1
|
Afshariazar F, Morsali A. Mixed-valence metal-organic frameworks: concepts, opportunities, and prospects. Chem Soc Rev 2025; 54:1318-1383. [PMID: 39704326 DOI: 10.1039/d4cs01061b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Owing to increasing global demand for the development of multifunctional advanced materials with various practical applications, great attention has been paid to metal-organic frameworks due to their unique properties, such as structural, chemical, and functional diversity. Several strategies have been developed to promote the applicability of these materials in practical fields. The induction of mixed-valency is a promising strategy, contributing to exceptional features in these porous materials such as enhanced charge delocalization, conductivity, magnetism, etc. The current review provides a detailed study of mixed-valence MOFs, including their fundamental properties, synthesis challenges, and characterization methods. The outstanding applicability of these materials in diverse fields such as energy storage, catalysis, sensing, gas sorption, separation, etc. is also discussed, providing a roadmap for future design strategies to exploit mixed valency in advanced materials. Interestingly, mixed-valence MOFs have demonstrated fascinating features in practical fields compared to their homo-valence MOFs, resulting from an enhanced synergy between mixed-valence states within the framework.
Collapse
Affiliation(s)
- Farzaneh Afshariazar
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, PO Box 14115-4838, Tehran, Islamic Republic of Iran.
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, PO Box 14115-4838, Tehran, Islamic Republic of Iran.
| |
Collapse
|
2
|
Prakash Tripathy S, Dash S, Ray A, Subudhi S, Parida K. Inexpensive Carbon Based Co-Catalyst Modified Zr-MOF Towards Photocatalytic H 2O 2 and H 2 Production. Chem Asian J 2025; 20:e202401115. [PMID: 39582436 DOI: 10.1002/asia.202401115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 11/26/2024]
Abstract
The photocatalytic H2O2 and H2 production are the utmost encouraging paths to overcome the imminent energy crisis. For accomplishing these goals the photocatalysts needs to be stable, trap photons and superior exciton separation, yet these properties are scanty for aqueous stable UiO-66-NH2. Hence, UiO-66-NH2 is armed with inexpensive Carbon nanoparticles that were incorporated through facile solvothermal procedure are employed towards photocatalytic H2 and H2O2 production. The UC-2 composite exhibits improved photocatalytic activity, which was ascribed to the composites capacity to suppress exciton re-combination, enhanced photon capture and to facilitate quicker charge transfer that was observed from UV-Vis DRS, EIS, PL, TRPL and transient photocurrent analysis. Composite UC-2 exhibits an H2O2 generation rate of 33.2 μmol h-1 in an O2 saturated conditions with isopropyl alcohol and water underneath visible light irradiation. This H2O2 generation rate was nearly three folds higher than the pristine UiO-66-NH2 MOF. Moreover, the produced materials were subjected to a photocatalytic H2 evolution research, and similar results were obtained, indicating that UC-2 has the maximum H2 evolution capacity at 298.1 μmol h-1. Typically, the light trapping tendency, remarkable electron transfer capacity and electron capture capacity of the carbon NPs based co-catalyst aids to improve the overall photo-reaction performance thereby producing superior photocatalytic H2O2 and H2 as a sustainable energy alternative.
Collapse
Affiliation(s)
- Suraj Prakash Tripathy
- Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India
| | - Srabani Dash
- Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India
| | - Asheli Ray
- Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India
| | - Satyabrata Subudhi
- Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India
| | - Kulamani Parida
- Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India
| |
Collapse
|
3
|
Hu X, Wang K, Yang Y, Ding B, Yu C. Fluorescence/colorimetric sensor based on aptamers-molecular imprinted polymers synergistic recognition for ultrasensitive and interference-free detection of aflatoxin B1. Food Chem 2024; 467:142387. [PMID: 39657487 DOI: 10.1016/j.foodchem.2024.142387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024]
Abstract
This work aimed to develop a fluorescence/colorimetric sensor for the ultrasensitive detection of AFB1 based on the aptamers and molecular imprinted polymers (MIPs). The polydopamine on Fe3O4 (Fe3O4@MIP) was used to achieve efficient separation of AFB1. The aptamer-modified carbon dots and metal-organic frameworks (Apt-CDs@MOF) were used to form sandwich particles (Fe3O4@MIP-AFB1-Apt-CDs@MOF). The sandwich particles were separated and removed using magnets, and the remaining Apt-CDs@MOF in suspension was used for both fluorescence and colorimetric detection. The sensor reached the linear range of 0.05-150 ng mL-1 (fluorescence channel) and 0.1-100 ng mL-1 (colorimetric channel). The detection limit can be as low as 37.0 pg mL-1 (fluorescence channel) and 13.0 pg mL-1 (colorimetric channel). Through the clever use of sandwich structure, the sensor represents a novel method for interference-free detection of AFB1. The proposed sensor effectiveness was further validated by quantifying AFB1 in untreated edible oil, which shows great potential for application.
Collapse
Affiliation(s)
- Xiaopeng Hu
- College of Life Science, Yangtze University, Jingzhou 434023, Hubei Province, PR China.
| | - Ke Wang
- College of Life Science, Yangtze University, Jingzhou 434023, Hubei Province, PR China
| | - Yufan Yang
- College of Life Science, Yangtze University, Jingzhou 434023, Hubei Province, PR China
| | - Baomiao Ding
- College of Life Science, Yangtze University, Jingzhou 434023, Hubei Province, PR China
| | - Chunqi Yu
- College of Life Science, Yangtze University, Jingzhou 434023, Hubei Province, PR China
| |
Collapse
|
4
|
Bhattacharjee S, Mondal S, Ghosh A, Banerjee S, Das AK, Bhaumik A. Rational Design of Highly Porous Donor-Acceptor Based Conjugated Microporous Polymer for Photocatalytic Benzylamine Coupling Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406723. [PMID: 39358942 DOI: 10.1002/smll.202406723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Conjugated microporous polymers (CMPs) are an important class of organic materials with several useful features like, inherent nanoscale porosity, large specific surface area and semiconducting properties, which are very demanding for various sustainable applications. Carbazole building blocks are extensively used in designing photocatalysts due to easy electron donation and hole transportation. In the current study, a new CMP material CBZ-CMP containing carbazole unit used for photocatalytic C═N coupling reaction under blue light irradiation is designed. The CBZ-CMP framework is made through the polycondensation of 4,4'-di(9H-carbazol-9-yl)-1,1'-biphenyl using FeCl3 as a catalyst. The CBZ-CMP shows very high BET surface area of 1536 m2 g-1 together with unimodal porosity (ca. 1.7 nm supermicropore), nanowire-like particle morphology (16-18 nm diameter), and low band gap property. The bi-phenyl moiety functions as the electron accepting center and the carbazole unit acts as the donor center, which accounts for the low band gap energy of CBZ-CMP. This nanoporous semiconducting CBZ-CMP material for photocatalytic benzylamine coupling reaction is explored, where it shows good conversion together with high selectivity under mild reaction conditions. This study offers simple method of preparation of a D-A-D-based porous photocatalyst for sustainable synthesis of value-added organics.
Collapse
Affiliation(s)
- Sudip Bhattacharjee
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Sumanta Mondal
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Anirban Ghosh
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Soumadip Banerjee
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Abhijit K Das
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
5
|
Zheng M, Liu Y, Zhang Q, Li W, Zhang Y, Feng G, Hu Y, Huang S. Dual metal centers within a water-stable Co/Ni bimetallic metal-triazolate framework contribute to durable photocatalysis for water treatment. NANOSCALE 2024; 16:20082-20088. [PMID: 39420640 DOI: 10.1039/d4nr03940h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Bimetallic metal-organic frameworks (MOFs) have been studied extensively in various fields, including photocatalytic and electrocatalytic applications. The enhanced catalytic activity is typically attributed to the synergistic effect of the two metals, often without further explanation. Here, we demonstrate a CoNi-bimetallic triazolate MOF with fixed metal occupancy within the MOF's secondary building unit. Due to the difference in electronegativity and so on, the charge redistribution between the two metal centers could be responsible for the enhanced photocatalytic activity. In addition, the metal(II)-triazolate MOFs we synthesized exhibit unique metal-N coordination and a strong bond between the metal center and triazole ring. Therefore, their crystal structure and high porosity are highly retained even after exposure to humid environments for several months or stirring in water for several days. Overall, the CoNi-bimetallic triazolate MOF combines the excellent water stability and high surface area of its two monometallic counterparts. It can be further tailored to yield the highest colloidal stability during photocatalytic water treatment. As a result, the dual metal centers within the bimetallic MOF, combined with boosted colloidal stability, demonstrate the highest reactive oxygen species generation and promising antibacterial performance compared to their Ni- or Co-based counterparts. These findings shed light on the future design of robust MOF-based photocatalysts, particularly bimetallic ones.
Collapse
Affiliation(s)
- Minling Zheng
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yubo Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Qifu Zhang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Wenjing Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Yong Zhang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guangxue Feng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Yating Hu
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Shaoming Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
6
|
Xin Y, Wang Y, Jiang Z, Deng B, Jiang ZJ. Advances in the Removal of Organic Pollutants from Water by Photocatalytic Activation of Persulfate: Photocatalyst Modification Strategy and Reaction Mechanism. CHEMSUSCHEM 2024; 17:e202400254. [PMID: 38743510 DOI: 10.1002/cssc.202400254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Environmental pollution caused by persistent organic pollutants has imposed big threats to the health of human and ecological systems. The development of efficient methods to effectively degrade and remove these persistent organic pollutants is therefore of paramount importance. Photocatalytic persulfate-based advanced oxidation technologies (PS-AOTs), which depend on the highly reactive SO4 - radicals generated by the activation of PS to degrade persistent organic pollutants, have shown great promise. This work discusses the application and modification strategies of common photocatalysts in photocatalytic PS-AOTs, and compares the degradation performance of different catalysts for pollutants. Furthermore, essential elements impacting photocatalytic PS-AOTs are discussed, including the water matrix, reaction process mechanism, pollutant degradation pathway, singlet oxygen generation, and potential PS hazards. Finally, the existing issues and future challenges of photocatalytic PS-AOTs are summarized and prospected to encourage their practical application. In particular, by providing new insights into the PS-AOTs, this review sheds light on the opportunities and challenges for the development of photocatalysts with advanced features for the PS-AOTs, which will be of great interests to promote better fundamental understanding of the PS-AOTs and their practical applications.
