1
|
Anders AG, Ruotolo BT. Ion Mobility-Mass Spectrometry Captures the Structural Consequences of Lipid Nanoparticle Encapsulation on Ribonucleic Acid Cargo. J Am Chem Soc 2024. [PMID: 39508132 DOI: 10.1021/jacs.4c11066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Ribonucleic acids (RNAs) are becoming increasingly significant in our search for improved biotherapeutics. RNA-based treatments offer high specificity, targeted delivery, and potentially lower-cost options for various debilitating human diseases. Despite these benefits, there are still relatively few FDA-approved RNA-based therapies, with the notable exceptions being the mRNA (mRNA) COVID-19 vaccines, which are delivered using lipid nanoparticle (LNP) systems. LNPs are distinctive drug delivery systems (DDSs) because of their ability to target specific cells, their biocompatibility, and their efficiency in merging with cellular membranes to enhance treatment effectiveness. While the biophysical landscapes of RNA structures in solution are relatively well understood, the impact of the LNP environment on RNA remains less clear. This study uses native ion mobility-mass spectrometry (IM-MS) and collision-induced unfolding (CIU) techniques to investigate how LNP encapsulation affects RNA structure and stability. We examine how various factors, such as ionization polarity, cofactor binding, lipid types, and lipid ratios, influence LNP-released RNA cargo. Our findings reveal that LNP DDSs induce significant changes in the structures and stabilities of their RNA cargo. However, the extent of these changes strongly depends on the type and composition of the lipids used. We conclude by discussing how IM-MS and CIU can aid in the continued development of more efficient LNP DDSs and improve DDS selection methodologies overall.
Collapse
Affiliation(s)
- Anna G Anders
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Stengel D, Özdal ZD, Truszkowska M, Saleh A, Seybold A, Bernkop-Schnürch A. Limited cellular uptake of liposomes: Might thiolated phospholipids hold the key? Int J Pharm 2024; 667:124812. [PMID: 39424086 DOI: 10.1016/j.ijpharm.2024.124812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/25/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
AIM It was the aim of this study to evaluate the impact of surface thiolation on cellular uptake of liposomes. METHODS Liposomes were prepared via the thin lipid film method, incorporating cholesterol, dipalmitoylphosphatidylcholin (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol). The characterization of liposomes included size, polydispersity index, surface morphology, zeta potential and stability in simulated gastric and intestinal fluid. Hemocompatibility and cytotoxicity of liposomes were investigated. Cellular uptake studies were performed on Caco-2, HEK, HeLa and SW620 cells, involving both quantitative analysis through flow cytometry and qualitative evaluation via confocal microscopy. Additionally, we investigated the impact of an oxidizing agent on thiol-dependent uptake. RESULTS Non-thiolated and thiolated liposomes exhibited a size of 149 nm to 274 nm and a PDI between 0.3 and 0.45. Liposomes were stable in simulated intestinal and gastric fluid. Hemocompatibility studies and cytocompatibility studies of liposomes showed negligible toxic effects of liposomes. Cellular uptake of thiolated liposomes was 1.8-, 2.1-, 5.4- and 1.4-fold enhanced in comparison to non-thiolated liposomes on Caco-2, HEK, HELA and SW620 cells, respectively. The results were qualitatively verified by confocal microscopy. Thiol dependent uptake was influenced by oxidizing agents on HeLa cells. CONCLUSION Surface thiolation represents a promising approach to enhance cellular uptake of liposomes.
Collapse
Affiliation(s)
- Daniel Stengel
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Zeliha Duygu Özdal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan 24100, Turkey
| | - Martyna Truszkowska
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Ahmad Saleh
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Department of Pharmacy, Universitas Mandala Waluya, A.H.Nasution, Kendari, 93231, Southeast Sulawesi, Republic of Indonesia
| | - Anna Seybold
- Department of Zoology, University of Innsbruck, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria.
