1
|
Lin S, Shi D, Zhou L, Chen L, Li Z. Probing the contact time of droplet impacts: From the Hertz collision to oscillation regimes. Phys Rev E 2024; 110:L053101. [PMID: 39690665 DOI: 10.1103/physreve.110.l053101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/08/2024] [Indexed: 12/19/2024]
Abstract
Droplet rebound on nonwetting surfaces is a common phenomenon. However, the underlying physics regulating the contact time remains unclear. In this work, we investigate droplet impacts on superamphiphobic surfaces through experiments and theoretical analyses. By analyzing the spreading and retraction of droplet impinging processes over a wide range of Weber numbers (We), it is revealed that droplet impacts experience three regimes as We is varied, which are denoted as the Hertz collision (We<1), transition (110) regimes. In the Hertz collision regime, the droplet impinging process is temporally symmetric, i.e., the spreading time, t_{S}, and the retraction time, t_{R}, are almost the same. Furthermore, t_{S} and t_{R} decrease with increasing We and follow a power-law dependence, which is different from previous theories. In the transition regime, t_{S} remains dominated by the Hertz collision, while t_{R} is governed by droplet oscillation. In the oscillation regime, t_{S}, t_{R}, and the total contact time, t_{C}, become independent of We. These three regimes are valid for both monophase and compound droplets. The findings in this work advance the understanding and offer a clear picture of droplet impact dynamics.
Collapse
|
2
|
Gao SR, Shi SH, Liu Z, Wei BJ, Yang YR, Wang XD. System Dynamics of the Water Droplet Impacting Flexible Cantilever Beams. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22401-22408. [PMID: 39383054 DOI: 10.1021/acs.langmuir.4c03224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
In this work, a water droplet impacting superhydrophobic flexible cantilever beams is systematically studied via experimental methods, aimed at recognizing the significance of the system dynamics that arises from the interplay between substrate oscillation and droplet impact. Influences of the substrate stiffness and the impact Weber number on the substrate oscillation and droplet impact dynamic are the focus particularly. For substrate oscillations, the beam deflection increases with the Weber number but decreases with the beam stiffness, while the oscillation period of the beam is not affected by the impact dynamic. For the droplet impact dynamic, the spreading dynamic is independent of beam oscillation, while the retraction dynamic is closely related to the surface elasticity. The effect of the cantilever beams on the droplet (i.e., promoting or inhibiting the rebound behavior) is dependent on the coupling movement of the water drop and the cantilever beam, which is varied by changing the stiffness of the cantilever beam. The findings of this work will provide a theoretical reference for the application of flexible substrates in the fields of anti-icing and self-cleaning.
Collapse
Affiliation(s)
- Shu-Rong Gao
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
- Key Laboratory of Icing and Anti/De-icing, China Aerodynamics Research and Development Center, Mianyang, Sichuan 621000, China
| | - Shi-Hua Shi
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
| | - Zhe Liu
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
| | - Bo-Jian Wei
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
| | - Yan-Ru Yang
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
| | - Xiao-Dong Wang
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
3
|
Gao SR, Huang XY, Liu Z, Sun JJ, Yang YR, Wang XD. Double Droplets Impact an Inclined Superhydrophobic Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12818-12827. [PMID: 38842118 DOI: 10.1021/acs.langmuir.4c01557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The rebound dynamics of double droplets impacting an inclined superhydrophobic surface decorated with macro-ridges are investigated via lattice Boltzmann method (LBM) simulations. Four rebound regions are identified, that is, the no-coalescence-rebound (NCR), the partial-coalescence-rebound of the middle part bounces first (PCR-M), and the side part bounces first (PCR-S), as well as the complete-coalescence-rebound (CCR). The occurrence of the rebound regions strongly depends on the droplet arrangement, the center-to-center distance of the droplets, and the Weber number. Furthermore, the contact time is closely related to the rebound regions. The PCR-M region can significantly reduce the contact time because the energy dissipation in this region may decrease which can promote the rebound dynamic. Intriguingly, the contact time is also affected by the droplet arrangement; i.e., droplets arranged parallel to the ridge dramatically shorten the contact time since this arrangement increases the asymmetry of the liquid film. Therefore, for multidrop impact, the contact time can be effectively manipulated by changing the rebound region and the droplet arrangement. This work focuses on elucidating the wetting behaviors, rebound regions, and contact time of the multiple-droplet impacting an inclined superhydrophobic surface decorated with macro-ridges.
