1
|
Kawamura A, Takahashi R, Miyata T. UCST-Type Thermoresponsive Sol-Gel Transition Triblock Copolymer Containing Zwitterionic Polymer Blocks. Gels 2024; 10:288. [PMID: 38786206 PMCID: PMC11121674 DOI: 10.3390/gels10050288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 05/25/2024] Open
Abstract
Thermoresponsive sol-gel transition polymers are of significant interest because of their fascinating biomedical applications, including as drug reservoirs for drug delivery systems and scaffolds for tissue engineering. Although extensive research has been conducted on lower critical solution temperature (LCST)-type sol-gel transition polymers, there have been few reports on upper critical solution temperature (UCST)-type sol-gel transition polymers. In this study, we designed an ABA-type triblock copolymer composed of a poly(ethylene glycol) (PEG) block and zwitterionic polymer blocks that exhibit UCST-type thermoresponsive phase transitions. A sulfobetaine (SB) monomer with both ammonium and sulfonate (-SO3) groups in its side chain or a sulfabetaine (SaB) monomer with both ammonium and sulfate (-OSO3) groups in its side chain was polymerized from both ends of the PEG block via reversible addition-fragmentation chain-transfer (RAFT) polymerization to obtain PSB-PEG-PSB and PSaB-PEG-PSaB triblock copolymers, respectively. Although an aqueous solution containing the PSB-PEG-PSB triblock copolymer showed an increase in viscosity upon cooling, it did not undergo a sol-to-gel transition. In contrast, a sol-to-gel transition was observed when a phosphate-buffered saline containing PSaB-PEG-PSaB was cooled from 80 °C to 25 °C. The PSaB blocks with -OSO3 groups exhibited a stronger dipole-dipole interaction than conventional SB with -SO3 groups, leading to intermolecular association and the formation of a gel network composed of PSaB assemblies bridged with PEG. The fascinating UCST-type thermoresponsive sol-gel transition properties of the PSaB-PEG-PSaB triblock copolymer suggest that it can provide a useful platform for designing smart biomaterials, such as drug delivery reservoirs and cell culture scaffolds.
Collapse
Affiliation(s)
- Akifumi Kawamura
- Department of Chemistry and Materials Engineering, Kansai University, Suita 564-8680, Osaka, Japan
- Organization for Research and Development of Innovative Science and Technology, Kansai University, Suita 564-8680, Osaka, Japan
| | - Ryogo Takahashi
- Department of Chemistry and Materials Engineering, Kansai University, Suita 564-8680, Osaka, Japan
| | - Takashi Miyata
- Department of Chemistry and Materials Engineering, Kansai University, Suita 564-8680, Osaka, Japan
- Organization for Research and Development of Innovative Science and Technology, Kansai University, Suita 564-8680, Osaka, Japan
| |
Collapse
|
2
|
Morimoto N, Ota K, Miura Y, Shin H, Yamamoto M. Sulfobetaine polymers for effective permeability into multicellular tumor spheroids (MCTSs). J Mater Chem B 2022; 10:2649-2660. [PMID: 35024722 DOI: 10.1039/d1tb02337c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multicellular tumor spheroids (MCTSs) are attractive for drug screening before animal tests because they emulate an in vivo microenvironment. The permeability of the MCTSs and tumor tissues towards the candidate drugs is not sufficient even though the drugs can penetrate monolayer cultured cells; therefore, nanocarriers are required to enhance permeability and deliver drugs. In this study, we prepared zwitterionic polymers of sulfobetaine methacrylates and (meth)acrylamides with or without hydroxy groups between the zwitterions to serve as highly permeable nanocarriers. In the sulfobetaine polymers, poly(2-hydroxy-3-((3-methacrylamidopropyl)dimethylammonio)propane-1-sulfonate), P(OH-MAAmSB), the hydroxy group containing methacrylamide polymer exhibited little cytotoxicity and membrane translocation ability against monolayer cultured cells. Moreover, the excellent permeability of the hepatocyte MCTS enabled P(OH-MAAmSB) to permeate it and reach the center region (∼325 μm in diameter) at approximately 150 s, although poly(trimethyl-2-methacroyloxyethylammonium), a cationic polymer, penetrated just 1 to 2 layers from the periphery. The superior permeability of P(OH-MAAmSB) might be due to its good solubility and side chain conformation. P(OH-MAAmSB) is a promising nanocarrier with membrane translocation and permeability.