Collapse
Affiliation(s)
- Yue Xin
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy Materials, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Yongjie Wang
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen, 518055, P. R. China
| | - Zhongqing Jiang
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Binglu Deng
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, P. R. China
| | - Zhong-Jie Jiang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy Materials, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
7
|
Severa K, Buravets V, Burtsev V, Zabelina A, Hrbek T, Kolska Z, Fitl P, Svorcik V, Lyutakov O. Black Titanium Oxide/Activated TaS 2 Flakes Photoelectrode for Plasmon Assisted Hydrogen Evolution at Neutral pH at High Current Density. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402758. [PMID: 38860555 DOI: 10.1002/smll.202402758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/02/2024] [Indexed: 06/12/2024]
Abstract
A heterojunction photo-electrode(s) consisting of porous black titanium oxide (bTiO2) and electrochemically self-activated TaS2 flakes is proposed and utilized for hydrogen evolution reaction (HER). The self-activated TaS2 flakes provide abundant catalytic sites for HER and the porous bTiO2, prepared by electrochemical anodization and subsequent reduction serves as an efficient light absorber, providing electrons for HER. Additionally, Au nanostructures are introduced between bTiO2 and TaS2 to facilitate the charge transfer and plasmon-triggering ability of the structure created. After structure optimization, high HER catalytic activity at acidic pH and excellent HER activity at neutral pH are achieved at high current densities. In particular, with the utilization of bTiO2@TaS2 photoelectrode (neutral electrolyte, sunlight illumination) current densities of 250 and 500 mA cm-2 are achieved at overpotentials of 433, and 689 mV, respectively, both exceeding the "benchmark" Pt. The addition of gold nanostructures further reduces the overpotential to 360 and 543 mV at 250 and 500 mA cm-2, respectively. The stability of the prepared electrodes is investigated and found to be satisfying within 24 h of performance at high current densities. The proposed system offers an excellent potential alternative to Pt for the development of green hydrogen production on an industrial scale.
Collapse
Affiliation(s)
- Kamil Severa
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, Prague, 166 28, Czech Republic
| | - Vladislav Buravets
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, Prague, 166 28, Czech Republic
| | - Vasilii Burtsev
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, Prague, 166 28, Czech Republic
| | - Anna Zabelina
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, Prague, 166 28, Czech Republic
| | - Tomas Hrbek
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, V Holešovičkách 2, Prague 8, 180 00, Czech Republic
| | - Zdenka Kolska
- Faculty of Science, J. E. Purkyne University in Usti nad Labem, Ceske Mladeze 8, Usti nad Labem, 400 96, Czech Republic
| | - Premysl Fitl
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, 16628, Czech Republic
| | - Vaclav Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, Prague, 166 28, Czech Republic
| | - Oleksiy Lyutakov
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, Prague, 166 28, Czech Republic
| |
Collapse
|
8
|
Wang Q, Zhang C, Huo R, Zheng S, Liu A, Hui Y, Ji Y, Jin Q, Zhang Z, Tu Y, Zhu H, Du H. Novel Ag@NH 2-UiO-66(Zr) photocatalyst with controllable charge transfer pathways for efficient Cr(VI) remediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:122046. [PMID: 39094410 DOI: 10.1016/j.jenvman.2024.122046] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Rational fabrication of core-shell photocatalysts to hamper the charge recombination is extraordinarily essential to enhance photocatalytic activity. In this work, core-shell Ag@NH2-UiO-66 (Ag@NU) Schottky heterojunctions with low Ag content (1 wt%) were constructed by a two-step solvothermal method and adopted for Cr(VI) reduction under LED light. Typically, the one with the Ag: NH2-UiO-66 mass ratio (1 : 100) led to 100% Cr(VI) removal within 1 h, superior to bare NH2-UiO-66 and Ag/NH2-UiO-66 (Ag was directly decorated on NH2-UiO-66 surface). The enhanced photocatalytic activity was related to the migration of the electrons on the CB of NH2-UiO-66 to Ag NPs through a Schottky barrier, and thus the undesired charge carriers recombination was avoided. This result was also evidenced by Density functional theory (DFT) calculations. The computational simulations indicate that the introduction of Ag effectively narrowed the band gap of NH2-UiO-66, facilitating the transfer of photo-generated electrons, expanding the light absorption area, and significantly enhancing photocatalytic efficiency. Most importantly, such a core-shell structure can inhibit the formation of •O2-, letting the direct Cr(VI) reduction by photo-excited e-. In addition, this structure can also protect Ag from being oxidized by O2. Ten cyclic tests evidenced the Ag@NU had excellent chemical and structural stability. This research offers a novel strategy for regulating the Cr(VI) reduction by establishing core-shell photocatalytic materials.
Collapse
Affiliation(s)
- Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Chao Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Rubin Huo
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Jiangsu, 225009, China
| | - Shuzhen Zheng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Aoxiang Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yuxin Hui
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yun Ji
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Qin Jin
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Jiangsu, 225009, China
| | - Zhe Zhang
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Jiangsu, 225009, China
| | - Yusong Tu
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Jiangsu, 225009, China
| | - Huayue Zhu
- Insititute of Environmental Engineering Technology, Taizhou University, Taizhou, 318000, China
| | - Hao Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
9
|
Acharya L, Biswal L, Mishra BP, Das S, Dash S, Parida K. A Schottky/Z-Scheme Hybrid for Augmented Photocatalytic H 2 and H 2O 2 Production. Chemistry 2024; 30:e202400496. [PMID: 38864360 DOI: 10.1002/chem.202400496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/13/2024]
Abstract
The prodigious employment of fossil fuels to conquer the global energy demand is becoming a dreadful threat to the human society. This predicament is appealing for a potent photocatalyst that can generate alternate energy sources via solar to chemical energy conversion. With this interest, we have fabricated a ternary heterostructure of Ti3C2 nanosheet modified g-C3N4/Bi2O3 (MCNRBO) Z-scheme photocatalyst through self-assembly process. The morphological analysis clearly evidenced the close interfacial interaction between g-C3N4 nanorod, Bi2O3 and Ti3C2 nanosheets. The oxygen vacancy created on Bi2O3 surface, as suggested by XPS and EPR analysis, supported the Z-scheme heterojunction formation between g-C3N4 nanorod and Bi2O3 nanosheets. The collaborative effect of Z-scheme and Schottky junction significantly reduced charge transfer resistance promoting separation efficiency of excitons as indicated from PL and EIS analysis. The potential of MCNRBO towards photocatalytic application was investigated by H2O2 and H2 evolution reaction. A superior photocatalytic H2O2 and H2 production rate for MCNRBO is observed, which are respectively around 5 and 18 folds higher as compared to pristine CNR nanorod. The present work encourages for the development of a noble, eco-benign and immensely efficient dual heterojunction based photocatalyst, which can acts as saviour of human society from energy crisis.
Collapse
Affiliation(s)
- Lopamudra Acharya
- Centre for Nano Science and Nano Technology, ITER, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751030, India
| | - Lijarani Biswal
- Centre for Nano Science and Nano Technology, ITER, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751030, India
| | - Bhagyashree Priyadarshini Mishra
- Centre for Nano Science and Nano Technology, ITER, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751030, India
| | - Sarmistha Das
- Centre for Nano Science and Nano Technology, ITER, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751030, India
| | - Srabani Dash
- Centre for Nano Science and Nano Technology, ITER, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751030, India
| | - Kulamani Parida
- Centre for Nano Science and Nano Technology, ITER, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751030, India
| |
Collapse
|
10
|
Singha K, Kumari G, Jagadevan S, Sarkar AN, Pal S. In Situ Synthesis of Exfoliated Ni(OH) 2 Nanosheets and AgNPs-Embedded Functionalized Polyindole-Based Trinary Hybrid Microspheres: A Z-Scheme Photocatalyst for the Sunlight-Driven Degradation of Organic Pollutants with Enhanced Antibacterial Efficacy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16208-16225. [PMID: 39046098 DOI: 10.1021/acs.langmuir.4c01293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Advancing a facile one-pot synthetic approach for the fabrication of a hybrid heterojunction photocatalyst remains a significant challenge in research pursuits. Herein, a microsphere-like trinary hybrid nanocomposite has been synthesized (NH/PIn/MAA/Ag). It comprises exfoliated single- and a few-layered Ni(OH)2 (NH nanosheets), mercaptoacetate-functionalized polyindole (PIn/MAA), and Ag nanoparticles (AgNPs) through an in situ approach. The formation mechanism is based on the exfoliation of stacked Ni(OH)2 multilayers [i.e., Ni(OH)2 microflowers] and stabilization of NH nanosheets through host-guest formation of PIn/MAA, followed by the adsorption-reduction of Ag+ ions in a one-pot reaction at low temperature. Surface morphological analyses of hybrid nanocomposite microspheres have exhibited that highly dense Ni(OH)2 microflowers have been transformed into low-density layered forms (NH nanosheets) within the polymeric platform (PIn/MAA) with deposited AgNPs. An interfacial heterojunction has been developed between the components in the depletion region, leading to an improvement in photocatalytic efficiency through a synergistic effect over the components for charge separation and transfer through the heterojunction interface via solid-state mediator Ag-based Z-scheme charge transfer dynamics. The superior photocatalytic degradation of tetracycline (98.2%) by trinary hybrid microspheres can be attributed to the deteriorated recombination rate of electron-hole pairs with reduced charge transfer resistance of the heterojunction in the photocatalyst, as obvious from photoluminescence, electrochemical impedance spectroscopy, chronoamperometry, and time-resolved photoluminescence (TRPL) analyses. Moreover, the antibacterial properties of microspheres against Bacillus pumilus (Gram-positive) and Escherichia coli (Gram-negative) bacteria have validated their potential as promising materials for the overall purification of aquatic systems.
