1
|
Saha D, Dey T, Pal I, Kundu A, Majumdar S, Sadhu S, Yatirajula SK, Rath J, Ray SK, Dey B. Solvent-Directed Bioactive Supramolecular Zinc(II)-Metallogels: Exploring Semiconducting Aptitudes of Fabricating p-n Junction and Schottky Devices. ACS APPLIED BIO MATERIALS 2024; 7:5609-5621. [PMID: 39074362 DOI: 10.1021/acsabm.4c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
α-Ketoglutaric acid-based supramolecular Zn(II) metallogels in N,N'-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) solvent (i.e., Zn-α-Glu-DMF and Zn-α-Glu-DMSO) were successfully achieved. Zinc(II) acetate salt and α-ketoglutaric acid directed a three-dimensional noncovalent supramolecular network individually entrapped with N,N'-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) solvent to accomplish their respective semisolid flexible metallogel frameworks. The gel features of these synthesized materials were verified by rheological experiments such as amplitude sweep and frequency sweep measurements. The discrete morphological arrangements were analyzed for these metallogel samples through field emission scanning electron microscopic (FESEM) analysis. Highly stacked interconnected blocks of Zn-α-Glu-DMF with hierarchical arrays are found due to the occurrence of diverse noncovalent supramolecular interactions present in the metallogel framework. A distinct spherical shaped microstructure with interconnected hierarchical assembly has been observed for the FESEM pattern of Zn-α-Glu-DMSO. FTIR spectroscopic measurement was carried out to detect some important stretching vibrations of xerogel samples of different metallogels as well as gel-constructing chemical ingredients. A substantial amount of peak shifting of xerogel samples for both metallogels is observed in FTIR analysis, indicating the presence of different noncovalent interactions. ESI-mass analysis portrays a possible metallogel-constructing strategy. The antibacterial potentialities of both metallogels were investigated. These materials exhibited good antimicrobial efficacy toward Gram-positive and Gram-negative bacterial strains (including Escherichia coli, Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, and Salmonella typhimurium). Both synthesized metallogels were successfully implemented to fabricate the photoresponsive semiconducting diode. These materials offer excellent photodiode parameters including an ideality factor and rectification ratio (ON/OFF ratio). Synthesized metallogels are used to successfully fabricate photodiodes with an Al/p-Si/metallogel/Au structure. The ideality factors (η) for Zn-α-Glu-DMF and Zn-α-Glu-DMSO are found as 1.3 and 2.3, respectively, in dark conditions. The rectification ratios for Zn-α-Glu-DMF and Zn-α-Glu-DMSO metallogels are also determined, and these are found as 40 and 10, respectively.
Collapse
Affiliation(s)
- Deblina Saha
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Tamal Dey
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Indrajit Pal
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Anupam Kundu
- Department of Botany, Visva-Bharati University, Santiniketan 731235, India
| | - Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
- Department of Chemistry, Seacom Skills University, Kendradangal, Bolpur, Birbhum 731236, West Bengal, India
| | - Subhajoy Sadhu
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Suresh Kumar Yatirajula
- Department of Chemical Engineering, Indian Institute of Technology (ISM) Dhanbad 826004, India
| | - Jnanendra Rath
- Department of Botany, Visva-Bharati University, Santiniketan 731235, India
| | - Samit K Ray
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
2
|
Dhibaris S, Pal S, Some S, Karmakar K, Saha R, Bhattacharjee S, Roy A, Ray SJ, Ajiboye TO, Dam S, Saha B. Efficient antimicrobial applications of two novel supramolecular metallogels derived from a l(+)-tartaric acid low molecular weight gelator. RSC Adv 2024; 14:26354-26361. [PMID: 39165795 PMCID: PMC11334155 DOI: 10.1039/d4ra03451a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
Novel metallogels were synthesized using l(+)-tartaric acid as a gelator, along with cadmium(ii)-acetate and mercury(ii)-acetate in N,N-dimethyl formamide at room temperature. Rheological analyses confirmed the mechanical stability of Cd(ii)- and Hg(ii)-metallogels under varying conditions. Characterization through EDX mapping and FESEM imaging provided insights into their chemical constituents and microstructural features. FT-IR spectroscopy elucidated the metallogel formation mechanism. Antimicrobial assays revealed significant activity against various bacteria, including Gram-positive and Gram-negative strains. This study presents a comprehensive exploration of Cd(ii) and Hg(ii)-based l(+)-tartaric acid-mediated metallogels, highlighting their potential in combating bacterial infections. These findings suggest promising applications in both industrial and biomedical fields, offering avenues for the development of advanced materials.
