1
|
Yang S, Xie D, Zhang R, Zhang C, Song S, Yang A, Liu X, Song Y. A multiple physical crosslinked cellulose-based bioplastics with robust mechanical and thermal stability. Int J Biol Macromol 2024; 283:137610. [PMID: 39542322 DOI: 10.1016/j.ijbiomac.2024.137610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/19/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
The widespread use of traditional petroleum-based plastics has created an environmental crisis and health hazard, so there is an urgent need for bioplastics with excellent performance. However, fabricating of robust mechanical properties and heat resistance bioplastics in an efficient way has remained an enormous challenge. Herein, we proposed a strategy for the synergistic preparation of high-performance bioplastics with multiple physical crosslinking network structures via noncovalent and coordination bonds. In this strategy, carboxylated cellulose nanofibers (CNFs) and the polyphenol structures of tannic acid (TA) interacted noncovalently to create network structures; the bioplastic immersed in Ca2+ solution formed ionic crosslinked networks and TA-Ca coordination bonds. The synergistic effect of multiple network structures composed of hydrogen and coordination bonds made cellulose-based bioplastics have dense structures and robust tensile strength (114.2 MPa), while bioplastics had the characteristics of high transparency and superior thermal stability. Furthermore, the laminated composites formed by the bioplastic and PVA could support 1,000 g easily, which allowed it to be used as weighing application. Thus, the proposed multiple physical crosslinking strategy provides a method for developing cellulose-based bioplastics with excellent performance, which offers a new approach for the subsequent development of sustainable green materials.
Collapse
Affiliation(s)
- Siwen Yang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Di Xie
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Rui Zhang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Congcong Zhang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Shanshan Song
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - An Yang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Xinru Liu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Yongming Song
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, Heilongjiang 150040, China; College of Home and Art Design, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
2
|
Ma Z, Feng J, Huo S, Sun Z, Bourbigot S, Wang H, Gao J, Tang LC, Zheng W, Song P. Mussel-Inspired, Self-Healing, Highly Effective Fully Polymeric Fire-Retardant Coatings Enabled by Group Synergy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410453. [PMID: 39212641 DOI: 10.1002/adma.202410453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Indexed: 09/04/2024]
Abstract
Fire-retardant coatings represent a universal cost-effective approach to providing fire protection for various substrates without compromising substrates' bulk properties. However, it has been attractive yet highly challenging to create waterborne polymeric fire-retardant coatings combining high-efficiency, generally strong adhesion, and self-repairability due to a lack of rational design principles. Inspired by mussel's unique adhesive, self-healing, and char-forming mechanisms, herein, a "group synergy" design strategy is proposed to realize the combination of self-healing, strong adhesion, and high efficiency in a fully polymeric fire-retardant coating via multiple synergies between catechol, phosphonic, and hydroxyethyl groups. As-created fire-retardant coating exhibits a rapid room-temperature self-healing ability and strong adhesion to (non)polar substrates due to multiple dynamic non-covalent interactions enabled by these groups. Because these functional groups enable the formation of a robust structurally intact yet slightly expanded char layer upon exposure to flame, a 200 µm-thick such coating can make extremely flammable polystyrene foam very difficult to ignite and self-extinguishing, which far outperforms previous strategies. Moreover, this coating can provide universal exceptional fire protection for a variety of substrates from polymer foams, and timber, to fabric and steel. This work presents a promising material design principle to create next-generation sustainable high-performance fire-retardant coatings for general fire protection.
