1
|
Saddique Z, Imran M, Javaid A, Latif S, Kim TH, Janczarek M, Bilal M, Jesionowski T. Bio-fabricated bismuth-based materials for removal of emerging environmental contaminants from wastewater. ENVIRONMENTAL RESEARCH 2023; 229:115861. [PMID: 37062477 DOI: 10.1016/j.envres.2023.115861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/21/2023]
Abstract
Although rapid industrialization has made life easier for humans, several associated issues are emerging and harming the environment. Wastewater is regarded as one of the key problems of the 21st century due to its massive production every year and requires immediate attention from all stakeholders to protect the environment. Since the introduction of nanotechnology, bismuth-based nanomaterials have been used in variety of applications. Various techniques, such as hydrothermal, solvo-thermal and biosynthesis, have been reported for synthesizing these materials, etc. Among these, biosynthesis is eco-friendly, cost-effective, and less toxic than conventional chemical methods. The prime focuses of this review are to elaborate biosynthesis of bismuth-based nanomaterials via bio-synthetic agents such as plant, bacteria and fungi and their application in wastewater treatment as anti-pathogen/photocatalyst for pollutant degradation. Besides this, future perspectives have been presented for the upcoming research in this field, along with concluding remarks.
Collapse
Affiliation(s)
- Zohaib Saddique
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab Lahore, 54000, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab Lahore, 54000, Pakistan.
| | - Ayesha Javaid
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab Lahore, 54000, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, 54000, Pakistan
| | - Tak H Kim
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Marcin Janczarek
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland.
| |
Collapse
|
2
|
Veisi H, Pirhayati M, Mohammadi P, Tamoradi T, Hemmati S, Karmakar B. Recent advances in the application of magnetic nanocatalysts in multicomponent reactions. RSC Adv 2023; 13:20530-20556. [PMID: 37435379 PMCID: PMC10331794 DOI: 10.1039/d3ra01208e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/30/2023] [Indexed: 07/13/2023] Open
Abstract
Recently, the preparation and applications of magnetic nanostructures have attracted increasing attention in nanocatalysis studies, and magnetic nanoparticle (MNP) functionalized catalysts have been applied in important reactions such as Suzuki-Miyaura and Heck couplings. The modified nanocomposites demonstrate significant catalytic efficiency and excellent benefits in the context of catalyst recovery methods. This review discusses the recent modified magnetic nanocomposites in the field of catalytic applications along with the synthetic processes that are usually employed.
Collapse
Affiliation(s)
- Hojat Veisi
- Department of Chemistry, Payame Noor University Tehran Iran
| | - Mozhgan Pirhayati
- Department of Applied Chemistry, Faculty of Science, Malayer University Malayer Iran
| | | | | | - Saba Hemmati
- Department of Chemistry, Payame Noor University Tehran Iran
| | - Bikash Karmakar
- Department of Chemistry, Gobardanga Hindu College 24-Parganas (North) India
| |
Collapse
|
3
|
Romanov R, Zabrosaev IV, Kozodaev MG, Yakubovsky DI, Tatmyshevskiy MK, Timofeev AA, Doroshina NV, Novikov SM, Volkov VS, Markeev AM. Stabilization of the Nano-Sized 1T Phase through Rhenium Doping in the Metal-Organic CVD MoS 2 Films. ACS OMEGA 2023; 8:16579-16586. [PMID: 37214699 PMCID: PMC10193411 DOI: 10.1021/acsomega.2c06794] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/19/2023] [Indexed: 05/24/2023]
Abstract
Heterogeneous nanostructures composed of metastable tetragonal 1T-MoS2 and stable hexagonal 2H-MoS2 phases are highly promising for a wide range of applications, including catalysis and ion batteries, due to the high electrical conductivity and catalytic activity of the 1T phase. However, a controllable synthesis of stabilized 1T-MoS2 films over the wafer-scale area is challenging. In this work, a metal-organic chemical vapor deposition process allowing us to obtain ultrathin MoS2 films containing both 1T and 2H phases and control their ratio through rhenium doping was suggested. As a result, Mo1-xRexS2 films with a 1T-MoS2 fraction up to ≈30% were obtained, which were relatively stable under normal conditions for a long time. X-ray photoelectron spectroscopy and Raman spectroscopy also indicated that the 1T-MoS2 phase fraction increased with rhenium concentration increase saturating at Re concentrations above 5 at. %. Also, its concentration was found to significantly affect the film resistivity. Thus, the resistivity of the film containing approximately 30% of the 1T phase was about 130 times lower than that of the film without the 1T phase.