Collapse
Affiliation(s)
- Subhendu Dhibaris
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| | - Suchetana Pal
- Department of Microbiology, The University of Burdwan Burdwan 713104 West Bengal India
| | - Sangita Some
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| | - Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| | - Ratnakar Saha
- National Institute of Science Education and Research (NISER) Bhubaneswar Odisha 752050 India
| | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University Asansol 713303 West Bengal India
| | - Arpita Roy
- Department of Physics, Indian Institute of Technology Patna Bihar 801106 India
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna Bihar 801106 India
| | - Timothy O Ajiboye
- Department of Chemistry, University of the Free State Bloemfontein 9301 South Africa
| | - Somasri Dam
- Department of Microbiology, The University of Burdwan Burdwan 713104 West Bengal India
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| |
Collapse
|
3
|
Pal I, Pathak NK, Majumdar S, Lepcha G, Dey A, Yatirajula SK, Tripathy U, Dey B. Comparative Vision of Nonlinear Thermo-Optical Features and Third-Order Susceptibility of Mechanically Flexible Metallosupramolecular Self-Repairing Networks with Isomeric Organic Acids. Inorg Chem 2024; 63:12003-12016. [PMID: 38904106 DOI: 10.1021/acs.inorgchem.4c00763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Two self-healing-type supramolecular Ni(II)-metallogels are achieved. The choice of proper low-molecular-weight organic gelators such as trans-butenedioic acid (i.e., trans-BDA) and cis-butenedioic acid (i.e., cis-BDA) and triethylamine in N,N'-dimethylformamide solvent facilitates the metallogelation process. Through rheological investigations the mechanical robustness and viscoelastic properties of synthesized metallogels are explored. An in-depth exploration of thixotropic behavior also supports their self-healing features. Notably, distinct variations in morphologies of metallogels are also ascertained through field emission scanning electron microscopy studies. Furthermore, the existence of versatile noncovalent supramolecular interactions operating throughout the metallogel network is clearly revealed via Fourier transform infrared spectroscopy. Electrospray ionization-mass studies also explore the construction protocol of individual Ni(II)-metallogels. The Z-scan measurements with a 532 nm continuous wave laser were employed to unveil the nonlinear thermo-optical response of two synthesized self-healing metallogels, i.e., trans-BDA-TEA@Ni(II) and cis-BDA-TEA@Ni(II). Crucial parameters like the nonlinear refractive index, nonlinear absorption coefficient, thermo-optical coefficient, and third-order susceptibility of these metallogels are obtained. Metallogels show negative signs for the nonlinear refractive index and the nonlinear absorption coefficient. The real parts of the third-order susceptibility for these metallogels are much greater than the imaginary parts (i.e., χR(3) > χI(3)), making such metallogels very promising for all optical-switching applications.
Collapse
Affiliation(s)
- Indrajit Pal
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Nitesh Kumar Pathak
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
- Department of Chemistry, Seacom Skills University, Kendradangal, Bolpur, 731236 Birbhum, West Bengal, India
| | - Gerald Lepcha
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
- Department of Chemistry, Bajkul Milani Mahavidyalaya, Purba Mednipur, West Bengal 721655, India
| | - Amiya Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Suresh Kumar Yatirajula
- Department of Chemical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Umakanta Tripathy
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
4
|
Sharma A, Kaur N, Singh N. An Encyclopedic Compendium on Chemosensing Supramolecular Metal-Organic Gels. Chem Asian J 2024; 19:e202400258. [PMID: 38629210 DOI: 10.1002/asia.202400258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Chemosensing, an interdisciplinary scientific domain, plays a pivotal role ranging from environmental monitoring to healthcare diagnostics and (inter)national security. Metal-organic gels (MOGs) are recognized for their stability, selectivity, and responsiveness, making them valuable for chemosensing applications. Researchers have explored the development of MOGs based on different metal ions and ligands, allowing for tailored properties and sensitivities, and have even demonstrated their applications as portable sensors such as paper-based test strips for practical use. Herein, several studies related to MOGs development and their applications in the chemosensing field via UV-visible or luminance along with electrochemical approach are presented. These papers explored MOGs as versatile materials with their use in sensing bio or environmental analytes. This review provides a foundational understanding of key concepts, methodologies, and recent advancements in this field, fostering the scientific community.