Collapse
Affiliation(s)
- Zhewen Ma
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Jiabing Feng
- Centre for Future Materials, University of Southern Queensland, Springfield, 4300, Australia
| | - Siqi Huo
- Centre for Future Materials, University of Southern Queensland, Springfield, 4300, Australia
| | - Ziqi Sun
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, 4000, Australia
| | - Serge Bourbigot
- ENSCL, UMR 8207 - UMET - Unité Matériaux et Transformations, Univ. Lille, 42 rue Paul. Duez, Lille, 59000, France
| | - Hao Wang
- Centre for Future Materials, University of Southern Queensland, Springfield, 4300, Australia
| | - Jiefeng Gao
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Long-Cheng Tang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Wei Zheng
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield, 4300, Australia
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, 4300, Australia
| |
Collapse
|
3
|
Tan YL, Leow Y, Min Wong JH, Loh XJ, Goh R. Exploring Stimuli-Responsive Natural Processes for the Fabrication of High-Performance Materials. Biomacromolecules 2024; 25:5437-5453. [PMID: 39153005 DOI: 10.1021/acs.biomac.4c00718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Climate change and environmental pollution have underscored the urgency for more sustainable alternatives in synthetic polymer production. Nature's repertoire of biopolymers with excellent multifaceted properties alongside biodegradability could inspire next-generation innovative green polymer fabrication routes. Stimuli-induced processing, driven by changes in environmental factors, such as pH, ionic strength, and mechanical forces, plays a crucial role in natural polymeric self-assembly process. This perspective aims to close the gap in understanding biopolymer formation by highlighting the essential role of stimuli triggers in facilitating the bottom-up fabrication, allowing for the formation of intricate hierarchical structures. In particular, this perspective will delve into the stimuli-responsive processing of high-performance biopolymers produced by mussels, caddisflies, velvet worms, sharks, whelks, and squids, which are known for their robust mechanical properties, durability, and wet adhesion capabilities. Finally, we provide an overview of current advancements and challenges in understanding stimuli-induced natural formation pathways and their translation to biomimetic materials.
Collapse
Affiliation(s)
- Yee Lin Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Yihao Leow
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
| | - Joey Hui Min Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive, Singapore 117576, Republic of Singapore
| | - Rubayn Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| |
Collapse
|
4
|
Li M, Tong L, Li X, Zou D, Xu S, Ye F, Wang K. Enhanced Intrinsic Self-Healing Performance of Mussel Inspired Coating via In-Situ Cation Capture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311658. [PMID: 38733228 DOI: 10.1002/smll.202311658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Under damp or aquatic conditions, the corrosion products deposited on micro-cracks/pore sites bring about the failure of intrinsically healable organic coatings. Inspired by mussels, a composite coating of poly (methyl methacrylate-co-butyl acylate-co-dopamine acrylamide)/phenylalanine-functionalized boron nitride (PMBD/BN-Phe) is successfully prepared on the reinforcing steel, which exhibits excellent anti-corrosion and underwater self-healing capabilities. The self-healing property of PMBD is derived from the synergistic effect of hydrogen bonding and metal-ligand coordination bonding, and thereby the continuous generation of corrosion products can be significantly suppressed through in situ capture of cations by the catechol group. Furthermore, the corrosion protection ability can be remarkably improved by the labyrinth effect of BN and the inhibition role of Phe, and the desired interfacial compatibility can be formed by the hydrogen bonds between BN-Phe and PMBD matrix. The corrosion current density (icorr) of PMBD/BN-Phe coating is determined as 7.95 × 10-11 A cm-2. The low-frequency impedance modulus (|Z|f = 0.0 1 Hz is remained at 3.47 × 109 Ω cm2, indicating an ultra-high self-healing efficiency (≈89.5%). It is anticipated to provide a unique strategy for development of an underwater self-healing coating and robust durability for application in anti-corrosion engineering of marine buildings.