| |
Collapse
|
3
|
Riske KA, González Miera G, Walker GC. Virtual Issue: Interfacial Science Developments in Latin America. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18673-18677. [PMID: 38146262 DOI: 10.1021/acs.langmuir.3c03761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
|
4
|
Wang Q, Song Y, Gao J, Li Q, Chen J, Xie Y, Wang Z, Tan H, Yang H, Zhang N, Qian J, Pang Z, Huang Z, Ge J. Hippo pathway-manipulating neutrophil-mimic hybrid nanoparticles for cardiac ischemic injury via modulation of local immunity and cardiac regeneration. Acta Pharm Sin B 2023; 13:4999-5015. [PMID: 38045050 PMCID: PMC10692379 DOI: 10.1016/j.apsb.2023.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 12/05/2023] Open
Abstract
The promise of regeneration therapy for restoration of damaged myocardium after cardiac ischemic injury relies on targeted delivery of proliferative molecules into cardiomyocytes whose healing benefits are still limited owing to severe immune microenvironment due to local high concentration of proinflammatory cytokines. Optimal therapeutic strategies are therefore in urgent need to both modulate local immunity and deliver proliferative molecules. Here, we addressed this unmet need by developing neutrophil-mimic nanoparticles NM@miR, fabricated by coating hybrid neutrophil membranes with artificial lipids onto mesoporous silica nanoparticles (MSNs) loaded with microRNA-10b. The hybrid membrane could endow nanoparticles with strong capacity to migrate into inflammatory sites and neutralize proinflammatory cytokines and increase the delivery efficiency of microRNA-10b into adult mammalian cardiomyocytes (CMs) by fusing with cell membranes and leading to the release of MSNs-miR into cytosol. Upon NM@miR administration, this nanoparticle could home to the injured myocardium, restore the local immunity, and efficiently deliver microRNA-10b to cardiomyocytes, which could reduce the activation of Hippo-YAP pathway mediated by excessive cytokines and exert the best proliferative effect of miR-10b. This combination therapy could finally improve cardiac function and mitigate ventricular remodeling. Consequently, this work offers a combination strategy of immunity modulation and proliferative molecule delivery to boost cardiac regeneration after injury.
Collapse
Affiliation(s)
- Qiaozi Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Yanan Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Jinfeng Gao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Qiyu Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Jing Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Yifang Xie
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zhengmin Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Haipeng Tan
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Hongbo Yang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Ning Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Juying Qian
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Zhiqing Pang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Zheyong Huang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| |
Collapse
|
5
|
Wang C, Karlsson A, Oguin TH, Macintyre AN, Sempowski GD, McCarthy KR, Wang Y, Moody MA, Yuan F. Transient inhibition of lysosomal functions potentiates nucleic acid vaccines. Proc Natl Acad Sci U S A 2023; 120:e2306465120. [PMID: 37871214 PMCID: PMC10622924 DOI: 10.1073/pnas.2306465120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/01/2023] [Indexed: 10/25/2023] Open
Abstract
Nucleic acid vaccines have shown promising results in the clinic against infectious diseases and cancers. To robustly improve the vaccine efficacy and safety, we developed an approach to increase the intracellular stability of nucleic acids by transiently inhibiting lysosomal function in targeted tissues using sucrose. To achieve efficient and localized delivery of sucrose in animals, we designed a biomimetic lipid nanoparticle (LNP) to target the delivery of sucrose into mouse muscle cells. Using this approach, viral antigen expression in mouse muscle after DNA vaccination was substantially increased and prolonged without inducing local or systemic inflammation or toxicity. The same change in antigen expression would be achieved if the vaccine dose could be increased by 3,000 folds, which is experimentally and clinically impractical due to material restrictions and severe toxicity that will be induced by such a high dose of nucleic acids. The increase in antigen expression augmented the infiltration and activation of antigen-presenting cells, significantly improved vaccine-elicited humoral and T cell responses, and fully protected mice against the viral challenge at a low dose of vaccine. Based on these observations, we conclude that transient inhibition of lysosome function in target tissue by sucrose LNPs is a safe and potent approach to substantially improve nucleic acid-based vaccines.