Collapse
Affiliation(s)
- Arun Sharma
- Department of Chemistry, Indian Institute of Technology Ropar, 140001, Rupnagar, Panjab, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, 160014, Chandigarh, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, 140001, Rupnagar, Panjab, India
| |
Collapse
|
5
|
Pal B, Majumdar S, Pal I, Lepcha G, Dey A, Ray PP, Dey B. Comparative outcomes of the voltage-dependent current density, charge transportation and rectification ratio of electronic devices fabricated using mechanically flexible supramolecular networks. Dalton Trans 2024; 53:7912-7921. [PMID: 38639606 DOI: 10.1039/d4dt00383g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
In this study, we report the synthetic method of two distinct supramolecular metallogels, namely Mn-BDA and Cd-BDA, using Mn(II) acetate tetrahydrate, Cd(II) acetate dihydrate and butane-1,4-dicarboxylic acid (BDA). DMF, a polar aprotic solvent, was immobilized in both metallogel-networks for their synthesis. The metallogelation of Mn-BDA was successfully attained through the instant mixing of a Mn(II)-source and BDA in DMF solvent media. By applying ultrasonication, a Cd-BDA metallogel was prepared. The stoichiometry of gel-forming components concerning metal salts and the LMWG are accountable to obtain respective stable metallogels. Rheological parameters such as storage modulus (G') and loss modulus (G'') explored the mechanical flexibility of the synthesized metallogels through amplitude and angular frequency sweep experiments. Both the metallogels possess significant mechanical stability, which was determined by monitoring diverse gel-to-sol transition shear strain values (γ%). Distinctive morphological visualizations of both of these metallogels (i.e., Mn-BDA and Cd-BDA) were made via field emission scanning electron microscopic (FESEM) studies, demonstrating a fibrous inter-connected network with a hierarchical self-assembled arrangement for Mn(II)-based metallogels and a typical stacked-flake-like association with hierarchical motifs for Cd(II)-based metallogels. EDAX elemental mapping substantiated the presence of metallogel-forming agents such as individual metal acetate salts, BDA acting as a low-molecular weight gelator, and gel-immobilized solvents such as DMF. Furthermore, Fourier transform infrared spectroscopy and ESI-mass spectroscopy were performed for both these supramolecular metallogels. FT-IR spectroscopic and ESI-mass spectroscopic results clearly substantiate the possible non-covalent supramolecular interactions among basic molecular repeating moieties, i.e., butane-1,4-dicarboxylic acid (the low-molecular weight gelator), individual metal salts and gel-immobilized polar aprotic solvent DMF for the construction of distinct stable supramolecular metallogel-systems. The semiconducting property of the fabricated metallogels was investigated. Two Schottky diodes (SDs) composed of ITO/Cd-BDA/Al and ITO/Mn-BDA/Al in a sandwich pattern with Al serving as the metal electrode were fabricated. Both these metallogel-based devices effectively offer significant semiconducting diode features with non-linear J-V characteristics. The non-ohmic conduction protocol of the fabricated metallogel-based devices was explored. Mn-BDA and Cd-BDA metallogel-based fabricated devices have rectification ratios of 6.67 and 23.50, respectively. The gel-based diode performances were examined by observing the voltage-dependent current density, charge transportation and rectification ratio.
Collapse
Affiliation(s)
- Baishakhi Pal
- Department of Physics, Jadavpur University, Kolkata 700032, India.
| | - Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India.
| | - Indrajit Pal
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India.
| | - Gerald Lepcha
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India.
| | - Amiya Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India.
| | | | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India.
| |
Collapse
|
6
|
Singh S, Sharma AK, Gade HM, Agarwal V, Nasani R, Verma N, Sharma B. Stimuli-responsive and self-healing supramolecular Zn(II)-guanosine metal-organic gel for Schottky barrier diode application. SOFT MATTER 2024; 20:1025-1035. [PMID: 38197513 DOI: 10.1039/d3sm01405c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Spontaneous formation of a supramolecular metal-organic hydrogel using unsubstituted guanosine as a ligand and Zn2+ ions is reported. Guanosine, in the presence of NaOH, self-assembled into a stable G-quadruplex structure, which underwent crosslinking through Zn2+ ions to afford a stable hydrogel. The gel has been characterized using several spectroscopic as well as microscopic studies. The hydrogel demonstrated excellent stimuli responsiveness towards various chemicals and pH. Furthermore, the gel exhibited intrinsic thixotropic behavior and showed self-healing and injectable properties. The optical properties of the Zn-guanosine metallo-hydrogel suggested a semiconducting nature of the gel, which has been exploited for fabricating a thin film device based on a Schottky diode interface between metal and a semiconductor. The fabricated device shows excellent charge transport characteristics and linear rectifying behavior. The findings are likely to pave the way for newer research in the area of soft electronic devices fabricated using materials synthesized by employing simple biomolecules.