Collapse
Affiliation(s)
- Miaomiao Li
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Libo Tong
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, China
| | - Xiangjun Li
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Dening Zou
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Shiwei Xu
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, China
| | - Fangxia Ye
- The Key Laboratory for Surface Engineering and Remanufacturing of Shaanxi Province, Xi'an University, Xi'an, 710065, China
| | - Kuaishe Wang
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
5
|
Li M, Mao A, Guan Q, Saiz E. Nature-inspired adhesive systems. Chem Soc Rev 2024; 53:8240-8305. [PMID: 38982929 DOI: 10.1039/d3cs00764b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Many organisms in nature thrive in intricate habitats through their unique bio-adhesive surfaces, facilitating tasks such as capturing prey and reproduction. It's important to note that the remarkable adhesion properties found in these natural biological surfaces primarily arise from their distinct micro- and nanostructures and/or chemical compositions. To create artificial surfaces with superior adhesion capabilities, researchers delve deeper into the underlying mechanisms of these captivating adhesion phenomena to draw inspiration. This article provides a systematic overview of various biological surfaces with different adhesion mechanisms, focusing on surface micro- and nanostructures and/or chemistry, offering design principles for their artificial counterparts. Here, the basic interactions and adhesion models of natural biological surfaces are introduced first. This will be followed by an exploration of research advancements in natural and artificial adhesive surfaces including both dry adhesive surfaces and wet/underwater adhesive surfaces, along with relevant adhesion characterization techniques. Special attention is paid to stimulus-responsive smart artificial adhesive surfaces with tunable adhesive properties. The goal is to spotlight recent advancements, identify common themes, and explore fundamental distinctions to pinpoint the present challenges and prospects in this field.
Collapse
Affiliation(s)
- Ming Li
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| | - Anran Mao
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 100 44 Stockholm, Sweden
| | - Qingwen Guan
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Eduardo Saiz
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
6
|
Xu W, Ping Z, Gong X, Xie F, Liu Y, Leng J. Self-Healing Polymers Coupling Shape Memory Effect. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15957-15968. [PMID: 39039655 DOI: 10.1021/acs.langmuir.4c01369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
In recent years, shape memory polymers (SMPs) and self-healing polymers (SHPs) have been research hotspots in the field of smart polymers owing to their unique stimulus response mechanisms. Previous research on SHPs has primarily focused on contact repair. However, in instances where substantial cracks occur during practical use, autonomous closure becomes challenging, impeding effective repair. By integration of the shape memory effect (SME) with SHPs, physical wound closure can be achieved via the SME, facilitating subsequent chemical/physical repair processes and enhancing self-healing effectiveness. This article reviews key findings from previous research on shape memory-assisted self-healing (SMASH) materials and addresses the challenges and opportunities for future investigation.
Collapse
Affiliation(s)
- Wanting Xu
- Department of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, P. R. China
| | - Zhongxin Ping
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Xiaobo Gong
- Department of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, P. R. China
| | - Fang Xie
- Department of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, P. R. China
| | - Yanju Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Jinsong Leng
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| |
Collapse
|
7
|
Li PX, Zhang ZY, Cui JY, Wu SH, Liu Y, Ren HT, Han X. Satisfactory Tensile Strength and Strain of Recyclable Polyurethane with a Trimaleimide Structure for Thermal Self-Healing and Anticorrosive Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12250-12263. [PMID: 38818891 DOI: 10.1021/acs.langmuir.4c01363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Bismaleimide (BMI) is often used as the cross-linking reagent in Diels-Alder (D-A)-type intrinsic self-healing materials (DISMs) to promote the connectivity of damaged surfaces based on reversible D-A bond formation on the molecular scale. Until now, although DISMs have exhibited great potential in the applications of various sensors, electronic skin, and artificial muscles, it is still difficult to prepare DISMs with satisfactory self-healing abilities and high tensile strengths and strains at the same time, thus largely limiting their applications in self-healing anticorrosive coatings. Herein, symmetrical trimaleimide (TMI) was successfully synthesized, and trimaleimide-structured D-A self-healing polyurethane (TMI-DA-PU) was prepared via the reversible D-A reaction (cycloaddition of furan and maleimide). As a DISM, TMI-DA-PU exhibits apparently higher self-healing efficiency (98.7%), tensile strength (25.4 MPa), and strain (1378%) compared to bismaleimide-structured D-A self-healing polyurethane (BMI-DA-PU) (self-healing efficiency, 90.2%; tensile strength, 19.3 MPa; strain, 1174%). In addition, TMI-DA-PU shows a high recycling efficiency (>95%) after 4 cycles of recycling. A series of characterizations indicate that TMI provides more monoene rings as the self-healing sites, forms denser cross-linked structures compared to BMI, and is, thus, more appropriate to be used for DISM applications. Moreover, the barrier abilities of coatings can be semi-quantitatively expressed by the impedance value at 0.01 Hz (|Z|0.01 Hz). The |Z|0.01 Hz value of the TMI-DA-PU coating is 3.93 × 109 Ω cm2 on day 0, which is significantly higher than that of the BMI-DA-PU coating (6.76 × 108 Ω cm2 on day 0), indicating that the denser rigid cross-linked structure of TMI results in the small porosity in the TMI-DA-PU coating, thus effectively improving the anticorrosion performance. The construction of DISMs with the structure of TMI demonstrates immense potential in self-healing anticorrosive coatings.