Collapse
Affiliation(s)
- Chunxi Wang
- Department of Biomedical Engineering, Duke University, Durham, NC27708
| | - Amelia Karlsson
- Duke Human Vaccine Institute, Duke University, Durham, NC27708
| | - Thomas H. Oguin
- Duke Human Vaccine Institute, Duke University, Durham, NC27708
| | - Andrew N. Macintyre
- Duke Human Vaccine Institute, Duke University, Durham, NC27708
- Department of Medicine, Duke University School of Medicine, Durham, NC27708
| | - Gregory D. Sempowski
- Duke Human Vaccine Institute, Duke University, Durham, NC27708
- Department of Medicine, Duke University School of Medicine, Durham, NC27708
| | - Kevin R. McCarthy
- Center for vaccine research, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Yifei Wang
- Department of Biomedical Engineering, Duke University, Durham, NC27708
| | - M. Anthony Moody
- Duke Human Vaccine Institute, Duke University, Durham, NC27708
- Department of Pediatrics, Duke University School of Medicine, Durham, NC27708
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, NC27708
| |
Collapse
|
6
|
Tian X, Risgaard NA, Löffler PMG, Vogel S. DNA-Programmed Lipid Nanoreactors for Synthesis of Carbohydrate Mimetics by Fusion of Aqueous Sub-attoliter Compartments. J Am Chem Soc 2023; 145:19633-19641. [PMID: 37619973 PMCID: PMC10510321 DOI: 10.1021/jacs.3c04093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Indexed: 08/26/2023]
Abstract
Lipid nanoreactors are biomimetic reaction vessels (nanoreactors) that can host aqueous or membrane-associated chemical and enzymatic reactions. Nanoreactors provide ultra-miniaturization from atto- to zeptoliter volumes per reaction vessel with the major challenge of encoding and spatio-temporal control over reactions at the individual nanoreactor or population level, thereby controlling volumes several orders of magnitude below advanced microfluidic devices. We present DNA-programmed lipid nanoreactors (PLNs) functionalized with lipidated oligonucleotides (LiNAs) that allow programming and encoding of nanoreactor interactions by controlled membrane fusion, exemplified for a set of carbohydrate mimetics with mono- to hexasaccharide azide building blocks connected by click-chemistry. Programmed reactions are initiated by fusion of distinct populations of nanoreactors with individually encapsulated building blocks. A focused library of triazole-linked carbohydrate-Cy5 conjugates formed by strain-promoted azide-alkyne cycloadditions demonstrated LiNA-programmed chemistry, including two-step reaction schemes. The PLN method is developed toward a robust platform for synthesis in confined space employing fully programmable nanoreactors, applicable to multistep synthesis for the generation of combinatorial libraries with subsequent analysis of the molecules formed, based on the addressability of the lipid nanoreactors.
Collapse
Affiliation(s)
- Xinwei Tian
- Department of Physics, Chemistry
and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Nikolaj Alexander Risgaard
- Department of Physics, Chemistry
and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Philipp M. G. Löffler
- Department of Physics, Chemistry
and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Stefan Vogel
- Department of Physics, Chemistry
and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
7
|
Azimi FC, Dean TT, Minari K, Basso LGM, Vance TDR, Serrão VHB. A Frame-by-Frame Glance at Membrane Fusion Mechanisms: From Viral Infections to Fertilization. Biomolecules 2023; 13:1130. [PMID: 37509166 PMCID: PMC10377500 DOI: 10.3390/biom13071130] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Viral entry and fertilization are distinct biological processes that share a common mechanism: membrane fusion. In viral entry, enveloped viruses attach to the host cell membrane, triggering a series of conformational changes in the viral fusion proteins. This results in the exposure of a hydrophobic fusion peptide, which inserts into the host membrane and brings the viral and host membranes into close proximity. Subsequent structural rearrangements in opposing membranes lead to their fusion. Similarly, membrane fusion occurs when gametes merge during the fertilization process, though the exact mechanism remains unclear. Structural biology has played a pivotal role in elucidating the molecular mechanisms underlying membrane fusion. High-resolution structures of the viral and fertilization fusion-related proteins have provided valuable insights into the conformational changes that occur during this process. Understanding these mechanisms at a molecular level is essential for the development of antiviral therapeutics and tools to influence fertility. In this review, we will highlight the biological importance of membrane fusion and how protein structures have helped visualize both common elements and subtle divergences in the mechanisms behind fusion; in addition, we will examine the new tools that recent advances in structural biology provide researchers interested in a frame-by-frame understanding of membrane fusion.