Collapse
Affiliation(s)
- Nobuyuki Morimoto
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan.
| | - Keisuke Ota
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan.
| | - Yuki Miura
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan.
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea.,BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul 04763, Republic of Korea
| | - Masaya Yamamoto
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan. .,Graduate School of Medical Engineering, Tohoku University, 6-6-12 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
3
|
Cho HI, Yi S, Hwang JS, Seo JH, Lee JS. Roles of zwitterionic charges in polymers on synthesis of Ag seeds with anisotropic growth properties. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
A Review of Metal and Metal-Oxide Nanoparticle Coating Technologies to Inhibit Agglomeration and Increase Bioactivity for Agricultural Applications. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10071018] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Coatings offer a means to control nanoparticle (NP) size, regulate dissolution, and mitigate runoff when added to crops through soil. Simultaneously, coatings can enhance particle binding to plants and provide an additional source of nutrients, making them a valuable component to existing nanoparticle delivery systems. Here, the surface functionalization of metal and metal-oxide nanoparticles to inhibit aggregation and preserve smaller agglomerate sizes for enhanced transport to the rooting zone and improved uptake in plants is reviewed. Coatings are classified by type and by their efficacy to mitigate agglomeration in soils with variable pH, ionic concentration, and natural organic matter profiles. Varying degrees of success have been reported using a range of different polymers, biomolecules, and inorganic surface coatings. Advances in zwitterionic coatings show the best results for maintaining nanoparticle stability in solutions even under high salinity and temperature conditions, whereas coating by the soil component humic acid may show additional benefits such as promoting dissolution and enhancing bioavailability in soils. Pre-tuning of NP surface properties through exposure to select natural organic matter, microbial products, and other biopolymers may yield more cost-effective nonagglomerating metal/metal-oxide NPs for soil applications in agriculture.
Collapse
|
5
|
Li M, Zhuang B, Yu J. Functional Zwitterionic Polymers on Surface: Structures and Applications. Chem Asian J 2020; 15:2060-2075. [DOI: 10.1002/asia.202000547] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/29/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Minglun Li
- School of Materials Science and EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Bilin Zhuang
- Division of ScienceYale-NUS College Singapore 138527 Singapore
| | - Jing Yu
- School of Materials Science and EngineeringNanyang Technological University Singapore 639798 Singapore
| |
Collapse
|
6
|
Vasantha VA, Hua NQ, Rusli W, Hadia NJ, Stubbs LP. Unique Oil-in-Brine Pickering Emulsion Using Responsive Antipolyelectrolyte Functionalized Latex: A Versatile Emulsion Stabilizer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23443-23452. [PMID: 32348674 DOI: 10.1021/acsami.0c03743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A simple and straightforward approach to synthesize oil-in-water (O/W) emulsions under high salinity and temperature using zwitterion-functionalized latexes are presented in this work. First, well-defined functionalized latexes were synthesized by emulsifier-free emulsion copolymerization in the presence of precursor sulfobetaine comonomer using brine as a continuous phase. The surface-functionalized latex particles were then characterized by DLS, SEM, TEM, XPS, and TGA. The functionalized latex exhibited antipolyelectrolyte behavior in high salinity brine and at high temperatures. The effects of salinity, temperature, and pH on the long-term stability of the particles were investigated. Further, to evaluate the potential in high salinity brine and high temperature, the saltphilic functionalized latexes were utilized to stabilize the oil/brine (O/W) interface without any other additives. The latex enabled the formation of a stable Pickering emulsion system with low solid content (<0.02% w/w) in the presence of 50% v/v n-decane. The functionalized latexes were self-assembled at the O/W interface as a spherical colloidosome in high salinity brine through hydrophobic interactions and irreversible adsorption. The supraparticles were imaged with SEM, providing an insight that the exterior of the emulsion droplets is stabilized by the saltphilic latex particles, forming a protective layer at the oil-water interface through electrostatic repulsion. The antipolyelectrolyte latex can be utilized as a novel emulsion stabilizer, which can provide a versatile alternative for applications in a complex environment such as high salinity, temperature, and low or high pH.