Collapse
Affiliation(s)
- Peng-Xiang Li
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Zhi-Yang Zhang
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Jia-Ying Cui
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Song-Hai Wu
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Yong Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Hai-Tao Ren
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, People's Republic of China
| | - Xu Han
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| |
Collapse
|
8
|
Zhang Q, Wu S, Sun Y, Ru Yie KH, Zhuang J, Liu T, Si W, Zhang Y, Liu Z, Xiong L, Lu L, Gao P, Liu J. Mussel byssus-inspired dual-functionalization of zirconia dental implants for improved bone integration. Mater Today Bio 2024; 25:101007. [PMID: 38779617 PMCID: PMC11110719 DOI: 10.1016/j.mtbio.2024.101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 05/25/2024] Open
Abstract
Zirconia faces challenges in dental implant applications due to its inherent biological inertness, which compromises osseointegration, a critical factor for the long-term success of implants that rely heavily on specific cell adhesion and enhanced osteogenic activity. Here, we fabricated a dual-functional coating that incorporates strontium ions, aimed at enhancing osteogenic activity, along with an integrin-targeting sequence to improve cell adhesion by mussel byssus-inspired surface chemistry. The results indicated that although the integrin-targeting sequence at the interface solely enhances osteoblast adhesion without directly increasing osteogenic activity, its synergistic interaction with the continuously released strontium ions from the coating, as compared to the release of strontium ions alone, significantly enhances the overall osteogenic effect. More importantly, compared to traditional polydopamine surface chemistry, the coating surface is enriched with amino groups capable of undergoing various chemical reactions and exhibits enhanced stability and aesthetic appeal. Therefore, the synergistic interplay between strontium and the functionally customizable surface offers considerable potential to improve the success of zirconia implantation.
Collapse
Affiliation(s)
| | | | - Yingyue Sun
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Kendrick Hii Ru Yie
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiatong Zhuang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Tingting Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wen Si
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yinyan Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zheyuan Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Lifeng Xiong
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Lei Lu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Peng Gao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jinsong Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
9
|
Gao F, Yang X, Song W. Bioinspired Supramolecular Hydrogel from Design to Applications. SMALL METHODS 2024; 8:e2300753. [PMID: 37599261 DOI: 10.1002/smtd.202300753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Indexed: 08/22/2023]
Abstract
Nature offers a wealth of opportunities to solve scientific and technological issues based on its unique structures and function. The dynamic non-covalent interaction is considered to be the main base of living functions of creatures including humans, animals, and plants. Supramolecular hydrogels formed by non-covalent bonding interactions has become a unique platform for constructing promising materials for medicine, energy, electronic, and biological substitute. In this review, the self-assemble principle of supramolecular hydrogels is summarized. Next, the stimulation of external environment that triggers the assembly or disassembly of supramolecular hydrogels are recapitulated, including temperature, mechanics, light, pH, ions, etc. The main applications of bioinspired supramolecular hydrogels in terms of bionic objects including humans, animals, and plants are also described. Although so many efforts are done for revealing the synergized mechanism of the function and non-covalent interactions on the supramolecular hydrogel, the complexity and variability between stimulus and non-covalent bonding in the supramolecular system still require impeccable theories. As an outlook, the bioinspired supramolecular hydrogel is just beginning to exhibit its great potential in human life, offering significant opportunities in drug delivery and screening, implantable devices and substitutions, tissue engineering, micro-fluidic devices, and biosensors.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xuhao Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wenlong Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