Collapse
Affiliation(s)
- Koushik Singha
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Gitanjalee Kumari
- Department of Environmental Science and Engineering, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Sheeja Jagadevan
- Department of Environmental Science and Engineering, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Abanindra Nath Sarkar
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Sagar Pal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| |
Collapse
|
11
|
Liao S, Gui L, Yang Y, Liu Y, Hu X. Fluorescence/visual aptasensor based on Au/MOF nanocomposite for accurate and convenient aflatoxin B1 detection. Mikrochim Acta 2024; 191:497. [PMID: 39085726 DOI: 10.1007/s00604-024-06579-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
A dual-mode fluorescence/visual aptasensor was developed for straightforward and accurate determination of aflatoxin B1 (AFB1) based on an Au/metal-organic framework (Au/MOF) composite. Aptamer-modified Au/Fe3O4 (Apt/Au/Fe3O4) served as the recognition element, and Au/MOF modified with complementary chains and 3,3',5,5'-tetramethylbenzidine (cDNA/TMB/Au/MOF) acted as the fluorescence and visual probes. These components are integrated to form conjugates (Apt/Au/Fe3O4-cDNA/TMB/Au/MOF). Upon the introduction of AFB1, some cDNA/TMB/Au/MOF dissociated from Apt/Au/Fe3O4, enabling the use of detached probes for visual detection. The undecomposed conjugates were isolated magnetically for use in fluorescence detection. As the AFB1 concentration increases, the visual signal intensifies and fluorescence intensity diminishes. Thus, the proposed aptasensor achieves the simultaneous fluorescence and visual determination of AFB1, obviating the need for material and reagent substitutions. The detection limits were established at 0.07 ng mL-1 for the fluorescence mode and 0.08 ng mL-1 for the visual mode. The effectiveness of the aptasensor was further validated by quantifying AFB1 in real samples.
Collapse
Affiliation(s)
| | | | - Yufan Yang
- College of Life Science, Yangtze University, Jingzhou, 434023, Hubei Province, People's Republic of China
| | - Yiwei Liu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, Sichuan Province, People's Republic of China
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Xiaopeng Hu
- College of Life Science, Yangtze University, Jingzhou, 434023, Hubei Province, People's Republic of China.
| |
Collapse
|
12
|
Adugna Areti H, Jabesa A, Diriba Muleta M, Nemera Emana A. Adsorptive performances and valorization of green synthesized biochar-based activated carbon from banana peel and corn cob composites for the abatement of Cr(VI) from synthetic solutions: Parameters, isotherms, and remediation studies. Heliyon 2024; 10:e33811. [PMID: 39027535 PMCID: PMC11255510 DOI: 10.1016/j.heliyon.2024.e33811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/09/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
This study intended to remove Cr(VI) from an aqueous synthetic solution employing synthesized biochar adsorbent from a blend of locally sourced banana peel, and corn cob biomass wastes. An equal ratio of the prepared powder was activated with ZnCl2 solution (1:1 wt basis) and carbonized for 2 h at 600 °C. The proximate analysis of the selected BP-CCAC@ZC3 biochar was conducted. Subsequently, its surface area, surface functions, and morphology were examined using BET analysis, FTIR, and SEM techniques, respectively. The proximate analysis of BP-CCAC@ZC3 showed a moisture content of 2.37 ± 0.80 %, an ash content of 8.07 ± 0.75 %, volatile matter of 19.38 ± 2.66 %, and fixed carbon of 70.18 %. It was found that the synthesized BP-CCAC@ZC3 had 432.149 m2/g of a specific area as per the BET surface area analysis. The highest efficiency for Cr(VI) removal was determined to be 97.92 % through adsorption batch tests using a dose of 0.4 g of BP-CCAC@ZC3, an initial Cr(VI) concentration of 20 mg/L, pH of 2, and 35 min contact time. Likewise, the adsorption process was effectively described by the Langmuir isotherm model, which had a high correlation coefficient (R 2 = 0.9977) and a maximum adsorption capacity of 19.16 mg/g, indicating a monolayer adsorption mechanism. The BP-CCAC@ZC3 biochar exhibited reusability for up to four cycles with only a slight decrease in effectiveness, highlighting its potential for sustainable wastewater treatment. Overall, using corn cob and banana peel composites to synthesize activated carbon with ZnCl2 offers a promising method for effectively removing Cr(VI) containing wastewater.
Collapse
Affiliation(s)
- Hirpha Adugna Areti
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, P. O. Box: 138, Dire Dawa, Ethiopia
| | - Abdisa Jabesa
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, P. O. Box: 138, Dire Dawa, Ethiopia
| | - Melkiyas Diriba Muleta
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, P. O. Box: 138, Dire Dawa, Ethiopia
| | - Abdi Nemera Emana
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, P. O. Box: 138, Dire Dawa, Ethiopia
| |
Collapse
|
13
|
Ye JQ, Xu SY, Liang Q, Dai YZ, He MY. Metal-Organic Frameworks-Derived Nanocarbon Materials and Nanometal Oxides for Photocatalytic Applications. Chem Asian J 2024; 19:e202400161. [PMID: 38500400 DOI: 10.1002/asia.202400161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Harnessing low-density solar energy and converting it into high-density chemical energy through photocatalysis has emerged as a promising avenue for the production of chemicals and remediation of environmental pollution, which contributes to alleviating the overreliance on fossil fuels. In recent years, metal-organic frameworks (MOFs) have gained widespread application in the field of photocatalysis due to their photostability, tunable structures, and responsiveness in the visible light range. However, most MOFs exhibit relatively low response to light, limiting their practical applications. MOFs-derived nanomaterials not only retain the inherent advantages of pristine MOFs but also show enhanced light adsorption and responsiveness. This review categorizes and summarizes MOFs-derived nanomaterials, including nanocarbons and nanometal oxides, providing representative examples for the synthetic strategies of each category. Subsequently, the recent research progress on MOFs-derived materials in photocatalytic applications are systematically introduced, specifically in the areas of photocatalytic water splitting to H2, photocatalytic CO2 reduction, and photocatalytic water treatment. The corresponding mechanisms involved in each photocatalytic reaction are elaborated in detail. Finally, the review discusses the challenges and further directions faced by MOFs-derived nanomaterials in the field of photocatalysis, highlighting their potential role in advancing sustainable energy production and environmental remediation.
Collapse
Affiliation(s)
- Jun-Qing Ye
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Shu-Ying Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Qian Liang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Yan-Zi Dai
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Ming-Yang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| |
Collapse
|
14
|
Zang S, Cai X, Zang Y, Jing F, Lu Y, Tang S, Lin F, Mo L. ZnIn 2S 4 Heterojunctions Constructed with In-MOF Precursor for Photocatalytic Hydrogen Evolution without Cocatalysts. Inorg Chem 2024; 63:6546-6554. [PMID: 38535616 DOI: 10.1021/acs.inorgchem.4c00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Znln2S4 has great prospects for photocatalytic water splitting to hydrogen by visible light. Herein, a novel Znln2S4-In-MOF (ZnInMS4) photocatalyst is elaborately synthesized by in situ method with In-MOF as the template and In3+ as the source. ZnInMS4 overcomes the fast interface charge recombination and a sluggish charge lifetime via the formed heterojunctions. Photoelectrochemical measurements reveal that the charge-transfer kinetics is enhanced since In-MOF is introduced to act as a reliable charge-transport channel. ZnInMS4 exhibits outstanding cocatalyst-free H2 evolution rate of 70 μmol h-1 under irradiation (λ > 420 nm), which is 3.2-fold higher than that of Znln2S4. In addition, the ZnInMS4 photocatalyst shows good stability in the 16 h continuous reaction. This work illustrates the feasibility of the MOF precursor instead of inorganic salts to directly synthesize photocatalysts with high performance.
Collapse
Affiliation(s)
- Shaohong Zang
- Donghai Laboratory, Zhoushan 316021, China
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - Xiaorong Cai
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - Yixian Zang
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - Fei Jing
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - Youwei Lu
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - Shuting Tang
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - Feng Lin
- College of Chemical and Materials Engineering, Quzhou University, Quzhou 324000, China
| | - Liuye Mo
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| |
Collapse
|
15
|
Abazari R, Sanati S, Bajaber MA, Javed MS, Junk PC, Nanjundan AK, Qian J, Dubal DP. Design and Advanced Manufacturing of NU-1000 Metal-Organic Frameworks with Future Perspectives for Environmental and Renewable Energy Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306353. [PMID: 37997226 DOI: 10.1002/smll.202306353] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Metal-organic frameworks (MOFs) represent a relatively new family of materials that attract lots of attention thanks to their unique features such as hierarchical porosity, active metal centers, versatility of linkers/metal nodes, and large surface area. Among the extended list of MOFs, Zr-based-MOFs demonstrate comparably superior chemical and thermal stabilities, making them ideal candidates for energy and environmental applications. As a Zr-MOF, NU-1000 is first synthesized at Northwestern University. A comprehensive review of various approaches to the synthesis of NU-1000 MOFs for obtaining unique surface properties (e.g., diverse surface morphologies, large surface area, and particular pore size distribution) and their applications in the catalysis (electro-, and photo-catalysis), CO2 reduction, batteries, hydrogen storage, gas storage/separation, and other environmental fields are presented. The review further outlines the current challenges in the development of NU-1000 MOFs and their derivatives in practical applications, revealing areas for future investigation.
Collapse
Affiliation(s)
- Reza Abazari
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Soheila Sanati
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Majed A Bajaber
- Chemistry Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Peter C Junk
- College of Science and Engineering, James Cook University, Townsville, 4811, Australia
| | - Ashok Kumar Nanjundan
- Schole of Engineering, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, China
| | - Deepak P Dubal
- Centre for Materials Science, School of Chemistry & Physics, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| |
Collapse
|
16
|
Li K, Zhang X, Huang X, Li X, Chang Q, Wang J, Deng S, Zhu G. Wood-converted porous carbon decorated with MIL-101(Fe) derivatives for promoting photo-Fenton degradation of ciprofloxacin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23924-23941. [PMID: 38430437 DOI: 10.1007/s11356-024-32679-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
In response to the escalating concerns over antibiotics in aquatic environments, the photo-Fenton reaction has been spotlighted as a promising approach to address this issue. Herein, a novel heterogeneous photo-Fenton catalyst (Fe3O4/WPC) with magnetic recyclability was synthesized through a facile two-step process that included in situ growth and subsequent carbonization treatment. This catalyst was utilized to expedite the photocatalytic decomposition of ciprofloxacin (CIP) assisted by H2O2. Characterization results indicated the successful anchoring of MIL-101(Fe)-derived spindle-like Fe3O4 particles in the multi-channeled wood-converted porous carbon (WPC) scaffold. The as-synthesized hybrid photocatalysts, boasting a substantial specific surface area of 414.90 m2·g-1 and an excellent photocurrent density of 0.79 μA·cm-2, demonstrated superior photo-Fenton activity, accomplishing approximately 100% degradation of CIP within 120 min of ultraviolet-light exposure. This can be attributed to the existence of a heterojunction between Fe3O4 and WPC substrate that promotes the migration and enhances the efficient separation of photogenerated electron-hole pairs. Meanwhile, the Fe(III)/Fe(II) redox circulation and mesoporous wood carbon in the catalyst synergistically enhance the utilization of H2O and accelerate the formation of •OH radicals, leading to heightened degradation efficiency of CIP. Experiments utilizing chemical trapping techniques have demonstrated that •OH radicals are instrumental in the CIP degradation process. Furthermore, the study on reusability indicated that the efficiency in removing CIP remained at 89.5% even through five successive cycles, indicating the structural stability and excellent recyclability of Fe3O4/WPC. This research presented a novel pathway for designing magnetically reusable MOFs/wood-derived composites as photo-Fenton catalysts for actual wastewater treatment.