Collapse
Affiliation(s)
- Vivek Arjunan Vasantha
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
| | - Ng Qi Hua
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
| | - Wendy Rusli
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
| | - Nanji J Hadia
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
| | - Ludger Paul Stubbs
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
| |
Collapse
|
7
|
Jonsson GK, Ulama J, Persson RAX, Oskolkova MZ, Sztucki M, Narayanan T, Bergenholtz J. Stabilizing Colloidal Particles against Salting-out by Shortening Surface Grafts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11836-11842. [PMID: 31430161 DOI: 10.1021/acs.langmuir.9b02093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A dramatic improvement is reported in the stability of colloidal particles when stabilizing surface grafts are systematically shortened from small polymers to single monomers. The colloidal dispersions consist of fluorinated latex particles, exhibiting a weak van der Waals attraction, with grafted steric layers of poly(ethylene glycol) (PEG) of different chain lengths. Using an effective salting-out electrolyte, Na2CO3, particle aggregates are detected above a threshold salt concentration that is independent of the particle concentration. The results are interpreted in terms of a sudden onset of nondispersibility of single particles, triggered by the solvent not completely wetting particle surfaces. By decreasing the PEG chain length, the threshold salt concentration is found to increase sharply. For grafts with just a single ethylene glycol group, dispersions remain stable up to exceedingly high concentrations of Na2CO3. However, on removal of the surface coverage altogether, the classical stability behavior of charge-stabilized dispersions is recovered. The behavior can be captured by a simple model that incorporates effective polymer-solvent interactions in the presence of an electrolyte.
Collapse
Affiliation(s)
- G Kristin Jonsson
- Department of Chemistry and Molecular Biology , University of Gothenburg , SE-41296 Göteborg , Sweden
| | - Jeanette Ulama
- Department of Chemistry and Molecular Biology , University of Gothenburg , SE-41296 Göteborg , Sweden
| | - Rasmus A X Persson
- Department of Chemistry and Molecular Biology , University of Gothenburg , SE-41296 Göteborg , Sweden
| | | | - Michael Sztucki
- ESRF - The European Synchrotron Radiation Facility , 71 avenue des Martyrs, CS 40220 , 38043 Grenoble Cedex 9 , France
| | - Theyencheri Narayanan
- ESRF - The European Synchrotron Radiation Facility , 71 avenue des Martyrs, CS 40220 , 38043 Grenoble Cedex 9 , France
| | - Johan Bergenholtz
- Department of Chemistry and Molecular Biology , University of Gothenburg , SE-41296 Göteborg , Sweden
| |
Collapse
|
8
|
Sponchioni M, Capasso Palmiero U, Moscatelli D. Thermo-responsive polymers: Applications of smart materials in drug delivery and tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:589-605. [PMID: 31147031 DOI: 10.1016/j.msec.2019.04.069] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/02/2019] [Accepted: 04/22/2019] [Indexed: 01/01/2023]
Abstract
Synthetic polymers are attracting great attention in the last decades for their use in the biomedical field as nanovectors for controlled drug delivery, hydrogels and scaffolds enabling cell growth. Among them, polymers able to respond to environmental stimuli have been recently under growing consideration to impart a "smart" behavior to the final product, which is highly desirable to provide it with a specific dynamic and an advanced function. In particular, thermo-responsive polymers, materials able to undergo a discontinuous phase transition or morphological change in response to a temperature variation, are among the most studied. The development of the so-called controlled radical polymerization techniques has paved the way to a high degree of engineering for the polymer architecture and properties, which in turn brought to a plethora of sophisticated behaviors for these polymers by simply switching the external temperature. These can be exploited in many different fields, from separation to advanced optics and biosensors. The aim of this review is to critically discuss the latest advances in the development of thermo-responsive materials for biomedical applications, including a highly controlled drug delivery, mediation of cell growth and bioseparation. The focus is on the structural and design aspects that are required to exploit such materials for cutting-edge applications in the biomedical field.
