosensitive molecular tags, making their practical use challenging. In this study, we review current technologies for light-controlled gene expression and propose the development of label-free light-controlled technologies using mid-infrared (mid-IR) and terahertz light.
Collapse
Affiliation(s)
- Hirohito Yamazaki
- Top Runner Incubation Center for Academia-Industry Fusion, Nagaoka University of Technology, Nagaoka, Japan
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Ryusei Sugawara
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Yurito Takayama
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Japan
| |
Collapse
|
2
|
Wang H, Chen X, Chen B, Zhao Y, Zhang B. Development of a spiropyran-assisted cellulose aerogel with switchable wettability as oil sorbent for oil spill cleanup. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171451. [PMID: 38438027 DOI: 10.1016/j.scitotenv.2024.171451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/09/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
This research presents the successful development and optimization of a spiropyran-assisted cellulose aerogel (CNF-SP) aerogel with UV-induced switchable wettability, and the evaluation of its performance as an effective oil sorbent for oil spill cleanup. The aerogel initially exhibited strong hydrophobicity (124°) and showed UV-induced switchable wettability due to the photo-response structure of spiropyran. Upon UV irradiation, the hydrophobicity of the aerogel could be switched to hydrophilicity (31°), while visible light irradiation could restore its hydrophobicity. The three-dimensional (3D) porous structure of the CNF-SP aerogel combined with the hydrophobic properties of spiropyranol led to its great oil adsorption performance (27-30 g/g of oil adsorption ratio). The central composite design (CCD) was applied to optimize the aerogel and investigate the effects of raw material ratio (i.e., carboxymethyl cellulose, carboxyethyl spiropyran, polyvinyl alcohol, and nano zinc oxide) on the oil sorption performance of the aerogel. The optimized CNF-SP aerogel demonstrated a high oil sorption efficiency, particularly in acid and cold environments. Moreover, the switchable function indicated that the aerogel exhibited reusability and renewability, with the added benefit of UV-induced oil recovery.
Collapse
Affiliation(s)
- Hongjie Wang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Department of Civil Engineering, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Xiujuan Chen
- Department of Civil Engineering, University of Texas at Arlington, Arlington, TX 76019, USA.
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Department of Civil Engineering, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Yuming Zhao
- Department of Chemistry, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Department of Civil Engineering, Memorial University, St. John's, NL A1B 3X5, Canada.
| |
Collapse
|
3
|
Wu Z, Xiao L, Xu R, Zhong S, Gong M, Wang G. UV-Light-Induced Morphological Transformation of Spiropyran Assemblies from Irregular Sheet-like Structures to Nanospheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13946-13952. [PMID: 37736671 DOI: 10.1021/acs.langmuir.3c01535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Studies on self-assembling systems with a controllable morphology responding to light stimulation are significant for revealing the process and mechanism of assembly. Here, a molecule of spiropyran derivative (SP) possessing photoresponsive assembly morphology is constructed. SP self-assembles into irregular sheet-like structures whose morphology can be significantly transformed into regular nanospheres under continuous ultraviolet light stimulation. The UV-vis absorption spectra indicate that 56% of SP are isomerized from closed-ring form (SPC) to open-ring form (SPO) with color changes from colorless to magenta. Furthermore, theoretical calculations demonstrate that SPO-SPO aggregates possess stronger van der Waals forces than do SPC-SPC aggregates and tend to form stable intermediates combined with SPO isomers. Therefore, the isomerization of SP from SPC to SPO and the differences in intermolecular interactions are important factors in the morphological transition. Our study provides an efficient strategy to modulate the assembled morphology, which holds great promise to be applied in the field of smart materials.
Collapse
Affiliation(s)
- Zhen Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Leping Xiao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ruoyu Xu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shijie Zhong
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Min Gong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Guojie Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
4
|
Ye N, Pei YR, Han Q, Jin LY. Photoresponsive reversible self-assembly of rod-coil amphiphiles containing spiropyran groups. SOFT MATTER 2023; 19:1540-1548. [PMID: 36745471 DOI: 10.1039/d2sm01690g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Stimuli-responsive assembly deformation is a key feature in constructing smart soft materials, which makes them versatile and autonomous. In this study, rod-coil amphiphilic compounds containing spiropyran (SP) groups were developed and synthesized to investigate their stimuli-responsive assembly in a solution system with 99% water content. In addition to photochromic phenomena, reversible light-mediated morphological alterations occurred in these molecular aggregates. Based on the different flexible chain segments of rod-coil amphiphiles, the initial assemblies underwent a dissociation-reassembly process under ultraviolet (UV) irradiation, whereupon they deformed or disassembled to assemblies. Furthermore, as the UV source was removed, the original nanostructures were gradually recovered again via the ring-closing reaction process. These compounds, interestingly, can selectively combine with copper ions to produce cross-linked co-assembled nanostructures. The copper ion complex solution of rod-coil amphiphilic compounds emitted unique bright blue fluorescence, which allowed for the specific visual identification of copper ions in aqueous solutions.