Collapse
Affiliation(s)
- Kaiqian Li
- International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming, 650224, China
| | - Xupeng Zhang
- School of Material and Chemistry Engineering, Southwest Forestry University, Kunming, 650224, China
| | - Xueqin Huang
- School of Material and Chemistry Engineering, Southwest Forestry University, Kunming, 650224, China
| | - Xianghong Li
- International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming, 650224, China
| | - Qiaowen Chang
- Kunming Institute of Precious Metals, Yunnan Precious Metals Lab Co., Ltd., Kunming, 650106, China
| | - Jing Wang
- School of Material and Chemistry Engineering, Southwest Forestry University, Kunming, 650224, China
| | - Shuduan Deng
- School of Material and Chemistry Engineering, Southwest Forestry University, Kunming, 650224, China
| | - Gang Zhu
- International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming, 650224, China.
- School of Material and Chemistry Engineering, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
17
|
Rozmyślak M, Walkowiak A, Frankowski M, Wolski L. Copper(II) phosphate as a promising catalyst for the degradation of ciprofloxacin via photo-assisted Fenton-like process. Sci Rep 2024; 14:7007. [PMID: 38523152 PMCID: PMC10961321 DOI: 10.1038/s41598-024-57542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/19/2024] [Indexed: 03/26/2024] Open
Abstract
This work aims to unravel the potential of copper(II) phosphate as a new promising heterogenous catalyst for the degradation of ciprofloxacin (CIP) in the presence of H2O2 and/or visible light (λ > 400 nm). For this purpose, copper(II) phosphate was prepared by a facile precipitation method and fully characterized. Of our particular interest was the elucidation of the kinetics of CIP degradation on the surface of this heterogeneous catalyst, identification of the main reactive oxygen species responsible for the oxidative degradation of CIP, and the evaluation of the degradation pathways of this model antibiotic pollutant. It was found that the degradation of the antibiotic proceeded according to the pseudo-first-order kinetics. Copper(II) phosphate exhibited ca. 7 times higher CIP degradation rate in a Fenton-like process than commercial CuO (0.00155 vs. 0.00023 min-1, respectively). Furthermore, the activity of this metal phosphate could be significantly improved upon exposure of the reaction medium to visible light (reaction rate = 0.00445 min-1). In a photo-assisted Fenton-like process, copper(II) phosphate exhibited the highest activity in CIP degradation from among all reference samples used in this study, including CuO, Fe2O3, CeO2 and other metal phosphates. The main active species responsible for the degradation of CIP were hydroxyl radicals.
Collapse
Affiliation(s)
- Mateusz Rozmyślak
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Adrian Walkowiak
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Marcin Frankowski
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Lukasz Wolski
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.
| |
Collapse
|
18
|
Ruan M, Zhou H, Zhao L, Hu T, He L, Shan S. The ortho-substituent effect regulating the separation of photogenerated carriers to efficiently photodegrade tetracycline on the surface of FeCo-based MOFs. CHEMOSPHERE 2024; 352:141296. [PMID: 38296214 DOI: 10.1016/j.chemosphere.2024.141296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/25/2023] [Accepted: 01/23/2024] [Indexed: 02/13/2024]
Abstract
It is feasible to improve the photodegradation efficiency of organic pollutants by metal-organic frameworks (MOF)-based semiconductors via ligand engineering. In this work, three (Fe/Co)-XBDC-based MOFs were synthesized by introducing different ortho-functional groups X (X = -H, -NO2, -NH2) next to the carboxyl group of the organic ligand (i.e., terephthalic acid). The analysis focused on the influence mechanism of the adjacent functional group effect of the ligand on the physicochemical properties of the material and the actual photodegradation activity of TC. Multiple pieces of evidences suggested that the differences in electron-induced and photocharge-transfer mechanisms of the above ortho functional groups affect the crystal morphology and photocatalytic activity of FeCo-MOF during pyrolysis. Interestingly, (Fe/Co)-NH2BDC exhibited the highest photocatalytic activity under neutral conditions. The results of density functional theory show that the introduction of a strong donor-NH2 group can enhance light absorption and act as an "electron pump" to supply electrons to the iron center, accelerating the separation and efficient transport of photogenerated carriers on the ligand-metal bridge. In conclusion, this study is a proposal for a strategy of structural regulation for the enhancement of the catalytic activity of (Fe/Co)-MOFs in the photodegradation of TC.
Collapse
Affiliation(s)
- Ming Ruan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, China
| | - Huajing Zhou
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Lingxiang Zhao
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Tianding Hu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, China
| | - Liang He
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, China.
| | - Shaoyun Shan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
19
|
Dash S, Tripathy SP, Subudhi S, Behera P, Mishra BP, Panda J, Parida K. A Visible Light-Driven α-MnO 2/UiO-66-NH 2 S-Scheme Photocatalyst toward Ameliorated Oxy-TCH Degradation and H 2 Evolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4514-4530. [PMID: 38350006 DOI: 10.1021/acs.langmuir.3c04050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Photocatalytic hydrogen production and pollutant degradation using a heterogeneous photocatalyst remains an alternative route for mitigating the impending pollution and energy crisis. Hence, the development of cost-effective and environmentally friendly semiconducting materials with high solar light captivation nature is imperative. To overcome this challenge, α-MnO2 nanorod (NR)-modified MOF UiO-66-NH2 (UNH) was prepared via a facile solvothermal method, which is efficient toward H2 evolution and oxy-tetracycline hydrochloride (O-TCH) degradation. The field-emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HR-TEM) results of the α-MnO2@UNH (MnU) hybrid reveals its nanorod embedded in MOF matrix, and the X-ray photoelectron spectroscopy (XPS) result confirms the interaction of UNH moiety with α-MnO2 NRs. Additionally, the outstanding separation of photogenerated excitons and the charge-transfer efficacy are further validated by photoluminescence (PL), time-resolved photoluminescence (TRPL), electrochemical impedance spectroscopy (EIS), and transient photocurrent analysis, which are the key causes for photoactivity augmentation in the MnU composites. The MnU-2 composite shows a superior O-TCH degradation efficiency of 93.23% and an excellent H2 production rate of about 410.6 μmol h-1 upon light irradiation. This study provides significant evidence in favor of the suggested mediator-free S-scheme-adapted charge migration path, and it effectively explains the enhanced exciton separation leading to extraordinary catalytic efficiency of the proposed composite.
Collapse
Affiliation(s)
- Srabani Dash
- Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar 751030, Odisha, India
| | - Suraj Prakash Tripathy
- Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar 751030, Odisha, India
| | - Satyabrata Subudhi
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Pragyandeepti Behera
- Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar 751030, Odisha, India
| | | | - Jayashree Panda
- Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar 751030, Odisha, India
| | - Kulamani Parida
- Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar 751030, Odisha, India
| |
Collapse
|
20
|
Li Y, Han D, Wang Z, Gu F. Double-Solvent-Induced Derivatization of Bi-MOF to Vacancy-Rich Bi 4O 5Br 2: Toward Efficient Photocatalytic Degradation of Ciprofloxacin in Water and HCHO Gas. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7080-7096. [PMID: 38293772 DOI: 10.1021/acsami.3c15898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
MOF-derived photocatalytic materials have potential in degrading ciprofloxacin (CIP) in water and HCHO gas pollutants. Novel derivatization means and defect regulation are effective techniques for improving the performance of MOF-derived photocatalysis. Vacancy-rich Bi4O5Br2 (MBO-x) were derived in one step from Bi-MOF (CAU-17) by a modified double-solvent method. MBO-50 produced more oxygen vacancies due to the combined effect of the CAU-17 precursor and double solvents. The photocatalytic performance of MBO was evaluated by degrading CIP and HCHO. Thanks to the favorable morphology and vacancy structure, MBO-50 demonstrated the best photocatalytic efficiency, with 97.0% removal of CIP (20 mg L-1) and 90.1% removal of HCHO (6.5 ppm) at 60 min of light irradiation. The EIS Nyquist measurement, transient photocurrent response, photoluminescence spectra, and the calculation of energy band information indicated that the vacancy sites can effectively capture photoexcited electrons during the charge transfer process, thus limiting the recombination of electrons and holes, improving the energy band structure, and making it easier to produce superoxide anion radical (·O2-) and to degrade CIP and HCHO. The improvement of photocatalytic performance of MBO-50 in HCHO degradation due to the bromine vacancy generation and filling mechanism was discussed in detail. This work provides a promising new idea for the modulation of MOF-derived photocatalytic materials.