Collapse
Affiliation(s)
- Surbhi Singh
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Malviya Nagar, Jaipur 302017, India.
| | - Atul Kumar Sharma
- Department of Electronics and Communication Engineering, Malaviya National Institute of Technology Jaipur, Malviya Nagar, Jaipur 302017, India
| | - Hrushikesh M Gade
- Department of Chemical Engineering, Malaviya National Institute of Technology Jaipur, Malviya Nagar, Jaipur 302017, India
| | - Vidhi Agarwal
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Rajendar Nasani
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Nisha Verma
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Malviya Nagar, Jaipur 302017, India.
| | - Bhagwati Sharma
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Malviya Nagar, Jaipur 302017, India.
| |
Collapse
|
7
|
Pal I, Majumdar S, Lepcha G, Ahmed KT, Yatirajula SK, Bhattacharya S, Chakravarti R, Bhattacharya B, Biswas SR, Dey B. Exploration of Variable Solvent Directed Self-Healable Supramolecular M(II)-Metallogels (M = Co, Ni, Zn) of Azelaic Acid: Investigating Temperature-Dependent Ion Conductivity and Antibacterial Efficiency. ACS APPLIED BIO MATERIALS 2023; 6:5442-5457. [PMID: 37997919 DOI: 10.1021/acsabm.3c00675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Molecular self-assembly assisted self-healing supramolecular metallogels of azelaic acid with cobalt(II)-, nickel(II)-, and zinc(II)-based metal acetate salts were successfully fabricated. Individually, N,N'-dimethylformamide and dimethyl sulfoxide were immobilized within these distinctly synthesized soft-scaffolds of metallogels to attain their semisolid viscoelastic nature. Rheological experiments such as amplitude sweep, frequency sweep, and thixotropic measurements were executed for these metallogels to ratify their gel features. The different extents of supramolecular interactions operating within these solvent-directed metallogels were clearly reflected in terms of their distinct morphological patterns as investigated through field emission scanning electron microscopy. Comparative infrared (IR) spectral properties of metallogels along with individual metal salts and azelaic acid were analyzed. These experimental data clearly depict the significant shifting of Fourier transform (FT)-IR peaks of xerogel samples of different metallogels from the gel-forming precursors. The networks present within the soft-scaffold are evidently illustrated by the electrospray ionization-mass experimental data. The temperature-dependent ionic conductivity studies with these solvent-directed versatile metallogel systems were investigated through impedance spectroscopy. The temperature-dependent impedance spectroscopic studies clearly demonstrate that the ion-transportation within the gel matrix depends not only on the types of cations but also on the dielectric properties of the immobilized solvents. The antipathogenic effect of these metallogel systems has also been explored by testing their effectiveness against human pathogenic Gram-negative bacteria Klebsiella pneumoniae (MTCC 109) and Vibrio parahemolyticus, and Gram-positive bacteria like Bacillus cereus (MTCC 1272). These gel soft-scaffolds show no significant cytotoxicity against both the human neuroblastoma cell line-SH-SY5Y and the human embryonic kidney cell line-HEK 293.
Collapse
Affiliation(s)
- Indrajit Pal
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Gerald Lepcha
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Kazi Tawsif Ahmed
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata 700054, India
- Department of Botany, Visva-Bharati University, Santiniketan 731235, India
| | - Suresh Kumar Yatirajula
- Department of Chemical Engineering, Indian Institute of Technology (ISM) Dhanbad 826004, India
| | | | - Rudra Chakravarti
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata 700054, India
| | - Bireswar Bhattacharya
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata 700054, India
| | | | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
8
|
Dhibar S, Pal B, Karmakar K, Roy S, Hafiz SA, Roy A, Bhattacharjee S, Ray SJ, Ray PP, Saha B. A 5-aminoisophthalic acid low molecular weight gelator based novel semiconducting supramolecular Zn(ii)-metallogel: unlocking an efficient Schottky barrier diode for microelectronics. NANOSCALE ADVANCES 2023; 5:6714-6723. [PMID: 38024309 PMCID: PMC10662173 DOI: 10.1039/d3na00671a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
A novel method has been successfully developed for creating supramolecular metallogels using zinc(ii) ions and 5-aminoisophthalic acid as the gelator (low molecular weight gelator) in a dimethylformamide (DMF) solvent at room temperature. Comprehensive rheological investigations confirm the robust mechanical strength of the resulting zinc(ii)-metallogel. Microstructural analysis conducted through field-emission scanning electron microscopy (FESEM) unveils a unique flake-like morphology, with energy-dispersive X-ray (EDX) elemental mapping confirming the prevalence of zinc as the primary constituent of the metallogel. To understand the formation mechanism of this metallogel, Fourier-transform infrared (FT-IR) spectroscopy was employed. Notably, these supramolecular zinc(ii)-metallogel assemblies exhibit electrical conductivity reminiscent of metal-semiconductor (MS) junction electronic components. Surprisingly, the metallogel-based thin film device showcases an impressive electrical conductivity of 1.34 × 10-5 S m-1. The semiconductor characteristics of the synthesized zinc(ii)-metallogel devices, including their Schottky barrier diode properties, have been extensively investigated. This multifaceted study opens up a promising avenue for designing functional materials tailored for electronic applications. It harnesses the synergistic properties of supramolecular metallogels and highlights their significant potential in the development of semiconductor devices. This work represents a novel approach to the creation of advanced materials with unique electronic properties, offering exciting prospects for future innovations in electronic and semiconductor technologies.