Collapse
Affiliation(s)
- Mattia Sponchioni
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy; Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland.
| | - Umberto Capasso Palmiero
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Davide Moscatelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy
| |
Collapse
|
9
|
Schönemann E, Laschewsky A, Wischerhoff E, Koc J, Rosenhahn A. Surface Modification by Polyzwitterions of the Sulfabetaine-Type, and Their Resistance to Biofouling. Polymers (Basel) 2019; 11:E1014. [PMID: 31181764 PMCID: PMC6631746 DOI: 10.3390/polym11061014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/22/2022] Open
Abstract
Films of zwitterionic polymers are increasingly explored for conferring fouling resistance to materials. Yet, the structural diversity of polyzwitterions is rather limited so far, and clear structure-property relationships are missing. Therefore, we synthesized a series of new polyzwitterions combining ammonium and sulfate groups in their betaine moieties, so-called poly(sulfabetaine)s. Their chemical structures were varied systematically, the monomers carrying methacrylate, methacrylamide, or styrene moieties as polymerizable groups. High molar mass homopolymers were obtained by free radical polymerization. Although their solubilities in most solvents were very low, brine and lower fluorinated alcohols were effective solvents in most cases. A set of sulfabetaine copolymers containing about 1 mol % (based on the repeat units) of reactive benzophenone methacrylate was prepared, spin-coated onto solid substrates, and photo-cured. The resistance of these films against the nonspecific adsorption by two model proteins (bovine serum albumin-BSA, fibrinogen) was explored, and directly compared with a set of references. The various polyzwitterions reduced protein adsorption strongly compared to films of poly(nbutyl methacrylate) that were used as a negative control. The poly(sulfabetaine)s showed generally even somewhat higher anti-fouling activity than their poly(sulfobetaine) analogues, though detailed efficacies depended on the individual polymer-protein pairs. Best samples approach the excellent performance of a poly(oligo(ethylene oxide) methacrylate) reference.
Collapse
Affiliation(s)
- Eric Schönemann
- Department of Chemistry, University Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany.
| | - André Laschewsky
- Department of Chemistry, University Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany.
- Fraunhofer Institute of Applied Polymer Research IAP, 14476 Potsdam-Golm, Germany.
| | - Erik Wischerhoff
- Fraunhofer Institute of Applied Polymer Research IAP, 14476 Potsdam-Golm, Germany.
| | - Julian Koc
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany.
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany.
| |
Collapse
|
10
|
Blackman LD, Gunatillake PA, Cass P, Locock KES. An introduction to zwitterionic polymer behavior and applications in solution and at surfaces. Chem Soc Rev 2019; 48:757-770. [PMID: 30548039 DOI: 10.1039/c8cs00508g] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Zwitterionic polymers, including polyampholytes and polybetaines, are polymers with both positive and negative charges incorporated into their structure. They are a unique class of smart materials with great potential in a broad range of applications in nanotechnology, biomaterials science, nanomedicine and healthcare, as additives for bulk construction materials and crude oil, and in water remediation. In this Tutorial Review, we aim to highlight their structural diversity and design criteria, and their preparation using modern techniques. Their behavior, both in solution and at surfaces, will be examined under a range of environmental conditions. Finally, we will exemplify how their unique behaviors give rise to specific properties tailored to a selection of their numerous applications.
Collapse
Affiliation(s)
- Lewis D Blackman
- Manufacturing Business Unit, Commonwealth Scientific and Industrial Research Organisation, Bayview Avenue, Clayton, VIC 3168, Australia.