Collapse
Affiliation(s)
- Farshad C. Azimi
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Trevor T. Dean
- Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Karine Minari
- Biomolecular Cryo-Electron Microscopy Facility, University of California-Santa Cruz, Santa Cruz, CA 95064, USA;
| | - Luis G. M. Basso
- Laboratório de Ciências Físicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil;
| | - Tyler D. R. Vance
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Vitor Hugo B. Serrão
- Biomolecular Cryo-Electron Microscopy Facility, University of California-Santa Cruz, Santa Cruz, CA 95064, USA;
- Department of Chemistry and Biochemistry, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
8
|
Karmacharya M, Kumar S, Cho YK. Tuning the Extracellular Vesicles Membrane through Fusion for Biomedical Applications. J Funct Biomater 2023; 14:jfb14020117. [PMID: 36826916 PMCID: PMC9960107 DOI: 10.3390/jfb14020117] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Membrane fusion is one of the key phenomena in the living cell for maintaining the basic function of life. Extracellular vesicles (EVs) have the ability to transfer information between cells through plasma membrane fusion, making them a promising tool in diagnostics and therapeutics. This study explores the potential applications of natural membrane vesicles, EVs, and their fusion with liposomes, EVs, and cells and introduces methodologies for enhancing the fusion process. EVs have a high loading capacity, bio-compatibility, and stability, making them ideal for producing effective drugs and diagnostics. The unique properties of fused EVs and the crucial design and development procedures that are necessary to realize their potential as drug carriers and diagnostic tools are also examined. The promise of EVs in various stages of disease management highlights their potential role in future healthcare.
Collapse
Affiliation(s)
- Mamata Karmacharya
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sumit Kumar
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Correspondence: (S.K.); (Y.-K.C.)
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Correspondence: (S.K.); (Y.-K.C.)
| |
Collapse
|
9
|
Udyavara Nagaraj V, Juhász T, Quemé-Peña M, Szigyártó IC, Bogdán D, Wacha A, Mihály J, Románszki L, Varga Z, Andréasson J, Mándity I, Beke-Somfai T. Stimuli-Responsive Membrane Anchor Peptide Nanofoils for Tunable Membrane Association and Lipid Bilayer Fusion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55320-55331. [PMID: 36473125 PMCID: PMC9782321 DOI: 10.1021/acsami.2c11946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/22/2022] [Indexed: 06/07/2023]
Abstract
Self-assembled peptide nanostructures with stimuli-responsive features are promising as functional materials. Despite extensive research efforts, water-soluble supramolecular constructs that can interact with lipid membranes in a controllable way are still challenging to achieve. Here, we have employed a short membrane anchor protein motif (GLFD) and coupled it to a spiropyran photoswitch. Under physiological conditions, these conjugates assemble into ∼3.5 nm thick, foil-like peptide bilayer morphologies. Photoisomerization from the closed spiro (SP) form to the open merocyanine (MC) form of the photoswitch triggers rearrangements within the foils. This results in substantial changes in their membrane-binding properties, which also varies sensitively to lipid composition, ranging from reversible nanofoil reformation to stepwise membrane adsorption. The formed peptide layers in the assembly are also able to attach to various liposomes with different surface charges, enabling the fusion of their lipid bilayers. Here, SP-to-MC conversion can be used both to trigger and to modulate the liposome fusion efficiency.