Collapse
Affiliation(s)
- Yansheng Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongmei Han
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhihua Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fubo Gu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
21
|
Yang H, Zhang P, Zheng Q, Hameed MU, Raza S. Synthesis of cellulose cotton-based UiO-66 MOFs for the removal of rhodamine B and Pb(II) metal ions from contaminated wastewater. Int J Biol Macromol 2023; 253:126986. [PMID: 37739285 DOI: 10.1016/j.ijbiomac.2023.126986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023]
Abstract
The presence of pollutants in drinking water has become a significant concern recently. Various substances, including activated carbon, membranes, biochar, etc., are used to remove these pollutants. In the present study, a new composite comprising cotton fabric and a mixture of Metal-Organic Frameworks (MOFs) was synthesized and used as an adsorbent for eliminating pollutants from wastewater. At first, the UiO-66 MOFs were prepared by a simple method of reacting Zirconium (IV) chloride (ZrCl4) and p-Phthalic acid (PTA) after successful preparation of UiO-66 then modified its surface with amino functional groups by reacting with APTES to obtain UiO-66-NH2. Moreover, the cellulose cotton fabric (CF) surface was modified with Polydopamine (PDA) and obtained CF@PDA. Further, with the help of EDC-HCl and NHS, the UiO-66-NH2 grafted on the surface of the CF@PDA and finally obtained CF@PDA/UiO-66-NH2. In addition, the adsorption study was performed toward RhB dye and Pb(II) metal ion pollutants. The maximum adsorption toward RhB dye was 68.5 mg/g, while toward Pb(II) metal ions was 65 mg/g. In addition, the kinetic study was also conducted and the result favoured the Pseudo-second order kinetic study. The adsorption isotherm was also studied and the Langmuir model was more fitted as compared with the Freundlich model. Moreover, the material has excellent regeneration and recycling ability after ten cycles. The significant adsorption ability, the novel combination of cotton and MOFs, and the recycling feature make our material CF@PDA/UiO-66-NH2 a promising potential absorbent material for wastewater treatment and even in other important areas of water research.
Collapse
Affiliation(s)
- Huanggen Yang
- Key Laboratory of Coordination Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an 343009, PR China
| | - Pei Zhang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, PR China.
| | - Qi Zheng
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, PR China.
| | - Muhammad Usman Hameed
- Department of Chemistry, University of Poonch Rawalakot, 12350, Azad Kashmir, Pakistan
| | - Saleem Raza
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China.
| |
Collapse
|
22
|
Li J, Huang R, Chen L, Xia Y, Yan G, Liang R. Mixed valence copper oxide composites derived from metal-organic frameworks for efficient visible light fuel denitrification. RSC Adv 2023; 13:36477-36483. [PMID: 38099249 PMCID: PMC10719906 DOI: 10.1039/d3ra07532j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
The construction of heterojunctions has been used to optimize photocatalyst fuel denitrification. In this work, HKUST-1(Cu) was used as a sacrificial template to synthesize a composite material CuxO (CuO/Cu2O) that retains the original MOF framework for photocatalytic fuel denitrification by calcination at different temperatures. By adjusting the temperature, the content of CuO/Cu2O can be changed to control the performance and structure of CuxO-T effectively. The results show that CuxO-300 has the best photocatalytic performance, and its denitrification rate reaches 81% after 4 hours of visible light (≥420 nm) irradiation. Through the experimental analysis of pyridine's infrared and XPS spectra, we found that calcination produces CuxO-T mixed-valence metal oxide, which can create more exposed Lewis acid sites in the HKUST-1(Cu) framework. This leads to improved pyridine adsorption capabilities. The mixed-valence metal oxide forms a type II semiconductor heterojunction, which accelerates carrier separation and promotes photocatalytic activity for pyridine denitrification.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University Fuzhou 350002 China
| | - Renkun Huang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University Fuzhou 350002 China
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University Ningde 352100 China
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University Ningde 352100 China +86-15860671891
| | - Lu Chen
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University Ningde 352100 China
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University Ningde 352100 China +86-15860671891
| | - Yuzhou Xia
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University Ningde 352100 China
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University Ningde 352100 China +86-15860671891
| | - Guiyang Yan
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University Ningde 352100 China
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University Ningde 352100 China +86-15860671891
| | - Ruwen Liang
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University Ningde 352100 China
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University Ningde 352100 China +86-15860671891
| |
Collapse
|
23
|
Liang Z, Chen Z, Xu Y, Wang H, Zhou L, Yan B. Sustainable production of Fe-doped MnO 2 nanoparticles for accelerated tetracycline antibiotic detoxification. CHEMOSPHERE 2023; 344:140353. [PMID: 37797898 DOI: 10.1016/j.chemosphere.2023.140353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/05/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Manganese dioxide (MnO2) has been recognized as one of the natural systems' most active mineral oxidants. However, when it comes to catalytic oxidation of antibiotic applications, pure MnO2 falls short in delivering satisfactory performance. Hence, a set of Fe3+-doped porous MnO2 (0.02Fe-MnO2, 0.1Fe-MnO2, and 0.14Fe-MnO2) nanoparticles were synthesized here via a convenient and energy-efficient one-step reaction method. A series of experiments revealed that Fe-doping strategy enhances the properties of MnO2 host by suppressing the crystalline structure, increasing the amount of surface oxygen defects, and modifying the Mn3+/Mn4+ ratio. Specifically, the tetracycline (TC) removal efficiency of 0.14Fe-MnO2 reaches 92% without the need for any additional co-oxidant, representing a 20% improvement over pristine MnO2 nanoparticles. Moreover, this process shows a fast dynamic (achieving 70% of TC removal in just 5 min) and demonstrates pH-resistance, maintaining high TC removal efficiency (≥90%) over a wide pH range of 3.0-9.0. Mechanical studies reveal that the degradation of TC can be attributed to the oxidation by reactive oxygen radicals and Mn3+, with 1O2 being the primary radical involved in the reaction, accounting for 55% of TC removal. Importantly, cytotoxicity testing indicates that the biotoxicity of TC toward organisms can be effectively mitigated using 0.14Fe-MnO2 nanomaterial. This study presents a readily applicable candidate for economically and conveniently eliminating of environmental TC pollution, thereby reducing the threat posed by TC pollution to the ecosystem.
Collapse
Affiliation(s)
- Zhenda Liang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China
| | - Zhiquan Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China
| | - Yongtao Xu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China
| | - Haiqing Wang
- School of Environmental Science and Engineering, Shandong University, Jinan, 250100, PR China
| | - Li Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China
| |
Collapse
|
24
|
Wen Q, Li D, Gao C, Wu L, Song F, Zhou J. Synthesis of Dual p-n Heterojunction of Ni/Mn-MOF-74/CdS@Co 3O 4 Photocatalyst as a Photoassisted Fenton-like Catalyst for Removal of Tetracycline Hydrochloride. Inorg Chem 2023. [PMID: 37992674 DOI: 10.1021/acs.inorgchem.3c03377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
In this study, a novel composite material, Ni/Mn-MOF-74/CdS@Co3O4 was synthesized. This material consisted of a dual p-n heterojunction, which enabled efficient separation and transfer of charge carriers. Compared to a single p-n heterojunction, the presence of this dual heterojunction significantly enhanced the overall efficiency. The improved efficiency could be attributed to the unique properties of the constituent semiconductors. Co3O4 exhibited p-type semiconductor properties, while Ni/Mn-MOF-74 and CdS exhibited n-type semiconductor properties. By a combination of these materials to form a composite photocatalyst, a Z-type heterojunction was created at the interface of the p-n junction. This design established an internal electric field at both ends, effectively separating the photogenerated electrons and holes in each individual photocatalyst. As a result, the respective photocatalytic activities of the materials were maximized. To demonstrate the practical application of this composite material, it was utilized for the activation of peroxymonosulfate under visible light irradiation, with the aim of enhancing the photocatalytic degradation efficiency of tetracycline hydrochloride. The photocatalytic mechanism of Ni/Mn-MOF-74/CdS@Co3O4 in activating peroxymonosulfate and degrading tetracycline hydrochloride was investigated in detail. Furthermore, the toxicity of tetracycline hydrochloride and its intermediates was evaluated by using toxicity evaluation software.
Collapse
Affiliation(s)
- Qi Wen
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Di Li
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Chunyan Gao
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lei Wu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Fang Song
- Instrument Analysis Center of Xi'an University of Architecture and Technology, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
25
|
Liu L, Zhao B, Wu D, Wang X, Yao W, Ma Z, Hou H, Yu S. Rational design of MOF@COF composites with multi-site functional groups for enhanced elimination of U(VI) from aqueous solution. CHEMOSPHERE 2023; 341:140086. [PMID: 37678593 DOI: 10.1016/j.chemosphere.2023.140086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Both environment and human beings were menaced by the widespread application of radioactive uranium, high-performance and effective elimination of uranium from wastewater is of important meaning for development of environmental sustainability in the future. In this study, the water-stable MOF material and the highly crystalline COF were compounded by a mild hydrothermal strategy, which achieved efficient removal of U(VI) through the synergistic effect. The composites showed the characteristics of both COFs and MOFs, which will possess higher stability, larger surface area and faster adsorption efficiency that cannot be carried out by a single component. Batch experiments and characterizations (SEM, TEM, XRD, FT-IR, BET, XPS, etc.) indicated that UiO-66-NH2@LZU1 had more stable and multi-layer pore structure and rich active functional groups. The Langmuir model and the pseudo-second-order kinetics fitting was more suitable for the U(VI) elimination process. The greatest uranium adsorbing capacity of UiO-66-NH2@LZU1 (180.4 mg g-1) was observed to exceed the UiO-66-NH2 (108.8 mg g-1) and COF-LZU1 (65.8 mg g-1), which reached the excellent hybrid effects. Furthermore, FT-IR and XPS analyses confirmed that the most nitrogen-containing group from COF-LZU1 and oxygen-containing group of UiO-66-NH2 could be combined with U(VI). In addition, electrostatic interaction was also a mechanism during the removal process. This work displayed that UiO-66-NH2@LZU1 was a prospective hybrid material for radioactive waste remediation. The compound method and application mentioned in this work had provided a theoretical basis for designing and developing multi-functional composite adsorbents, which contributed to the development of new materials for radioactive wastewater treatment technologies.