| | | | | | | |
Collapse
|
11
|
Koc J, Schönemann E, Amuthalingam A, Clarke J, Finlay JA, Clare AS, Laschewsky A, Rosenhahn A. Low-Fouling Thin Hydrogel Coatings Made of Photo-Cross-Linked Polyzwitterions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1552-1562. [PMID: 30376714 DOI: 10.1021/acs.langmuir.8b02799] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Although zwitterionic chemistries are among the most promising materials for producing nonfouling surfaces, their structural diversity has been low until now. Here, we compare the in vitro fouling behavior of a set of four systematically varied sulfa-/sulfobetaine-containing zwitterionic hydrogel coatings against a series of proteins and nonmotile as well as motile marine organisms as model foulers. The coatings are prepared by simultaneous photoinduced cross-linking and surface anchoring to elucidate the effect of the molecular structure of the zwitterionic moieties on their antifouling activity. Analogously prepared coatings of poly(butyl methacrylate) and poly(oligoethylene glycol methacrylate) serve as references. Photoreactive polymers are synthesized by the statistical copolymerization of sulfobetaine or sulfabetaine methacrylates and methacrylamides with a benzophenone derivative of 2-hydroxyethyl methacrylate and are applied as a thin film coating. While keeping the density of the zwitterionic and cross-linker groups constant, the molecular structure of the zwitterionic side chains is varied systematically, as is the arrangement of the ion pairs in the side chain by changing the classical linear geometry to a novel Y-shaped geometry. All of the polyzwitterions strongly reduce fouling compared to poly(butyl methacrylate). Overall, the sulfabetaine polyzwitterion coatings studied matches the high antifouling effectiveness of oligo(ethylene glycol)-based ones used as a control. Nevertheless, performances varied individually for a given pair of polymer and fouler. The case of the polysulfobetaines exemplifies that minor chemical changes in the polymer structure affect the antifouling performance markedly. Accordingly, the antifouling performance of such polymers cannot be correlated simply to the type of zwitterion used (which could be generally ranked as better performing or poorer performing) but is a result of the polymer's precise chemical structure. Our findings underline the need to enlarge the existing structural diversity of polyzwitterions for antifouling purposes to optimize the potential of their chemical structure.
Collapse
Affiliation(s)
- Julian Koc
- Analytical Chemistry - Biointerfaces , Ruhr University Bochum , 44780 Bochum , Germany
| | - Eric Schönemann
- Department of Chemistry , University Potsdam , 14476 Potsdam-Golm , Germany
| | - Ajitha Amuthalingam
- Analytical Chemistry - Biointerfaces , Ruhr University Bochum , 44780 Bochum , Germany
| | - Jessica Clarke
- School of Natural and Environmental Sciences, Newcastle University , Newcastle upon Tyne NE1 7RU , United Kingdom
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University , Newcastle upon Tyne NE1 7RU , United Kingdom
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University , Newcastle upon Tyne NE1 7RU , United Kingdom
| | - Andre Laschewsky
- Department of Chemistry , University Potsdam , 14476 Potsdam-Golm , Germany
- Fraunhofer Institute of Applied Polymer Research IAP , 14476 Potsdam-Golm , Germany
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces , Ruhr University Bochum , 44780 Bochum , Germany
| |
Collapse
|
12
|
Vasantha VA, Junhui C, Wenguang Z, van Herk AM, Parthiban A. Reversible Photo- and Thermoresponsive, Self-Assembling Azobenzene Containing Zwitterionic Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1465-1474. [PMID: 30103606 DOI: 10.1021/acs.langmuir.8b01820] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Commercially available azo dyes bearing amino groups were grafted to zwitterionic copolymers composed of cyclic anhydride functionality. The zwitterionic copolymers were prepared for the first time by polymerizing sulfobetaine (SB) monomer with maleic anhydride (MA) under conventional free radical polymerization as well as reversible addition-fragmentation chain transfer (RAFT) polymerization. Poly(SB- co-MA) self-assembled in deionized water. Azobenzene grafted zwitterionic poly((SB- co-MA)- g-Azo) exhibited multiresponsive behavior. As confirmed by UV-vis spectroscopy, trans → cis isomerization of the azo group was responsible for the photo- and thermal responsive behavior. The photoisomerization was reversible, and no photoaging was detected during the repeated exposure to UV and visible light. The water-soluble nature of photoresponsive azo dye grafted copolymers makes it suitable for applications in biological systems.
