1
|
Alden NA, Yeingst TJ, Pfeiffer HM, Celik N, Arrizabalaga JH, Helton AM, Liu Y, Stairs DB, Glick AB, Goyal N, Hayes DJ. Near-Infrared Induced miR-34a Delivery from Nanoparticles in Esophageal Cancer Treatment. Adv Healthc Mater 2024; 13:e2303593. [PMID: 38215360 PMCID: PMC11032112 DOI: 10.1002/adhm.202303593] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/21/2023] [Indexed: 01/14/2024]
Abstract
Current nucleic acid delivery methods have not achieved efficient, non-toxic delivery of miRNAs with tumor-specific selectivity. In this study, a new delivery system based on light-inducible gold-silver-gold, core-shell-shell (CSS) nanoparticles is presented. This system delivers small nucleic acid therapeutics with precise spatiotemporal control, demonstrating the potential for achieving tumor-specific selectivity and efficient delivery of miRNA mimics. The light-inducible particles leverage the photothermal heating of metal nanoparticles due to the local surface plasmonic resonance for controlled chemical cleavage and release of the miRNA mimic payload. The CSS morphology and composition result in a plasmonic resonance within the near-infrared (NIR) region of the light spectrum. Through this method, exogenous miR-34a-5p mimics are effectively delivered to human squamous cell carcinoma TE10 cells, leading to apoptosis induction without adverse effects on untransformed keratinocytes in vitro. The CSS nanoparticle delivery system is tested in vivo in Foxn1nu athymic nude mice with bilateral human esophageal TE10 cancer cells xenografts. These experiments reveal that this CSS nanoparticle conjugates, when systemically administered, followed by 850 nm light emitting diode irradiation at the tumor site, 6 h post-injection, produce a significant and sustained reduction in tumor volume, exceeding 87% in less than 72 h.
Collapse
Affiliation(s)
- Nick A. Alden
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Tyus J. Yeingst
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Hanna M. Pfeiffer
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Nazmiye Celik
- The Huck Institute of the Life SciencesMillennium Science ComplexThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Department of Engineering Science and MechanicsPenn State University212 Earth‐Engineering Sciences Bldg.University ParkPA16802USA
| | - Julien H. Arrizabalaga
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Angelica M. Helton
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Yiming Liu
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Douglas B. Stairs
- Department of PathologyCollege of MedicineThe Pennsylvania State UniversityHersheyPA17033USA
- Penn State Cancer InstituteCollege of MedicineThe Pennsylvania State UniversityHersheyPA17033USA
| | - Adam B. Glick
- The Huck Institute of the Life SciencesMillennium Science ComplexThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Department of Veterinary and Biomedical SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
- The Center for Molecular Toxicology and CarcinogenesisThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Neerav Goyal
- Department of Otolaryngology—Head and Neck SurgeryCollege of MedicineThe Pennsylvania State UniversityHersheyPA17033USA
| | - Daniel J. Hayes
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- The Huck Institute of the Life SciencesMillennium Science ComplexThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Materials Research InstituteMillennium Science ComplexThe Pennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
2
|
Yeingst TJ, Arrizabalaga JH, Rawnaque FS, Stone LP, Yeware A, Helton AM, Dhawan A, Simon JC, Hayes DJ. Controlled Degradation of Polycaprolactone Polymers through Ultrasound Stimulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:34607-34616. [PMID: 37432796 PMCID: PMC10496768 DOI: 10.1021/acsami.3c06873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
This study describes the development of an ultrasound-responsive polymer system that provides on-demand degradation when exposed to high-intensity focused ultrasound (HIFU). Diels-Alder cycloadducts were used to crosslink polycaprolactone (PCL) polymers and underwent a retro Diels-Alder reaction when stimulated with HIFU. Two Diels-Alder polymer compositions were explored to evaluate the link between reverse reaction energy barriers and polymer degradation rates. PCL crosslinked with isosorbide was also used as a non-Diels-Alder-based control polymer. An increase of HIFU exposure time and amplitude correlated with an increase of PCL degradation for Diels-Alder-based polymers. Ultrasound imaging during HIFU allowed for real-time visualization of the on-demand degradation through cavitation-based mechanisms. The temperature surrounding the sample was monitored with a thermocouple during HIFU stimulation; a minimal increase in temperature was observed. PCL polymers were characterized using Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), optical profilometry, and mechanical testing. PCL degradation byproducts were identified by mass spectrometry, and their cytocompatibility was evaluated in vitro. Overall, this study demonstrated that HIFU is an effective image-guided, external stimulus to control the degradation of Diels-Alder-based PCL polymers on-demand.
Collapse
Affiliation(s)
- Tyus J Yeingst
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Julien H Arrizabalaga
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ferdousi S Rawnaque
- Graduate Program in Acoustics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Lindsay P Stone
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Amar Yeware
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Angelica M Helton
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Aman Dhawan
- Department of Orthopaedics and Rehabilitation, Penn State College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, United States
| | - Julianna C Simon
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Graduate Program in Acoustics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Daniel J Hayes
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, Millennium Science Complex, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- The Huck Institute of Life Sciences, Millennium Science Complex, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
3
|
Wei J, Zhu L, Lu Q, Li G, Zhou Y, Yang Y, Zhang L. Recent progress and applications of poly(beta amino esters)-based biomaterials. J Control Release 2023; 354:337-353. [PMID: 36623697 DOI: 10.1016/j.jconrel.2023.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023]
Abstract
Poly(beta-amino esters, PBAEs) are a promising class of cationic polymers synthesized from diacrylates and amines via Michael addition. Recently, PBAEs have been widely developed for drug delivery, immunotherapy, gene therapy, antibacterial, tissue engineering and other applications due to their convenient synthesis, good bio-compatibility and degradation properties. Herein, we mainly summarize the recent progress in the PBAEs synthesis and their applications. The amine groups of PBAEs could be protonated in low pH environment, exhibiting proton sponge and pH-sensitive abilities. Furthermore, the positive PBAEs can interact with negative genes via electrostatic interactions for efficient delivery of nucleic acids. Moreover, positive PBAEs could also directly kill bacteria by disrupting their membranes at high doses. Finally, PBAEs can augment the immune responses, and improve the bioactivity of hydrogels in tissue engineering.
Collapse
Affiliation(s)
- Jingjing Wei
- Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Linglin Zhu
- Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Qiuyun Lu
- Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Guicai Li
- Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Youlang Zhou
- Hand Surgery Research Center, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Yumin Yang
- Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, 226001 Nantong, Jiangsu, PR China.
| | - Luzhong Zhang
- Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, 226001 Nantong, Jiangsu, PR China.
| |
Collapse
|