Collapse
Affiliation(s)
- Vignesh Udyavara Nagaraj
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, BudapestH-1117, Hungary
- Hevesy
György Ph.D. School of Chemistry, Eötvös Loránd University, BudapestH-1117, Hungary
| | - Tünde Juhász
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, BudapestH-1117, Hungary
| | - Mayra Quemé-Peña
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, BudapestH-1117, Hungary
- Hevesy
György Ph.D. School of Chemistry, Eötvös Loránd University, BudapestH-1117, Hungary
| | - Imola Cs. Szigyártó
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, BudapestH-1117, Hungary
| | - Dóra Bogdán
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, BudapestH-1117, Hungary
- Department
of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, BudapestH-1092, Hungary
| | - András Wacha
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, BudapestH-1117, Hungary
| | - Judith Mihály
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, BudapestH-1117, Hungary
| | - Loránd Románszki
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, BudapestH-1117, Hungary
| | - Zoltán Varga
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, BudapestH-1117, Hungary
| | - Joakim Andréasson
- Department
of Chemistry and Chemical Engineering, Physical Chemistry, Chalmers University of Technology, GothenburgSE-412 96, Sweden
| | - István Mándity
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, BudapestH-1117, Hungary
- Department
of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, BudapestH-1092, Hungary
| | - Tamás Beke-Somfai
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, BudapestH-1117, Hungary
- Department
of Chemistry and Chemical Engineering, Physical Chemistry, Chalmers University of Technology, GothenburgSE-412 96, Sweden
| |
Collapse
|
10
|
Hohokabe M, Higashi K, Yamada Y, Fujimoto T, Tokumoto T, Imamura H, Morita T, Ueda K, Limwikrant W, Moribe K. Modification of liposomes composed of a cationic lipid TMAG and an anionic lipid DSPG with a PEGylated lipid based on the investigation of lipid structures. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Chiechio RM, Ducarre S, Marets C, Dupont A, Even-Hernandez P, Pinson X, Dutertre S, Artzner F, Musumeci P, Ravel C, Faro MJL, Marchi V. Encapsulation of Luminescent Gold Nanoclusters into Synthetic Vesicles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213875. [PMID: 36364651 PMCID: PMC9655092 DOI: 10.3390/nano12213875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/02/2023]
Abstract
Gold nanoclusters (Au NCs) are attractive luminescent nanoprobes for biomedical applications. In vivo biosensing and bioimaging requires the delivery of the Au NCs into subcellular compartments. In this view, we explore here the possible encapsulation of ultra-small-sized red and blue emitting Au NCs into liposomes of various sizes and chemical compositions. Different methods were investigated to prepare vesicles containing Au NCs in their lumen. The efficiency of the process was correlated to the structural and morphological aspect of the Au NCs' encapsulating vesicles thanks to complementary analyses by SAXS, cryo-TEM, and confocal microscopy techniques. Cell-like-sized vesicles (GUVs) encapsulating red or blue Au NCs were successfully obtained by an innovative method using emulsion phase transfer. Furthermore, exosome-like-sized vesicles (LUVs) containing Au NCs were obtained with an encapsulation yield of 40%, as estimated from ICP-MS.
Collapse
Affiliation(s)
- Regina M. Chiechio
- Institut des Sciences Chimiques de Rennes, CNRS UMR 6226, Université Rennes 1, F-35000 Rennes, France
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università Di Catania, Via Santa Sofia 64, 95123 Catania, Italy
- IMM-CNR, Via S. Sofia 64, 95123 Catania, Italy
| | | | - Célia Marets
- Institut des Sciences Chimiques de Rennes, CNRS UMR 6226, Université Rennes 1, F-35000 Rennes, France
| | - Aurélien Dupont
- BIOSIT, Inserm, CNRS UMS 3480, Université Rennes1, US_S 018, F-35000 Rennes, France
| | - Pascale Even-Hernandez
- Institut des Sciences Chimiques de Rennes, CNRS UMR 6226, Université Rennes 1, F-35000 Rennes, France
| | - Xavier Pinson
- Microscopy Rennes Imaging Centre, SFR Biosit, CNRS UMS 3480—US INSERM 018, Université Rennes 1, F-35000 Rennes, France
| | - Stéphanie Dutertre
- Microscopy Rennes Imaging Centre, SFR Biosit, CNRS UMS 3480—US INSERM 018, Université Rennes 1, F-35000 Rennes, France
| | - Franck Artzner
- Institut de Physique, CNRS UMR 6251, Université Rennes 1, F-35000 Rennes, France
| | - Paolo Musumeci
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università Di Catania, Via Santa Sofia 64, 95123 Catania, Italy
| | - Célia Ravel
- Service de Biologie de la Reproduction-CECOS, CHU Rennes, F-35000 Rennes, France
- Irset (Institut de Recherche en Santé, Environnement et Travail), Inserm, EHESP, Université Rennes 1, F-35000 Rennes, France
| | - Maria Jose Lo Faro
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università Di Catania, Via Santa Sofia 64, 95123 Catania, Italy
- IMM-CNR, Via S. Sofia 64, 95123 Catania, Italy
| | - Valérie Marchi
- Institut des Sciences Chimiques de Rennes, CNRS UMR 6226, Université Rennes 1, F-35000 Rennes, France
| |
Collapse
|