Collapse
Affiliation(s)
- Lijie Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Bing Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Dedong Wu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Xiangxue Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Wen Yao
- School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China
| | - Zixuan Ma
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Hairui Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Shujun Yu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| |
Collapse
|
26
|
Liu S, Qu H, Mao Y, Yao L, Dong B, Zheng L. Ce(IV)-coordinated organogel-based assay for on-site monitoring of propyl gallate with turn-on fluorescence signal. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132001. [PMID: 37429188 DOI: 10.1016/j.jhazmat.2023.132001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023]
Abstract
Propyl gallate (PG) is a commonly used synthetic phenolic antioxidant in foodstuffs and industrial products. Due to the potential health risk of PG, rapid and on-site detection in food and environment samples are important to guarantee human health. Herein, we demonstrated rapid monitoring of PG by a fluorescence turn-on strategy based on a specific fluorogenic reaction between PG and polyethyleneimine (PEI). Specifically, Ce4+ with oxidase-mimicking activity oxidized PG to its oxides, which then reacted with PEI through the Michael addition to generate the fluorescent compound. The proposed fluorogenic reaction had good specificity for PG, which could distinguish PG from other phenolic antioxidants and interferences. Furthermore, portable and low-cost organogel test kits were prepared using poly(ethylene glycol) diacrylate for quantitative and on-site detection of PG via a smartphone-based sensing platform. The organogel-based assay detection limit was 1.0 μg mL-1 with recoveries ranging from 80.2% to 106.2% in edible oils and surface water. Suitability of the developed assay was also validated by high-performance liquid chromatography. Our study provides an effective fluorescent approach to rapid, specific, and convenient monitoring of PG, which is useful for diminishing the risk of PG exposure.
Collapse
Affiliation(s)
- Shuai Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Yu Mao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Lili Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Baolei Dong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
27
|
Luo J, Luo X, Gan Y, Xu X, Xu B, Liu Z, Ding C, Cui Y, Sun C. Advantages of Bimetallic Organic Frameworks in the Adsorption, Catalysis and Detection for Water Contaminants. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2194. [PMID: 37570512 PMCID: PMC10421224 DOI: 10.3390/nano13152194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023]
Abstract
The binary metal organic framework (MOF) is composed of two heterometallic ions bonded to an organic ligand. Compared with monometallic MOFs, bimetallic MOFs have greatly improved in terms of structure, porosity, active site, adsorption, selectivity, and stability, which has attracted wide attention. At present, many effective strategies have been designed for the synthesis of bimetallic MOF-based nanomaterials with specific morphology, structure, and function. The results show that bimetallic MOF-based nanocomposites could achieve multiple synergistic effects, which will greatly improve their research in the fields of adsorption, catalysis, energy storage, sensing, and so on. In this review, the main preparation methods of bimetallic MOFs-based materials are summarized, with emphasis on their applications in adsorption, catalysis, and detection of target pollutants in water environments, and perspectives on the future development of bimetallic MOFs-based nanomaterials in the field of water are presented.
Collapse
Affiliation(s)
- Jun Luo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
| | - Xiao Luo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
| | - Yonghai Gan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
| | - Xiaoming Xu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bin Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
| | - Zhuang Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
| | - Chengcheng Ding
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
| | - Yibin Cui
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
| | - Cheng Sun
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
28
|
Tripathy SP, Subudhi S, Ray A, Behera P, Swain G, Chakraborty M, Parida K. MgIn 2S 4/UiO-66-NH 2 MOF-Based Heterostructure: Visible-Light-Responsive Z-Scheme-Mediated Synergistically Enhanced Photocatalytic Performance toward Hydrogen and Oxygen Evolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7294-7306. [PMID: 37184616 DOI: 10.1021/acs.langmuir.3c00151] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Hydrogen and oxygen evolution via photocatalytic water splitting remains the quintessential alternative to fossil fuels. Photocatalysts must be sufficiently robust, competent, and productive toward harnessing sunlight in order to utilize the solar spectrum for maximal photocatalytic output. Herein, we have fabricated the MgIn2S4/UiO-66-NH2 composite via a facile solvothermal route and have determined its efficacy toward light-induced H2 and O2 generation reactions through water splitting with the aid of different sacrificial agents. Initially, the formation of pristine and composite materials was ascertained by PXRD, FTIR, etc. Moreover, with the aid of sophisticated morphological characterization techniques (FESEM and HRTEM), the intricate interaction between MgIn2S4 and UiO-66-NH2 was revealed. Additionally, the XPS studies suggested the effective interaction between the individual components with binding energy shifting suggesting the transfer of electrons from Zr-MOF to MgIn2S4. The PL and electrochemical aspects supported the effective photogenerated charge segregation in the prepared composite leading to superior photocatalytic outputs. Amidst the prepared composites of (3, 5, and 7 wt %) MgIn2S4/UiO-66-NH2, the 5 wt % or UM-2 composite displays optimal H2 and O2 evolution performances of 493.8 and 258.6 μmol h-1 (4-fold greater than for pristine MgIn2S4 and UiO-66-NH2), respectively. The nanocomposite's enhanced performance is indeed a consequence of the coadjuvant interaction among pristine UiO-66-NH2 and MgIn2S4 components that transpires via the Z-scheme-mediated charge transfer by enabling facile exciton segregation and channelization. Moreover, the composite inherited the remarkable framework stability of parent Zr-MOF, and the MgIn2S4 insertion had a negligible impact on the framework integrity. This work will offer a valuable model for developing robust Zr-MOF-based nanocomposite photocatalysts and evaluating their superior performance toward photocatalytic water redox reactions.
Collapse
Affiliation(s)
- Suraj Prakash Tripathy
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| | - Satyabrata Subudhi
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| | - Asheli Ray
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| | - Pragyandeepti Behera
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| | - Gayatri Swain
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| | - Manjari Chakraborty
- Indian Institute of Technology Delhi Sonipat Campus, Sonipat, Haryana 131029, India
| | - Kulamani Parida
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| |
Collapse
|
29
|
Panda J, Tripathy SP, Dash S, Ray A, Behera P, Subudhi S, Parida K. Inner transition metal-modulated metal organic frameworks (IT-MOFs) and their derived nanomaterials: a strategic approach towards stupendous photocatalysis. NANOSCALE 2023; 15:7640-7675. [PMID: 37066602 DOI: 10.1039/d3nr00274h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Photocatalysis, as an amenable and effective process, can be adopted for pollution remediation and to alleviate the ongoing energy crisis. In this case, recently, metal organic frameworks (MOFs) have attracted increasing attention in the field of photocatalysis owning to their unique characteristics including large specific surface area, tuneable pore architecture, mouldable framework composition, tuneable band structure, and exceptional photon absorption tendency complimented with superior anti-recombination of excitons. Among the plethora of frameworks, inner transition metal based-MOFs (IT-MOFs) have started to garner significant traction as photocatalysts due to their distinct characteristics compared to conventional transition metal-based frameworks. Typically, IT-MOFs have the tendency to generate high nuclearity clusters and possess abundant Lewis acidic sites, together with mixed valency, which aids in easily converting redox couples, thereby making them a suitable candidate for various photocatalytic reactions. Therefore, in this contribution, we aim to summarise the excellent photocatalytic performance of IT-MOFs and their composites accompanied by a thorough discussion of their topological changes with a variation in the structure of the metal cluster, fabrication routes, morphological features, and physico-chemical properties together with a brief discussion of computational findings. Moreover, we attempt to explore the scientific understanding of the functionalities of IT-MOFs and their composites with detailed mechanistic pathways for in-depth clarity towards photocatalysis. Furthermore, we present a comprehensive analysis of IT-MOFs for various crucial photocatalytic applications such as H2/O2 evolution, organic pollutant degradation, organic transformation, and N2 and CO2 reduction. In addition, we discuss the measures employed to enhance their performance with some future directions to address the challenges with IT-MOF-based nanomaterials.
Collapse
Affiliation(s)
- Jayashree Panda
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Suraj Prakash Tripathy
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Srabani Dash
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Asheli Ray
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Pragyandeepti Behera
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Satyabrata Subudhi
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Kulamani Parida
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| |
Collapse
|
30
|
Zheng S, Du H, Yang L, Tan M, Li N, Fu Y, Hao D, Wang Q. PDINH bridged NH 2-UiO-66(Zr) Z-scheme heterojunction for promoted photocatalytic Cr(VI) reduction and antibacterial activity. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130849. [PMID: 36701978 DOI: 10.1016/j.jhazmat.2023.130849] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/28/2022] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
Z-scheme mechanism was a promising approach to considerably enhance photocatalytic activity. In this work, the PDINH/NH2-UiO-66(Zr) (PNU) heterojunctions were made using a facile ball-milling method. As expect, the optimum PNU-1 composite acted as highly active photocatalyst with 97% Cr(VI) to be reduced within 60 min of LED light illumination. Moreover, the antibacterial rate almost reached 100% for E. coli and S. aureus in 4 h, which was more conspicuous than the others. The wider light absorption range, promoted charge separation because of Z-scheme mechanism and efficient generation of reactive 1O2, •O2-, and •OH contributed greatly to the enhanced photocatalytic activity. Meanwhile, the superior stability and repeatability of the composites were also demonstrated by five cyclic experiments and related physicochemical characterizations. Therefore, this work provides a novel insight for designing high-efficiency Z-scheme heterostructures between MOFs and organic PDINH for wastewater remediation.
Collapse
Affiliation(s)
- Shuzhen Zheng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hao Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Lingxuan Yang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Meng Tan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Ningyi Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yangjie Fu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Derek Hao
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Sydney, NSW 2007, Australia
| | - Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
31
|
Ruidas S, Chowdhury A, Ghosh A, Ghosh A, Mondal S, Wonanke ADD, Addicoat M, Das AK, Modak A, Bhaumik A. Covalent Organic Framework as a Metal-Free Photocatalyst for Dye Degradation and Radioactive Iodine Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4071-4081. [PMID: 36905363 DOI: 10.1021/acs.langmuir.2c03379] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Exploring a covalent organic framework (COF) material as an efficient metal-free photocatalyst and as an adsorbent for the removal of pollutants from contaminated water is very challenging in the context of sustainable chemistry. Herein, we report a new porous crystalline COF, C6-TRZ-TPA COF, via segregation of donor-acceptor moieties through the extended Schiff base condensation between tris(4-formylphenyl)amine and 4,4',4″-(1,3,5-triazine-2,4,6-triyl)trianiline. This COF displayed a Brunauer-Emmett-Teller (BET) surface area of 1058 m2 g-1 with a pore volume of 0.73 cc g-1. Again, extended π-conjugation, the presence of heteroatoms throughout the framework, and a narrow band gap of 2.2 eV, all these features collectively work for the environmental remediation in two different perspectives: it could harness solar energy for environmental clean-up, where the COF has been explored as a robust metal-free photocatalyst for wastewater treatment and as an adsorbent for iodine capture. In our endeavor of wastewater treatment, we have conducted the photodegradation of rose bengal (RB) and methylene blue (MB) as model pollutants since these are extremely toxic, are health hazard, and bioaccumulative in nature. The catalyst C6-TRZ-TPA COF showed a very high catalytic efficiency of 99% towards the degradation of 250 parts per million (ppm) of RB solution in 80 min under visible light irradiation with the rate constant of 0.05 min-1. Further, C6-TRZ-TPA COF is found to be an excellent adsorbent as it efficiently adsorbed radioactive iodine from its solution as well as from the vapor phase. The material exhibits a very rapid iodine capturing tendency with an outstanding iodine vapor uptake capacity of 4832 mg g-1.
