1
|
Miller MA, Medina S. Life at the interface: Engineering bio-nanomaterials through interfacial molecular self-assembly. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1966. [PMID: 38725255 PMCID: PMC11090466 DOI: 10.1002/wnan.1966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/15/2024]
Abstract
Interfacial self-assembly describes the directed organization of molecules and colloids at phase boundaries. Believed to be fundamental to the inception of primordial life, interfacial assembly is exploited by a myriad of eukaryotic and prokaryotic organisms to execute physiologic activities and maintain homeostasis. Inspired by these natural systems, chemists, engineers, and materials scientists have sought to harness the thermodynamic equilibria at phase boundaries to create multi-dimensional, highly ordered, and functional nanomaterials. Recent advances in our understanding of the biophysical principles guiding molecular assembly at gas-solid, gas-liquid, solid-liquid, and liquid-liquid interphases have enhanced the rational design of functional bio-nanomaterials, particularly in the fields of biosensing, bioimaging and biotherapy. Continued development of non-canonical building blocks, paired with deeper mechanistic insights into interphase self-assembly, holds promise to yield next generation interfacial bio-nanomaterials with unique, and perhaps yet unrealized, properties. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Michael A Miller
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott Medina
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
2
|
Riske KA, González Miera G, Walker GC. Virtual Issue: Interfacial Science Developments in Latin America. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18673-18677. [PMID: 38146262 DOI: 10.1021/acs.langmuir.3c03761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
|
3
|
Hricovíni M, Owens RJ, Bak A, Kozik V, Musiał W, Pierattelli R, Májeková M, Rodríguez Y, Musioł R, Slodek A, Štarha P, Piętak K, Słota D, Florkiewicz W, Sobczak-Kupiec A, Jampílek J. Chemistry towards Biology-Instruct: Snapshot. Int J Mol Sci 2022; 23:14815. [PMID: 36499140 PMCID: PMC9739621 DOI: 10.3390/ijms232314815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
The knowledge of interactions between different molecules is undoubtedly the driving force of all contemporary biomedical and biological sciences. Chemical biology/biological chemistry has become an important multidisciplinary bridge connecting the perspectives of chemistry and biology to the study of small molecules/peptidomimetics and their interactions in biological systems. Advances in structural biology research, in particular linking atomic structure to molecular properties and cellular context, are essential for the sophisticated design of new medicines that exhibit a high degree of druggability and very importantly, druglikeness. The authors of this contribution are outstanding scientists in the field who provided a brief overview of their work, which is arranged from in silico investigation through the characterization of interactions of compounds with biomolecules to bioactive materials.
Collapse
Affiliation(s)
- Miloš Hricovíni
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Raymond J. Owens
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, UK, University of Oxford, Oxford OX11 0QS, UK
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Andrzej Bak
- Institute of Chemistry, University of Silesia, Szkolna 9, 40 007 Katowice, Poland
| | - Violetta Kozik
- Institute of Chemistry, University of Silesia, Szkolna 9, 40 007 Katowice, Poland
| | - Witold Musiał
- Department of Physical Chemistry and Biophysics, Pharmaceutical Faculty, Wroclaw Medical University, Borowska 211A, 50 556 Wrocław, Poland
| | - Roberta Pierattelli
- Magnetic Resonance Center and Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Magdaléna Májeková
- Center of Experimental Medicine SAS and Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia
| | - Yoel Rodríguez
- Department of Natural Sciences, Eugenio María de Hostos Community College, City University of New York, 500 Grand Concourse, Bronx, NY 10451, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Robert Musioł
- Institute of Chemistry, University of Silesia, Szkolna 9, 40 007 Katowice, Poland
| | - Aneta Slodek
- Institute of Chemistry, University of Silesia, Szkolna 9, 40 007 Katowice, Poland
| | - Pavel Štarha
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Karina Piętak
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31 864 Krakow, Poland
| | - Dagmara Słota
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31 864 Krakow, Poland
| | - Wioletta Florkiewicz
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31 864 Krakow, Poland
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31 864 Krakow, Poland
| | - Josef Jampílek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
4
|
Chalmpes N, Patila M, Kouloumpis A, Alatzoglou C, Spyrou K, Subrati M, Polydera AC, Bourlinos AB, Stamatis H, Gournis D. Graphene Oxide-Cytochrome c Multilayered Structures for Biocatalytic Applications: Decrypting the Role of Surfactant in Langmuir-Schaefer Layer Deposition. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26204-26215. [PMID: 35608556 DOI: 10.1021/acsami.2c03944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Graphene, a two-dimensional single-layer carbon allotrope, has attracted tremendous scientific interest due to its outstanding physicochemical properties. Its monatomic thickness, high specific surface area, and chemical stability render it an ideal building block for the development of well-ordered layered nanostructures with tailored properties. Herein, biohybrid graphene-based layer-by-layer structures are prepared by means of conventional and surfactant-assisted Langmuir-Schaefer layer deposition techniques, whereby cytochrome c molecules are accommodated within ordered layers of graphene oxide. The biocatalytic activity of the as-developed nanobio-architectures toward the enzymatic oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt and decolorization of pinacyanol chloride is tested. The results show that the multilayer structures exhibit high biocatalytic activity and stability in the absence of surfactant molecules during the deposition of the monolayers.
Collapse
Affiliation(s)
- Nikolaos Chalmpes
- Department of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Michaela Patila
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Antonios Kouloumpis
- Department of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Christina Alatzoglou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos Spyrou
- Department of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Mohammed Subrati
- Department of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Angeliki C Polydera
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | | | - Haralambos Stamatis
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Gournis
- Department of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
5
|
Du S, He T, Nie H, Yang G. High-Performance Wigs via the Langmuir-Blodgett Deposition of Keratin/Graphene Oxide Nanocomposite. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27233-27241. [PMID: 35656923 DOI: 10.1021/acsami.2c05965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wigs provide a common service as hair accessories in people's daily life. However, the traditional wigs, regardless of the matrices derived from human hair or synthetic fibers, are faced with limitations such as short service life, dry and brittle texture, and static electricity. In this work, we described a new strategy for surface coating of wigs via the Langmuir-Blodgett (LB) technique using a nanocomposite composed of hair-derived keratin and graphene oxide (Ker/GO). In contrast to the conventionally used immersion method, this strategy achieved a significantly higher surface coverage with a close-packed structure and controlled deposition layers of the coating, thus delivering high performances, including greatly enhanced ultraviolet (UV) resistance, antistatic electricity, heat dissipation, hydroscopicity, and moisturizing ability, and durability against washing, for both the human hair and synthetic-fiber-based wigs.
Collapse
Affiliation(s)
- Shan Du
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Ren Min Road No. 2999, Shanghai 201620, China
| | - Tiantian He
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Ren Min Road No. 2999, Shanghai 201620, China
| | - Huali Nie
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Ren Min Road No. 2999, Shanghai 201620, China
| | - Guang Yang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Ren Min Road No. 2999, Shanghai 201620, China
| |
Collapse
|