Collapse
Affiliation(s)
- Vivek Arjunan Vasantha
- Institute of Chemical and Engineering Sciences , Agency for Science, Technology and Research (A*STAR) , 1 Pesek Road , Jurong Island, Singapore 627833
| | - Chen Junhui
- Institute of Chemical and Engineering Sciences , Agency for Science, Technology and Research (A*STAR) , 1 Pesek Road , Jurong Island, Singapore 627833
| | - Zhao Wenguang
- Institute of Chemical and Engineering Sciences , Agency for Science, Technology and Research (A*STAR) , 1 Pesek Road , Jurong Island, Singapore 627833
| | - Alexander M van Herk
- Institute of Chemical and Engineering Sciences , Agency for Science, Technology and Research (A*STAR) , 1 Pesek Road , Jurong Island, Singapore 627833
| | - Anbanandam Parthiban
- Institute of Chemical and Engineering Sciences , Agency for Science, Technology and Research (A*STAR) , 1 Pesek Road , Jurong Island, Singapore 627833
| |
Collapse
|
13
|
Vasantha VA, Rusli W, Junhui C, Wenguang Z, Sreekanth KV, Singh R, Parthiban A. Highly monodisperse zwitterion functionalized non-spherical polymer particles with tunable iridescence. RSC Adv 2019; 9:27199-27207. [PMID: 35529225 PMCID: PMC9070653 DOI: 10.1039/c9ra05162g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/14/2019] [Indexed: 02/03/2023] Open
Abstract
A facile and simple synthetic route towards functionalized non-spherical polymer particles (NSP) with tunable morphologies and iridescence is presented. Monodisperse particles with unique zwitterionic functionality were synthesized via emulsifier-free emulsion polymerization in a single step process. The sulfobetaine comonomer was utilized to induce phase separation in the course of polymerization to achieve anisotropic NSP with controlled morphologies such as quasi-spherical with protruding structures like bulge, eye-ball, and snowman-like nanostructures. Both SEM and TEM analyses revealed anisotropic particles, and phase-separated protrusion morphology with a small increase in aspect ratio. By taking advantage of the monodisperse, colloidally stable NSPs, template free photonic crystal arrays were fabricated through a bottom-up approach. The particles readily self-assemble and exhibit a photonic bandgap with vivid structural colors that arise from ordered structures of different morphologies. Additionally, the salt-responsive photonic crystals also possess tunable color-changing characteristics. A convenient method to fabricate functional photonic crystal arrays using self-assembled non-spherical particles that form tunable iridescent polymer opal by changing size and morphologies, thereby producing new responsive photonic material.![]()
Collapse
Affiliation(s)
- Vivek Arjunan Vasantha
- Institute of Chemical and Engineering Sciences (ICES)
- Agency for Science, Technology and Research (A*STAR)
- Jurong Island
- Singapore 627833
| | - Wendy Rusli
- Institute of Chemical and Engineering Sciences (ICES)
- Agency for Science, Technology and Research (A*STAR)
- Jurong Island
- Singapore 627833
| | - Chen Junhui
- Institute of Chemical and Engineering Sciences (ICES)
- Agency for Science, Technology and Research (A*STAR)
- Jurong Island
- Singapore 627833
| | - Zhao Wenguang
- Institute of Chemical and Engineering Sciences (ICES)
- Agency for Science, Technology and Research (A*STAR)
- Jurong Island
- Singapore 627833
| | - Kandammathe Valiyaveedu Sreekanth
- Division of Physics and Applied Physics
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Centre for Disruptive Photonic Technologies
| | - Ranjan Singh
- Division of Physics and Applied Physics
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Centre for Disruptive Photonic Technologies
| | - Anbanandam Parthiban
- Institute of Chemical and Engineering Sciences (ICES)
- Agency for Science, Technology and Research (A*STAR)
- Jurong Island
- Singapore 627833
| |
Collapse
|
14
|
Schönemann E, Laschewsky A, Rosenhahn A. Exploring the Long-Term Hydrolytic Behavior of Zwitterionic Polymethacrylates and Polymethacrylamides. Polymers (Basel) 2018; 10:E639. [PMID: 30966673 PMCID: PMC6403559 DOI: 10.3390/polym10060639] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 12/16/2022] Open
Abstract
The hydrolytic stability of polymers to be used for coatings in aqueous environments, for example, to confer anti-fouling properties, is crucial. However, long-term exposure studies on such polymers are virtually missing. In this context, we synthesized a set of nine polymers that are typically used for low-fouling coatings, comprising the well-established poly(oligoethylene glycol methylether methacrylate), poly(3-(N-2-methacryloylethyl-N,N-dimethyl) ammoniopropanesulfonate) ("sulfobetaine methacrylate"), and poly(3-(N-3-methacryamidopropyl-N,N-dimethyl)ammoniopropanesulfonate) ("sulfobetaine methacrylamide") as well as a series of hitherto rarely studied polysulfabetaines, which had been suggested to be particularly hydrolysis-stable. Hydrolysis resistance upon extended storage in aqueous solution is followed by ¹H NMR at ambient temperature in various pH regimes. Whereas the monomers suffered slow (in PBS) to very fast hydrolysis (in 1 M NaOH), the polymers, including the polymethacrylates, proved to be highly stable. No degradation of the carboxyl ester or amide was observed after one year in PBS, 1 M HCl, or in sodium carbonate buffer of pH 10. This demonstrates their basic suitability for anti-fouling applications. Poly(sulfobetaine methacrylamide) proved even to be stable for one year in 1 M NaOH without any signs of degradation. The stability is ascribed to a steric shielding effect. The hemisulfate group in the polysulfabetaines, however, was found to be partially labile.