Collapse
Affiliation(s)
- Santu Ruidas
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Avik Chowdhury
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Anirban Ghosh
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Avik Ghosh
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sujan Mondal
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - A D Dinga Wonanke
- School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS Nottingham, U.K
| | - Matthew Addicoat
- School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS Nottingham, U.K
| | - Abhijit Kumar Das
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Arindam Modak
- Amity Institute of Applied Sciences, Amity University, Noida, Amity Rd, Sector 125, Noida, Uttar Pradesh 201301, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
32
|
Lin Y, Wang Y, Shi C, Zhang D, Liu G, Chen L, Yuan B, Hou A, Zou D, Liu X, Zhang Q. Degradation of ciprofloxacin by a constitutive g-C 3N 4/BiOCl heterojunction under a persulfate system. RSC Adv 2023; 13:4361-4375. [PMID: 36760283 PMCID: PMC9892887 DOI: 10.1039/d2ra06500b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Ciprofloxacin (CIP) is a third-generation quinolone antimicrobial with broad-spectrum antimicrobial activity, and is not fully metabolized in the human body, resulting in more than 70% of CIP being excreted into water as a prodrug. In this study, g-C3N4/BiOCl heterojunction structure composites were prepared to study the degradation effect of ciprofloxacin (CIP) under photocatalytic conditions. The results showed that CIP at 10 mg L-1 was best degraded after 90 min at 0.3 g L-1 g-C3N4/BiOCl-2, pH of 5.8 and PS dosing of 1 mM. The quenching experiments and electron spin resonance spectroscopy (ESR) confirmed that ˙OH, ˙SO4 - and h+ played a major role. After the photocatalytic degradation of this reaction system, the biological toxicity of CIP was effectively controlled. This material is stable and the CIP removal rate remained above 80% after four cycles of experiments.
Collapse
Affiliation(s)
- Yingzi Lin
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University Changchun 130118 China .,School of Municipal & Environmental Engineering, Jilin Jianzhu University Changchun 130118 China
| | - Yu Wang
- School of Municipal & Environmental Engineering, Jilin Jianzhu UniversityChangchun 130118China
| | - Chunyan Shi
- School of Municipal & Environmental Engineering, Jilin Jianzhu UniversityChangchun 130118China
| | - Dongyan Zhang
- School of Municipal & Environmental Engineering, Jilin Jianzhu UniversityChangchun 130118China
| | - Gen Liu
- School of Municipal & Environmental Engineering, Jilin Jianzhu UniversityChangchun 130118China
| | - Lei Chen
- School of Municipal & Environmental Engineering, Jilin Jianzhu UniversityChangchun 130118China
| | - Baoling Yuan
- School of Municipal & Environmental Engineering, Jilin Jianzhu UniversityChangchun 130118China
| | - Ao Hou
- School of Municipal & Environmental Engineering, Jilin Jianzhu UniversityChangchun 130118China
| | - Deqiang Zou
- School of Municipal & Environmental Engineering, Jilin Jianzhu UniversityChangchun 130118China
| | - Xiaochen Liu
- School of Municipal & Environmental Engineering, Jilin Jianzhu UniversityChangchun 130118China
| | - Qingyu Zhang
- School of Municipal & Environmental Engineering, Jilin Jianzhu UniversityChangchun 130118China
| |
Collapse
|
33
|
Hou W, Chen C, Xie D, Xu Y. Substituted Ti(IV) in Ce-UiO-66-NH 2 Metal-Organic Frameworks Increases H 2 and O 2 Evolution under Visible Light. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2911-2921. [PMID: 36609181 DOI: 10.1021/acsami.2c18389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs) as photocatalysts have received increasing attention. In this work, a dual metal-substituted UiO-66-NH2 (Ti/Ce-MOF) containing different Ti/Ce mole ratios (x = 0-2.46) has been prepared via post-synthetic exchange between Ce-UiO-66 and TiCl4, followed by amination. The solid had a high surface area (828-937 m2/g) and a large pore volume (0.451-0.507 m3/g). Under visible light, Ti/Ce-MOF showed x-dependent activity for H2O reduction and oxidation on a film electrode, respectively. However, such a change for H2 evolution in a Na2S/Na2SO3 aqueous solution was observed only after CdS loading. In combination with the photoluminescence and band parameters, we propose that the photoactivity of Ti/Ce-MOF for redox reaction is determined by its ability for electron transfer. Furthermore, there is an interfacial electron transfer from Ti/Ce-MOF to CdS and a hole transfer from CdS to Ti/Ce-MOF, respectively, significantly improving the efficiency of charge separation for redox reactions. This work offers a new insight that Ti substitution benefits the performance of Ce-based MOF.
Collapse
Affiliation(s)
- Wenqing Hou
- State Key Laboratory of Silicon Materials and Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Chen Chen
- State Key Laboratory of Silicon Materials and Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Diya Xie
- State Key Laboratory of Silicon Materials and Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yiming Xu
- State Key Laboratory of Silicon Materials and Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
34
|
Mishra BP, Biswal L, Das S, Acharya L, Parida K. Architecture and Kinetic Studies of Photocatalytic H 2O 2 Generation and H 2 Evolution through Regulation of Spatial Charge Transfer via Z-Scheme Path over a (001) Facet Engineered TiO 2@MXene/B- g-C 3N 4 Ternary Hybrid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:957-971. [PMID: 36609164 DOI: 10.1021/acs.langmuir.2c02315] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Spatial charge separation and migration are the critical shortcomings dominating the core energy conversion corridors of photocatalytic systems. Here, a biomimetic multi-interfacial architecture providing strong coupled interaction and rapid charge transmission for photostable and competent photocatalytic H2O2 production and H2 evolution is proposed. The triple-hybrid all-solid-state Z-scheme system was formed with the (001) facet exposed TiO2 nanosheets derived from MXene layers and B-g-C3N4 nanosheets (M/(001)TiO2@BCN) through an electrostatic self-assembly strategy with intimate electronic interaction due to Ti orbital modulation and proper stacking among the hybrids. The metallic and highly conductive MXene layers act as solid state electron mediators in the Z-scheme heterojunction that promote electron-hole separation and migration efficiency. Specifically, the MTBCN-12.5 composite provides optimum yield of H2O2 up to 1480.1 μmol h-1 g-1 and a H2 evolution rate of 408.4 μmol h-1 (with ACE 6.7%), which are 4 and 20 fold greater than the pristine BCN, respectively. The enhanced photocatalytic performance is systematically identified by the increased surface area, higher cathodic and anodic current densities of -1.01 and 2.27 mA cm-2, delayed charge recombination as supported by PL and EIS measurement, and excellent photostability. The Z-scheme charge transfer mechanism is validated by time-resolved photoluminescence (TRPL) analysis, cyclic voltametric analysis, and the radical trapping experiment as detected by PL analysis. This research marks a substantial advancement and establishes the foundation for future design ideas in accelerating charge transfer.
Collapse
Affiliation(s)
- Bhagyashree Priyadarshini Mishra
- Centre for Nano Science and Nano Technology, Institute of Technical Education and Research, Siksha 'O' Anusandhan University, Bhubaneswar751030, India
| | - Lijarani Biswal
- Centre for Nano Science and Nano Technology, Institute of Technical Education and Research, Siksha 'O' Anusandhan University, Bhubaneswar751030, India
| | - Sarmistha Das
- Centre for Nano Science and Nano Technology, Institute of Technical Education and Research, Siksha 'O' Anusandhan University, Bhubaneswar751030, India
| | - Lopamudra Acharya
- Centre for Nano Science and Nano Technology, Institute of Technical Education and Research, Siksha 'O' Anusandhan University, Bhubaneswar751030, India
| | - Kulamani Parida
- Centre for Nano Science and Nano Technology, Institute of Technical Education and Research, Siksha 'O' Anusandhan University, Bhubaneswar751030, India
| |
Collapse
|
35
|
Covalent post-synthetic modified metal-organic framework UIO-66-NH2-HNA for selective and sensitive turn-on detection of acetylacetone, S2-, and PO43-. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
36
|
Tripathy SP, Subudhi S, Ray A, Behera P, Panda J, Dash S, Parida K. Hydrolytically stable mixed ditopic linker based zirconium metal organic framework as a robust photocatalyst towards Tetracycline Hydrochloride degradation and hydrogen evolution. J Colloid Interface Sci 2023; 629:705-718. [PMID: 36183649 DOI: 10.1016/j.jcis.2022.09.104] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 10/14/2022]
Abstract
In the existing eco-crisis, designing and engineering an efficient as well as water stable photocatalyst for energy conversion and pollutant abatement remains crucial. In this regard, a mixed linker type zirconium metal organic framework (Zr-MOF) with terepthalic acid based ditopic linkers were utilized to design a single component photocatalyst through single step solvothermal method to utilize photons from visible light illumination towards hydrogen energy (H2) production and Tetracycline Hydrochloride (TCH) degradation. The one pot synthesized mixed linker based Zr-MOF displays visible light absorption through band gap tuning, superior exciton segregation and oxygen vacancy that cumulatively supports the enhancement in the photocatalytic output with respect to their pristine counterparts. Additionally, the X-ray photoelectron spectroscopy, optical and electrochemical studies strongly reinforces the above claims. The prepared mixed linker Zr-MOF showed superior photocatalytic H2 evolution performance of 247.88 µmol h-1 (apparent conversion efficiency; ACE = 1.9%) that is twice than its pristine Zr-MOFs. Moreover, in TCH degradation, the mixed linker MOF displays an enhanced efficacy of 91.8 % and adopts pseudo-first order type kinetics with a rate constant value of 0.032. Typically, the active species participating for the TCH photo-degradation follows the order of hydroxyl (OH.) < superoxide (O2.-) radicals. Consequently, the mixed linker Zr-MOF could be effectively used as a robust photocatalyst exhibiting boosted TCH degradation and H2 production.