Collapse
Affiliation(s)
- Nan Ye
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| | - Yi-Rong Pei
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| | - Qingqing Han
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| |
Collapse
|
5
|
Keyvan Rad J, Ghomi AR, Mahdavian AR. Preparation of Photoswitchable Polyacrylic Nanocomposite Fibers Containing Au Nanorods and Spiropyran: Optical and Plasmonic Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8428-8441. [PMID: 35758020 DOI: 10.1021/acs.langmuir.2c01041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photoswitchable nanofibers and nanocomposite fibers containing plasmonic nanoparticles have attracted a great deal of interest in optical and plasmonic devices. Herein, photoswitchable poly(methyl methacrylate-co-vinylimidazole-co-spiropyran ethyl acrylate) (MVSP) and its copolymer with butyl acrylate (MBVSP) were prepared via emulsion polymerization, and the corresponding nanofibers (MVSP@NF and MBVSP@NF) and nanocomposite fibers (MVSP/Au@NF and MBVSP/Au@NF) containing AuNRs were fabricated through electrospinning. FTIR and 1H NMR analyses confirmed the progress of the copolymerization reaction. The morphology of the prepared nanofibers containing AuNRs with an aspect ratio of 2.5 was identified by SEM and TEM techniques. The inclusion of vinylimidazole into the copolymer chains resulted in well-dispersed AuNRs. Photoisomerization studies revealed a higher photochromic efficiency for MBVSP@F (reflective intensity of 37.4%) with respect to MVSP@NF (reflective intensity of 62.5%) because of the greater flexibility of the chains. In addition, the presence of AuNRs in the nanocomposite fibers with high absorptivity intensified the photochromic properties for both samples. The polarization-dependent plasmonic band of AuNRs was switched between 650 and 634 nm through the photoisomerization of nonpolar SP to polar MC reversibly for MVSP/Au@NF. This displacement was just 4 nm for MBVSP/Au@NF, owing to the limited coupling between AuNRs and MC isomers. Besides, the capability of both nanocomposite fibers for reversible optical patterning was investigated by fast write-erase cycles. Enhanced photofatigue resistance in those fibers and the photomodulation of the plasmonic band of AuNRs using SP to MC isomerization revealed their promising potential for optical patterning and on-demand real-time plasmonic devices.
Collapse
Affiliation(s)
- Jaber Keyvan Rad
- Polymer Science Department, Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran, 14967 Iran
| | - Amir Reza Ghomi
- Polymer Science Department, Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran, 14967 Iran
| | - Ali Reza Mahdavian
- Polymer Science Department, Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran, 14967 Iran
| |
Collapse
|
6
|
Yang Y, Li Y, Chen Y, Wang Z, He Z, He J, Zhao H. Dynamic Anticounterfeiting Through Novel Photochromic Spiropyran-Based Switch@Ln-MOF Composites. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21330-21339. [PMID: 35485831 DOI: 10.1021/acsami.2c01113] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fluorescent materials presenting unique color changes in response to external stimuli have wide applications in information storage and anticounterfeiting. However, developing intelligent fluorescent materials with high security levels and dynamically displaying encrypted information is still a challenge. Herein, we report a new method for constructing excellent fluorescent materials by loading the photochromic molecule spiropyran into a lanthanide metal-organic framework. Controlling the isomerization of the spiropyran unit regulates the fluorescence resonance energy transfer (FRET) mechanism between the spiropyran acceptor and the lanthanide donor, leading to an exceptional reversible absorption/luminescence modulation ability. As the irradiation time is extended, the fluorescent color changes continuously from yellow-greenish to orange and then to red through the FRET process within 60 s. This composite system has great potential in anticounterfeiting because of the following advantages: (1) the materials have different fluorescence emissions and optical colors regulated by ultraviolet radiation, which is convenient for designing complex anticounterfeiting patterns; (2) the system can be repeatedly verified quickly and exhibit dynamic fluorescence color within 60 s, having great potential in advanced anticounterfeiting, where time is key in encryption/decryption. These unique advantages will greatly enhance the reliability of anticounterfeiting measures and increase the difficulty of anticounterfeiting.
Collapse
Affiliation(s)
- Yuhui Yang
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yuqing Li
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yilong Chen
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhaohui Wang
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhe He
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junzhao He
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Huimin Zhao
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
7
|
Zhang L, Deng Y, Xie C, Wu Z. Disordered Low Molecular Weight Spiropyran Exhibiting Photoregulated Adhesion Ability. Chemistry 2022; 28:e202200245. [PMID: 35146806 DOI: 10.1002/chem.202200245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 12/12/2022]
Abstract
The functions of the materials composed of small molecules are highly dependent on their ordered molecular arrangements in both natural and artificial systems. Without ordered structure, small molecules hardly gain complicated functions, due to the absence of intermolecular covalent bond connection or strong network. Here, a low molecular weight spiropyran that could exhibit attractive photochromism and powerful adhesion property in disordered solid state is demonstrated. With maximum up to ∼8 MPa, the adhesion strength could be photoregulated in multiple levels, which also shows one-to-one correspondence to the specific color state. The working mechanism analysis on the photoregulated adhesion reveals that the isomer ratio of merocyanine form and the molecular packing density of spiropyran are the determining factors for the adhesion ability. The discovery of photoregulated adhesion from pure spiropyran provides a new strategy for developing functional materials by employing low molecular weight compounds.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yawen Deng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Congxia Xie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhongtao Wu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|