10
|
Liu Y, Zhao J, Yu X, Ren Y, Liu X. Bioinspired phosphorus-free and halogen-free biomass coatings for durable flame retardant modification of regenerated cellulose fibers. Int J Biol Macromol 2024; 259:129252. [PMID: 38199533 DOI: 10.1016/j.ijbiomac.2024.129252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/18/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Inspired by mussel adhesion and intrinsic flame retardant alginate fibers, a biomass flame retardant (PPCA) containing adhesive catechol and sodium carboxylate structure (-COO-Na+) based on biomass amino acids and protocatechualdehyde was designed to prepare flame retardant Lyocell fibers (Lyocell@PPCA@Na). Furthermore, through the substitution and chelation of metal ions by PPCA in the cellulose molecular chain, flame retardant Lyocell fibers chelating copper and iron ions (Lyocell@PPCA@Cu, Lyocell@PPCA@Fe) were prepared. Compared with the original sample, the peak heat release rate (PHRR) and total heat release (THR) for modified Lyocell fibers were significantly reduced. In addition, the modified sample exhibited a certain flame retardant durability. TG-FTIR analysis showed that the release of flammable gaseous substances was inhibited. The introduction of Schiff bases and aromatic structures in PPCA, as well as the decomposition of carboxylic metal salts were beneficial for the formation of char residue containing metal carbonates and metal oxides to play the condensed phase flame retardant effect. This work develops a new idea for the preparation of eco-friendly flame retardant Lyocell fibers without the traditional flame retardant elements such as P, Cl, and Br.
Collapse
Affiliation(s)
- Yansong Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jieyun Zhao
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xi Yu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yuanlin Ren
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, Tianjin 300387, China.
| | - Xiaohui Liu
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
11
|
Yang W, Chen J, Zhao Z, Wu M, Gong L, Sun Y, Huang C, Yan B, Zeng H. Recent advances in fabricating injectable hydrogels via tunable molecular interactions for bio-applications. J Mater Chem B 2024; 12:332-349. [PMID: 37987037 DOI: 10.1039/d3tb02105j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Hydrogels with three-dimensional structures have been widely applied in various applications because of their tunable structures, which can be easily tailored with desired functionalities. However, the application of hydrogel materials in bioengineering is still constrained by their limited dosage flexibility and the requirement of invasive surgical procedures. Compared to traditional hydrogels, injectable hydrogels, with shear-thinning and/or in situ formation properties, simplify the implantation process and reduce tissue invasion, which can be directly delivered to target sites using a syringe injection, offering distinct advantages over traditional hydrogels. These injectable hydrogels incorporate physically non-covalent and/or dynamic covalent bonds, granting them self-healing abilities to recover their structural integrity after injection. This review summarizes our recent progress in preparing injectable hydrogels and discusses their performance in various bioengineering applications. Moreover, the underlying molecular interaction mechanisms that govern the injectable and functional properties of hydrogels were characterized by using nanomechanical techniques such as surface forces apparatus (SFA) and atomic force microscopy (AFM). The remaining challenges and future perspectives on the design and application of injectable hydrogels are also discussed. This work provides useful insights and guides future research directions in the field of injectable hydrogels for bioengineering.