Collapse
Affiliation(s)
- Shu-Rong Gao
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
- Key Laboratory of Icing and Anti/De-icing, China Aerodynamics Research and Development Center, Mianyang, Sichuan 621000, China
| | - Xin-Yue Huang
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
| | - Zhe Liu
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
| | - Jun-Jun Sun
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
| | - Yan-Ru Yang
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
| | - Xiao-Dong Wang
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
4
|
Hu Z, Chu F, Shan H, Wu X, Dong Z, Wang R. Understanding and Utilizing Droplet Impact on Superhydrophobic Surfaces: Phenomena, Mechanisms, Regulations, Applications, and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310177. [PMID: 38069449 DOI: 10.1002/adma.202310177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/13/2023] [Indexed: 12/19/2023]
Abstract
Droplet impact is a ubiquitous liquid behavior that closely tied to human life and production, making indispensable impacts on the big world. Nature-inspired superhydrophobic surfaces provide a powerful platform for regulating droplet impact dynamics. The collision between classic phenomena of droplet impact and the advanced manufacture of superhydrophobic surfaces is lighting up the future. Accurately understanding, predicting, and tailoring droplet dynamic behaviors on superhydrophobic surfaces are progressive steps to integrate the droplet impact into versatile applications and further improve the efficiency. In this review, the progress on phenomena, mechanisms, regulations, and applications of droplet impact on superhydrophobic surfaces, bridging the gap between droplet impact, superhydrophobic surfaces, and engineering applications are comprehensively summarized. It is highlighted that droplet contact and rebound are two focal points, and their fundamentals and dynamic regulations on elaborately designed superhydrophobic surfaces are discussed in detail. For the first time, diverse applications are classified into four categories according to the requirements for droplet contact and rebound. The remaining challenges are also pointed out and future directions to trigger subsequent research on droplet impact from both scientific and applied perspectives are outlined. The review is expected to provide a general framework for understanding and utilizing droplet impact.
Collapse
Affiliation(s)
- Zhifeng Hu
- Research Center of Solar Power and Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fuqiang Chu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - He Shan
- Research Center of Solar Power and Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaomin Wu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruzhu Wang
- Research Center of Solar Power and Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
5
|
Zhang LZ, Chen X, Wang YF, Yang YR, Zheng SF, Lee DJ, Wang XD. Contact Time of a Droplet Off-Centered Impacting a Superhydrophobic Cylinder. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16023-16034. [PMID: 37916520 DOI: 10.1021/acs.langmuir.3c02154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Extensive research has shown that a superhydrophobic cylindrical substrate could lead to a noncircumferential symmetry of an impacting droplet, reducing the contact time accordingly. It is of practical significance in applications, such as anti-icing, anticorrosion, and antifogging. However, few accounts have adequately addressed the off-centered impact of the droplet, despite it being more common in practice. This work investigates the dynamic behavior of a droplet off-centered impacting a superhydrophobic cylinder via the lattice Boltzmann method. The effect of the off-centered distance is primarily discussed for droplets taking various Weber numbers and cylinder sizes. The results show that the imposition of an off-center distance can further disrupt the droplet symmetry during the impact. As the off-center distance increases, the droplet movement is gradually tilted toward the offset side until it tangentially passes the cylinder side, resulting in a direct dripping mode. The dynamic features, focusing mainly on maximum spreading in the axial direction and contact time, are specifically explored. A quantitative model of the maximum spreading factor is proposed based on the equivalent transformation from the off-center impact into oblique hitting, considering the full range of off-centered distance. A preliminary contact time model is established for droplet off-centered impacting superhydrophobic cylinders by substituting the maximum spreading and the effective velocity of the liquid moving. This work aims to make an original contribution to the fundamental knowledge of droplet impact and could be of value for related applications.