Collapse
Affiliation(s)
- Suraj Prakash Tripathy
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| | - Satyabrata Subudhi
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| | - Asheli Ray
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| | - Pragyandeepti Behera
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| | - Jayashree Panda
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| | - Srabani Dash
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
| | - Kulamani Parida
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha 751030, India.
| |
Collapse
|
37
|
Chamanehpour E, Hossein Sayadi M, Hajiani M. Metal-organic framework coordinated with g-C3N4 and metal ions for boosting photocatalytic H2 production under sunlight. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Behera P, Ray A, Prakash Tripathy S, Acharya L, Subudhi S, Parida K. ZIF-8 derived porous C, N co-doped ZnO modified B-g-C3N4: A Z-Scheme charge dynamics approach operative towards photocatalytic Hydrogen evolution and Ciprofloxacin degradation. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
Chen D, Jin Z, Xing H. Titanium-Porphyrin Metal-Organic Frameworks as Visible-Light-Driven Catalysts for Highly Efficient Sonophotocatalytic Reduction of Cr(VI). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12292-12299. [PMID: 36179378 DOI: 10.1021/acs.langmuir.2c01932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this work, we synthesized and characterized four titanium-porphyrin metal-organic frameworks (MOFs) [DGIST-1(M), M = Co(II), Fe(III), Zn(II), and H2] and used them as visible-light-driven catalysts for sonophotocatalytic Cr(VI) reduction. DGIST-1(M) exhibited open-framework, broad light absorption stemmed from ligand and sensitive photocurrent responses owing to the integration of one-dimensional Ti-oxo chains and 4-connected conjugated TCPP ligand (TCPP = tetrakis(4-carboxyphenyl)-porphyrin). DGIST-1(M) presented efficient reduction of Cr(VI) to Cr(III) in aqueous solution when used as sonophotocatalytic catalysts. The average reduction rates upon Cr(VI) were 0.920, 0.476, 0.377, and 0.194 mg·L-1·min-1 for DGIST-1(H2), DGIST-1(Zn), DGIST-1(Co), and DGIST-1(Fe), which are 1.15-2.45 times higher than those in photocatalysis. Sonophotocatalytic experiments and electron paramagnetic resonance measurement proved that Ti-oxo chain units and porphyrin ligand in the structures of DGIST-1(M) existed as catalytic active centers for sonophotocatalytic reduction of Cr(VI). Photoluminescence and UV absorption spectra revealed that the unity of photocatalysis and sonochemistry strengthened the migration of photogenerated electrons from DGIST-1(M) to Cr(VI), which improved the activities of catalysts. This study suggested that the association of titanium-porphyrin MOFs and sonophotocatalytic technology is an impactful program for enhancing MOF-based photocatalytic systems.
Collapse
Affiliation(s)
- Dashu Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, No. 26 Hexing Road, Harbin150040, China
| | - Zhi Jin
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, No. 26 Hexing Road, Harbin150040, China
| | - Hongzhu Xing
- College of Chemistry, Northeast Normal University, No. 5268 Renmin Street, Changchun130024, China
| |
Collapse
|
40
|
Tie W, Bhattacharyya SS, Han C, Qiu S, He W, Lee SH. Green Assembly of Covalently Linked BiOBr/Graphene Composites for Efficient Visible Light Degradation of Dyes. ACS OMEGA 2022; 7:35805-35813. [PMID: 36249384 PMCID: PMC9557888 DOI: 10.1021/acsomega.2c03965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
A novel high-performance BiOBr@graphene (BiOBr@G) photocatalyst with a new assembly structure had been demonstrated using a facile hydrothermal method through chemical bonding of reduced graphene oxide and structure-defined BiOBr flakes for improving charge separation and transfer performance, which were first synthesized at room temperature in immiscible solvents without corrosive acids. The prepared samples were characterized, and the BiOBr@G composite realized an efficient assembly portfolio of graphene and BiOBr flakes with defined structures, verified by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman and X-ray photoelectron spectroscopy (XPS), in which BiOBr flakes were covalently linked with the assembled graphene sheets through the Bi-C bond. This composite exhibited remarkable visible light absorbance and efficient photoinduced charge splitting characteristics in comparison with those of pure BiOBr, as established by DRS absorption, photoluminescence radiation, and photocurrent study. Hence, a very small amount (5 mg) of the BiOBr@G composite displayed a complete photodegradation effect on the rhodamine B dye under only 15 min of visible light excitation, which was three times faster than that of pure BiOBr and extremely superior to that of commercial P25. This was probably ascribed to the well-defined BiOBr structure itself, elevated light absorbance, and Bi-C chemical bond inducing quick charge separation and transfer in the BiOBr@G composite. Additionally, investigations on the photocatalytic mechanism displayed that the photogenerated holes in the BiOBr valence band and derivative superoxide radicals played vital roles in the photodegradation of RhB dyes, as reinforced by the electron spin resonance method, where the covalent linking of BiOBr and graphene served as an effective pathway for charge transportation.
Collapse
Affiliation(s)
- Weiwei Tie
- Key
Laboratory of Micro-Nano Materials for Energy Storage and Conversion
of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, P. R. China
| | | | - Cancan Han
- Key
Laboratory of Micro-Nano Materials for Energy Storage and Conversion
of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, P. R. China
| | - Shuaibiao Qiu
- Key
Laboratory of Micro-Nano Materials for Energy Storage and Conversion
of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, P. R. China
| | - Weiwei He
- Key
Laboratory of Micro-Nano Materials for Energy Storage and Conversion
of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, P. R. China
| | - Seung Hee Lee
- Department
of Nano Convergence Engineering and Department of Polymer Nano Science
and Technology, Jeonbuk National University, Jeonju, Jeonbuk 54896, Korea
| |
Collapse
|
41
|
Zhao Z, Wang X, Wang S, Xiao Z, Zhai S, Ma J, Dong X, Sun H, An Q. Three-Dimensional Hierarchical Seaweed-Derived Carbonaceous Network with Designed g-C 3N 4 Nanosheets: Preparation and Mechanism Insight for 4-Nitrophenol Photoreduction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11054-11067. [PMID: 36049185 DOI: 10.1021/acs.langmuir.2c01700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of g-C3N4-based photocatalysts with abundant active sites is of great significance for photocatalytic reactions. Herein, a smart and robust strategy was presented to fabricate three-dimensional (3D) g-C3N4 nanosheet-coated alginate-based hierarchical porous carbon (g-C3N4@HPC), including coating melamine on calcium alginate (CA) hydrogel beads, freeze-drying hydrogel beads as well as pyrolysis at high temperatures. The resulting photocatalyst possessed a significantly high surface area and a large amount of interconnected macropores compared with porous carbon without the melamine coating. The unique structural features could effectively inhibit the curling and agglomeration of g-C3N4 nanosheets, provide abundant photocatalytic active sites, and promote mass diffusion. Therefore, the g-C3N4@HPC composite exhibited remarkable photocatalytic activity and outstanding stability toward the photoreduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by NaBH4 under natural sunlight and simulated visible-light irradiation (λ > 420 nm) using a 300 W xenon lamp. Moreover, the mechanism toward the photocatalytic reaction was extensively studied by quenching experiments and electron spin resonance (ESR) experiments. The results showed that active hydrogen species were able to be achieved by following a dual-channel pathway in the NaBH4 system, which included photocatalytic reduction of H+ ions and photocatalytic oxidation of BH4- ions. This work not only opens up a new way to design efficient photocatalysts for various reactions but also provides a reference for an in-depth study of the photoreduction mechanism.
Collapse
Affiliation(s)
- Zhenyu Zhao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Xuting Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Shifu Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Zuoyi Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Shangru Zhai
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Jiliang Ma
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Xiaoli Dong
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Haodong Sun
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Qingda An
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
42
|
Tripathy SP, Subudhi S, Ray A, Behera P, Parida K. Metal organic framework-based Janus nanomaterials: rational design, strategic fabrication and emerging applications. Dalton Trans 2022; 51:5352-5366. [PMID: 35289823 DOI: 10.1039/d1dt04380c] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Janus nanoparticles (JNPs) with dual segments comprising chemically distinct compositions have garnered the attention of researchers in the past few years. The combination of different materials with diversified morphology, topology, and distinct physico-chemical characteristics into the single Janus nanocrystal has yielded multifarious capabilities for a myriad of emerging applications involving catalysis, gas separation, electro-catalysis, adsorption and energy storage. However, the traditional Janus entities significantly lack the need for populous active sites and high surface area. To overcome the textural hurdles and improve the functionalities of JNPs, porous MOFs were eventually introduced into Janus particles. MOFs are well endowed with varied pore apertures, structures, large surface areas and tailored characteristics, making them potentially invaluable for Janus fabrication. Depending upon the usage, MOFs can be explored to design Metal@MOF, polymetalic@MOF, MOF@MOF and MOF-derived JNPs. In this regard, we have represented a holistic summarization of the design, synthesis and emerging applications of a rising class of multi-functionalized MOF-based Janus nanomaterials. Moreover, this article will significantly aid researchers with a vision of creating dual-composition porous nanomaterials as the MOF-based Janus nanoparticles is at infancy.
Collapse
Affiliation(s)
- Suraj Prakash Tripathy
- Centre for Nanoscience and Nanotechnology, S'O'A deemed to be university, Bhubaneswar, Odisha, Pin-751030, India.
| | - Satyabrata Subudhi
- Centre for Nanoscience and Nanotechnology, S'O'A deemed to be university, Bhubaneswar, Odisha, Pin-751030, India.
| | - Asheli Ray
- Centre for Nanoscience and Nanotechnology, S'O'A deemed to be university, Bhubaneswar, Odisha, Pin-751030, India.
| | - Pragyandeepti Behera
- Centre for Nanoscience and Nanotechnology, S'O'A deemed to be university, Bhubaneswar, Odisha, Pin-751030, India.
| | - Kulamani Parida
- Centre for Nanoscience and Nanotechnology, S'O'A deemed to be university, Bhubaneswar, Odisha, Pin-751030, India.
| |
Collapse
|