Collapse
Affiliation(s)
- Roman
I. Romanov
- Moscow
Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny 141701, Moscow region, Russia
| | - Ivan V. Zabrosaev
- Moscow
Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny 141701, Moscow region, Russia
| | - Maxim G. Kozodaev
- Moscow
Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny 141701, Moscow region, Russia
| | - Dmitry I. Yakubovsky
- Center
for Photonics & 2D Materials, Moscow
Institute of Physics and Technology (National Research University), Dolgoprudny 141700, Russia
| | - Mikhail K. Tatmyshevskiy
- Center
for Photonics & 2D Materials, Moscow
Institute of Physics and Technology (National Research University), Dolgoprudny 141700, Russia
| | - Aleksey A. Timofeev
- National
Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh., 31, Moscow 115409, Russia
| | - Natalia V. Doroshina
- Center
for Photonics & 2D Materials, Moscow
Institute of Physics and Technology (National Research University), Dolgoprudny 141700, Russia
| | - Sergey M. Novikov
- Center
for Photonics & 2D Materials, Moscow
Institute of Physics and Technology (National Research University), Dolgoprudny 141700, Russia
| | - Valentyn S. Volkov
- Center
for Photonics & 2D Materials, Moscow
Institute of Physics and Technology (National Research University), Dolgoprudny 141700, Russia
| | - Andrey M. Markeev
- Moscow
Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny 141701, Moscow region, Russia
| |
Collapse
|
4
|
Fan X, Huang Y, Zhou Y, Li Y. Shaping of Pd@UiO-66-biguanidine MOFs into composite beads with Cu-based CMC for synergistic catalysis towards CO-free carbonylative Sonogashira reaction. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
5
|
Wang J, Cheon WS, Lee JY, Yan W, Jung S, Jang HW, Shokouhimehr M. Magnetic boron nitride adorned with Pd nanoparticles: an efficient catalyst for the reduction of nitroarenes in aqueous media. Dalton Trans 2023; 52:3567-3574. [PMID: 36880529 DOI: 10.1039/d2dt03920f] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Hexagonal boron nitride (h-BN) is an excellent support material for nanocatalysts due to its two-dimensional (2D) architectural morphology and physicochemical stability. In this study, a chemically stable, recoverable, eco-friendly, and magnetic h-BN/Pd/Fe2O3 catalyst was prepared by a one-step calcination process, in which Pd and Fe2O3 nanoparticles (NPs) were uniformly decorated on the surface of h-BN via a typical adsorption-reduction procedure. In detail, nanosized magnetic (Pd/Fe2O3) NPs were derived from a Prussian blue analogue prototype, a well-known porous metal-organic framework, and then further surface-engineered to produce magnetic BN nanoplate-supported Pd nanocatalysts. The structural and morphological features of h-BN/Pd/Fe2O3 were investigated by spectroscopic and microscopic characterization techniques. Moreover, the h-BN nanosheets endow it with stability and appropriate chemical anchoring sites which solve the problems of inefficient reaction rate and high consumption caused by the inevitable agglomeration of precious metal NPs. Under mild reaction conditions, the developed nanostructured h-BN/Pd/Fe2O3 as the catalyst shows high yield and efficient reusability in reducing nitroarenes into the corresponding anilines using sodium borohydride (NaBH4) as a reductant.
Collapse
Affiliation(s)
- Jinghan Wang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea.
| | - Woo Seok Cheon
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea.
| | - Ju-Yong Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea.
| | - Wenqian Yan
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sunghoon Jung
- Department of Nano-bio Convergence, Korea Institute of Materials Science, Changwon, 51508, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea.