Collapse
Affiliation(s)
- Ling-Zhe Zhang
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China
| | - Xu Chen
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China
| | - Yi-Feng Wang
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China
| | - Yan-Ru Yang
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China
| | - Shao-Fei Zheng
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong
- Department of Chemical Engineering & Materials Science, Yuan-Ze University, Chungli 320, Taiwan
| | - Xiao-Dong Wang
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
6
|
Effect of incident direction and droplet position on dynamic and heat transfer behaviors of droplet impacting on super-hydrophilic cylindrical surface. ANN NUCL ENERGY 2023. [DOI: 10.1016/j.anucene.2023.109785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
7
|
Wang X, Xu B, Guo S, Zhao Y, Chen Z. Droplet impacting dynamics: Recent progress and future aspects. Adv Colloid Interface Sci 2023; 317:102919. [PMID: 37216871 DOI: 10.1016/j.cis.2023.102919] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023]
Abstract
Droplet impact behaviours are widely applied in a variety of domains including self-cleaning, painting and coating, corrosion of turbine blades and aircraft, separation and oil repellency, anti-icing, heat transfer and droplet electricity generation, etc. The wetting behaviours and impact dynamics of droplets on solid and liquid surfaces involve complex solid-liquid and liquid-liquid interfacial interactions. The modulation of droplet dynamics by means of specific surface morphology and hydrophobic/hydrophilic patterns, which in turn can be derived to related applications, is one of the current promising interests in the interfacial effect modulating droplet dynamics. This review provides a detailed overview of several scientific aspects of droplet impact behaviours and heat transfer processes influenced by multiple factors. Firstly, the essential wetting theory and the fundamental parameters of impinging droplets are introduced. Secondly, the effects of different parameters on the dynamic behaviours and heat transfer of impinging droplet are discussed. Finally, the potential applications are listed. Existing concerns and challenges are summarized and future perspectives are provided to address poorly understood and conflicting issues.
Collapse
Affiliation(s)
- Xin Wang
- School of Energy and Environment, Southeast University, Nanjing, PR China; Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, PR China
| | - Bo Xu
- School of Energy and Environment, Southeast University, Nanjing, PR China
| | - Shuai Guo
- School of Energy and Environment, Southeast University, Nanjing, PR China
| | - Yu Zhao
- School of Energy and Environment, Southeast University, Nanjing, PR China
| | - Zhenqian Chen
- School of Energy and Environment, Southeast University, Nanjing, PR China; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, PR China; Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, School of Energy and Environment, Southeast University, Nanjing, PR China.
| |
Collapse
|
8
|
Steerable directional bouncing and contact time reduction of impacting droplets on superhydrophobic stepped surfaces. J Colloid Interface Sci 2023; 629:1032-1044. [DOI: 10.1016/j.jcis.2022.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/25/2022] [Accepted: 09/04/2022] [Indexed: 11/19/2022]
|
9
|
Shu Y, Chu F, Hu Z, Gao J, Wu X, Dong Z, Feng Y. Superhydrophobic Strategy for Nature-Inspired Rotating Microfliers: Enhancing Spreading, Reducing Contact Time, and Weakening Impact Force of Raindrops. ACS APPLIED MATERIALS & INTERFACES 2022; 14:57340-57349. [PMID: 36512411 DOI: 10.1021/acsami.2c16662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Wind-dispersal of seeds is a remarkable strategy in nature, enlightening the construction of microfliers for environmental monitoring. However, the flight of these microfliers is greatly affected by climatic conditions, especially in rainy days, they suffer serious raindrop impact. Here, a hierarchical superhydrophobic surface is fabricated and a novel strategy is demonstrated that the superhydrophobic coating can enhance spreading while reduce contact time and impact force of raindrops, all of which are beneficial for the rotating microfliers. When the surface rotating speed exceeds a critical value, the effect of centrifugal force becomes considerable so that the droplet spreading is enhanced. The rotating superhydrophobic surface can rotate an impacting droplet by the tangential drag force from the air boundary layer, and the rotation of the droplet generates a negative pressure zone inside it, reducing the contact time by more than 30%. The impact force by the droplet on the rotating superhydrophobic surface also has a remarkable reduction of 53% compared to that on unprocessed hydrophilic surfaces, which helps maintain the flight stability of the microfliers. This work pioneers in revealing the droplet impact effect on rotating microflier surfaces and demonstrates the effectiveness of protecting microfliers with superhydrophobic coatings, which shall guide the manufacture and flight of microfliers in rainy conditions.
Collapse
Affiliation(s)
- Yifu Shu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing100083, China
| | - Fuqiang Chu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing100083, China
| | - Zhifeng Hu
- Department of Energy and Power Engineering, Tsinghua University, Beijing100084, China
| | - Jie Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing100083, China
| | - Xiaomin Wu
- Department of Energy and Power Engineering, Tsinghua University, Beijing100084, China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing100190, China
| | - Yanhui Feng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing100083, China
| |
Collapse
|
10
|
Hu Z, Ding S, Zhang X, Wu X. Dynamic behavior and maximum width of impact droplets on single-pillar superhydrophobic surfaces. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|