Collapse
Affiliation(s)
- Wenshuai Yang
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, Henan, China
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Jingsi Chen
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Ziqian Zhao
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Meng Wu
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Lu Gong
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Yimei Sun
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Charley Huang
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hongbo Zeng
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
12
|
Zhou D, Yu J, Zhao Q, Zhang L. In situ molecular permeation of liquid cationic polymers into solid anionic polymer films enabling self-adaptive adhesion of hydrogel biosensors. MATERIALS HORIZONS 2023; 10:3622-3630. [PMID: 37337709 DOI: 10.1039/d3mh00597f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Self-adaptive adhesion is essential for hydrogel sensors. However, the traditional protocol involves covering a pre-prepared hydrogel sensor on a tested surface. As a result, the sensor cannot achieve self-adaptive adhesion owing to an air-layer hindrance between the sensor and tested surface, which inevitably leads to the loss of critical biological signals. To address the issue of air-layer hindrance, this work proposes an in situ permeation method that enables the self-adaptive adhesion of hydrogel biosensors on various surfaces. After applying a liquid solution of poly(methacrylamido propyl trimethyl ammonium chloride-co-acrylamide) (poly(MPTAC-co-AM)) on the testing surface, a thin film of poly(acrylic aminoethane sulfonic acid-co-acrylamide) (poly(AASA-co-AM)) is applied, where the electrostatic interaction between -SO3- and -Me3N+ facilitates rapid permeation of the solution into the solid film, leading to the formation of a hydrogel layer in situ. The coating of liquid poly(MPTAC-co-AM) sweeps away the air layer and works as a natural glue, enabling a strong bonding interaction between the hydrogel layer and the tested surface. Such a hydrogel layer is very thin (microscale), and can retain its self-adaptive adhesion even with deformation of the tested surface. When it is applied on the surface of an active frog heart, the weak heartbeats can be transduced to electrical signals. Moreover, this self-adaptive adhesion can work on both soft and hard surfaces including biological tissues, metals, rubbers, ceramics, and glass. Therefore, this in situ permeation method enables the hydrogel layer to detect weak dynamic changes on various soft and hard surfaces, which might offer a new pathway for physiological signal monitoring.
Collapse
Affiliation(s)
- Danqing Zhou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, People's Republic of China.
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, 200241, People's Republic of China.
| | - Jiahui Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, 200241, People's Republic of China.
| | - Qiuhua Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, People's Republic of China.
| | - Lidong Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, People's Republic of China.
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, People's Republic of China
| |
Collapse
|
13
|
Cui G, Guo X, Su P, Zhang T, Guan J, Wang C. Mussel-inspired nanoparticle composite hydrogels for hemostasis and wound healing. Front Chem 2023; 11:1154788. [PMID: 37065820 PMCID: PMC10097955 DOI: 10.3389/fchem.2023.1154788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/14/2023] [Indexed: 04/01/2023] Open
Abstract
Uncontrolled hemorrhage caused by trauma can easily lead to death. Efficient and safe hemostatic materials are an urgent and increasing need for hemostatic research. Following a trauma, wound healing is induced by various cellular mechanisms and proteins. Hemostatic biomaterials that can not only halt bleeding quickly but also provide an environment to promote wound healing have been the focus of research in recent years. Mussel-inspired nanoparticle composite hydrogels have been propelling the development of hemostatic materials owing to their unique advantages in adhesion, hemostasis, and bacteriostasis. This review summarizes the hemostatic and antimicrobial fundamentals of polydopamine (PDA)-based nanomaterials and emphasizes current developments in hemorrhage-related PDA nanomaterials. Moreover, it briefly discusses safety concerns and clinical application problems with PDA hemostatic nanomaterials.
Collapse
Affiliation(s)
- Guihua Cui
- College of Chemistry, Northeast Normal University, Changchun, Jilin, China
- Department of Chemistry, Jilin Medical University, Jilin City, Jilin, China
| | - Xiaoyu Guo
- Jilin Vocational College of Industry and Technology, Jilin City, Jilin, China
| | - Ping Su
- Affiliated 465 Hospital, Jilin Medical University, Jilin City, Jilin, China
| | - Tianshuo Zhang
- Department of Chemistry, Jilin Medical University, Jilin City, Jilin, China
| | - Jiao Guan
- Department of Chemistry, Jilin Medical University, Jilin City, Jilin, China
| | - Chungang Wang
- College of Chemistry, Northeast Normal University, Changchun, Jilin, China
| |
Collapse
|