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
6
|
Ruidas S, Chowdhury A, Ghosh A, Ghosh A, Mondal S, Wonanke ADD, Addicoat M, Das AK, Modak A, Bhaumik A. Covalent Organic Framework as a Metal-Free Photocatalyst for Dye Degradation and Radioactive Iodine Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4071-4081. [PMID: 36905363 DOI: 10.1021/acs.langmuir.2c03379] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Exploring a covalent organic framework (COF) material as an efficient metal-free photocatalyst and as an adsorbent for the removal of pollutants from contaminated water is very challenging in the context of sustainable chemistry. Herein, we report a new porous crystalline COF, C6-TRZ-TPA COF, via segregation of donor-acceptor moieties through the extended Schiff base condensation between tris(4-formylphenyl)amine and 4,4',4″-(1,3,5-triazine-2,4,6-triyl)trianiline. This COF displayed a Brunauer-Emmett-Teller (BET) surface area of 1058 m2 g-1 with a pore volume of 0.73 cc g-1. Again, extended π-conjugation, the presence of heteroatoms throughout the framework, and a narrow band gap of 2.2 eV, all these features collectively work for the environmental remediation in two different perspectives: it could harness solar energy for environmental clean-up, where the COF has been explored as a robust metal-free photocatalyst for wastewater treatment and as an adsorbent for iodine capture. In our endeavor of wastewater treatment, we have conducted the photodegradation of rose bengal (RB) and methylene blue (MB) as model pollutants since these are extremely toxic, are health hazard, and bioaccumulative in nature. The catalyst C6-TRZ-TPA COF showed a very high catalytic efficiency of 99% towards the degradation of 250 parts per million (ppm) of RB solution in 80 min under visible light irradiation with the rate constant of 0.05 min-1. Further, C6-TRZ-TPA COF is found to be an excellent adsorbent as it efficiently adsorbed radioactive iodine from its solution as well as from the vapor phase. The material exhibits a very rapid iodine capturing tendency with an outstanding iodine vapor uptake capacity of 4832 mg g-1.
Collapse
Affiliation(s)
- Santu Ruidas
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Avik Chowdhury
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Anirban Ghosh
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Avik Ghosh
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sujan Mondal
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - A D Dinga Wonanke
- School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS Nottingham, U.K
| | - Matthew Addicoat
- School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS Nottingham, U.K
| | - Abhijit Kumar Das
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Arindam Modak
- Amity Institute of Applied Sciences, Amity University, Noida, Amity Rd, Sector 125, Noida, Uttar Pradesh 201301, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
7
|
Cai Z, Lei S, Hu Y, Chen Y, Shen M, Lei M. Iron doped BiOBr loaded on carbon spheres for improved visible-light-driven detoxification of 2-chloroethyl sulfide. Dalton Trans 2023; 52:3040-3051. [PMID: 36779551 DOI: 10.1039/d2dt03666e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this study, flower-like porous iron doped bismuth oxybromide on porous activated carbon visible light catalysts (BiOBr/Fe@AC) were prepared by a reactive imidazole ionic liquid surfactant assisted solvothermal process. The morphologies, structures, optical properties and photocatalytic properties were investigated in detail. The morphology of the synthesized Fe doped BiOBr composites gradually changed from a regular spherical shape to a non-specific shape with the increase of the alkyl chain length of the ionic liquid surfactants. The photocurrent of BiOBr/Fe@AC composites is greatly influenced by the content of Fe, the type of carbon sphere and the size of the composites. The photocatalytic activity of the obtained BiOBr/Fe@AC composites was evaluated by the degradation of 2-chloroethyl sulfide (CEES) under visible light. The BiOBr/Fe@AC composites exhibited significantly enhanced photocatalytic performance compared to that of pure BiOBr and the 10.0% Fe doped BiOBr/Fe@AC composite displayed the highest photocatalytic activity. The main active species were determined to be holes and superoxide radicals by electron spin resonance (ESR) analysis and free radical trapping experiments. The introduction of iron can improve the separation and transfer rate of photoinduced charges. Carbon spheres can enhance light harvesting, improve electron transfer and increase the number of catalytic active sites. Iron and carbon embellishment is an effective strategy to enhance the photocatalytic efficiency of BiOBr. Finally, a possible photocatalytic mechanism of BiOBr/Fe@AC has been proposed.
Collapse
Affiliation(s)
- Zixian Cai
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, P. R. China. .,School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China.
| | - Shaoan Lei
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China.
| | - Yimin Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China.
| | - Yu Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China.
| | - Ming Shen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China.
| | - Meiling Lei
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, P. R. China.
| |
Collapse
|
8
|
Functional carbon-supported nanocatalysts for biomass conversion. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|