Collapse
Affiliation(s)
- Subhendu Dhibar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| | - Baishakhi Pal
- Department of Physics, Jadavpur University Jadavpur Kolkata 700032 India +91 3324572844
| | - Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| | - Sanjay Roy
- Department of Chemistry, School of Sciences, Kalyani Regional Centre, Netaji Subhas Open University West Bengal India
| | - Sk Abdul Hafiz
- Department of Chemistry, KaziNazrul University Asansol 713303 West Bengal India
| | - Arpita Roy
- Department of Physics, Indian Institute of Technology Patna Bihar 801106 India
| | | | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna Bihar 801106 India
| | - Partha Pratim Ray
- Department of Physics, Jadavpur University Jadavpur Kolkata 700032 India +91 3324572844
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 West Bengal India +91 7001575909 +91 9476341691
| |
Collapse
|
9
|
Pal I, Pathak NK, Majumdar S, Lepcha G, Dey A, Yatirajula SK, Tripathy U, Dey B. Solvent-Driven Variations of Third-Order Nonlinear Thermo-Optical Features of Glutaric Acid-Directed Self-Healing Supramolecular Ni(II) Metallogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16584-16595. [PMID: 37934977 DOI: 10.1021/acs.langmuir.3c02572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The generation of solvent-directed self-healing supramolecular Ni(II) metallogels of glutaric acid (i.e., Ni-Glu-DMF and Ni-Glu-DMSO) is described in this article. Polar aprotic solvents like N,N'-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) are separately entrapped into the Ni(II)-acetate salt and glutaric acid-mediated networks to attain the semisolid flexible scaffolds. The gel nature of the fabricated materials is experimentally proven through different rheological tests such as amplitude sweep, frequency sweep, and thixotropic (time sweep) measurements. The self-repairing strategy and load-bearing features of the synthesized metallogel are studied in this work. The different supramolecular noncovalent interactions working within the soft scaffold are clearly explored. The formation strategy and the microstructural features of these synthesized metallogels are scrutinized through a Fourier transform infrared (FT-IR) spectroscopy study and field-emission scanning electron microscopy (FESEM) morphological analyses. The FT-IR spectroscopy observation displays a considerable amount of shifting of the infrared (IR) peaks of the xerogel samples of both the metallogels Ni-Glu-DMF and Ni-Glu-DMSO. The electrospray ionization (ESI)-mass spectroscopy result demonstrates the plausible construction of the metallogel network. In order to examine the nonlinear optical characteristics of the two synthesized self-healing metallogels Ni-Glu-DMSO and Ni-Glu-DMF, Z-scan measurements are carried out with a continuous wave (CW) diode-pumped solid-state (DPSS) laser at 532 nm. The nonlinear refractive index, nonlinear absorption coefficient, thermo-optical coefficient, and third-order susceptibility of these metallogels were evaluated by analyzing the experimental data from the Sheik-Bahae formalism. The nonlinear thermo-optical study reveals that these solvent-dependent metallogels show negative signs of nonlinear refractive index and nonlinear absorption coefficient. The figure of merit calculated for these compounds shows good agreement for their use in nonlinear photonic devices.
Collapse
Affiliation(s)
- Indrajit Pal
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Nitesh Kumar Pathak
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Gerald Lepcha
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Amiya Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Suresh Kumar Yatirajula
- Department of Chemical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Umakanta Tripathy
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|