Collapse
Affiliation(s)
- Eric Schönemann
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany.
| | - André Laschewsky
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany.
- Fraunhofer Institute of Applied Polymer Research IAP, Geiselberg-Str. 69, D-14476 Potsdam-Golm, Germany.
| | - Axel Rosenhahn
- Institute of Analytical Chemistry-Biogrenzflächen, Ruhr-Universität Bochum, Universitätsstr. 150, D-44801 Bochum, Germany.
| |
Collapse
|
15
|
Nizardo NM, Schanzenbach D, Schönemann E, Laschewsky A. Exploring Poly(ethylene glycol)-Polyzwitterion Diblock Copolymers as Biocompatible Smart Macrosurfactants Featuring UCST-Phase Behavior in Normal Saline Solution. Polymers (Basel) 2018; 10:E325. [PMID: 30966360 PMCID: PMC6414896 DOI: 10.3390/polym10030325] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 12/11/2022] Open
Abstract
Nonionic-zwitterionic diblock copolymers are designed to feature a coil-to-globule collapse transition with an upper critical solution temperature (UCST) in aqueous media, including physiological saline solution. The block copolymers that combine presumably highly biocompatible blocks are synthesized by chain extension of a poly(ethylene glycol) (PEG) macroinitiator via atom transfer radical polymerization (ATRP) of sulfobetaine and sulfabetaine methacrylates. Their thermoresponsive behavior is studied by variable temperature turbidimetry and ¹H NMR spectroscopy. While the polymers with polysulfobetaine blocks exhibit phase transitions in the physiologically interesting window of 30⁻50 °C only in pure aqueous solution, the polymers bearing polysulfabetaine blocks enabled phase transitions only in physiological saline solution. By copolymerizing a pair of structurally closely related sulfo- and sulfabetaine monomers, thermoresponsive behavior can be implemented in aqueous solutions of both low and high salinity. Surprisingly, the presence of the PEG blocks can affect the UCST-transitions of the polyzwitterions notably. In specific cases, this results in "schizophrenic" thermoresponsive behavior displaying simultaneously an UCST and an LCST (lower critical solution temperature) transition. Exploratory experiments on the UCST-transition triggered the encapsulation and release of various solvatochromic fluorescent dyes as model "cargos" failed, apparently due to the poor affinity even of charged organic compounds to the collapsed state of the polyzwitterions.
Collapse
Affiliation(s)
- Noverra M Nizardo
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Str. 24⁻25, D-14476 Potsdam-Golm, Germany.
| | - Dirk Schanzenbach
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Str. 24⁻25, D-14476 Potsdam-Golm, Germany.
| | - Eric Schönemann
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Str. 24⁻25, D-14476 Potsdam-Golm, Germany.
| | - André Laschewsky
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Str. 24⁻25, D-14476 Potsdam-Golm, Germany.
- Fraunhofer Institute of Applied Polymer Research IAP, Geiselberg-Str. 69, D-14476 Potsdam-Golm, Germany.
| |
Collapse
|
16
|
Li S, Gou S, Zhou L, Zhang Q, Yang K, Wu Y, Guo Q. Prominent temperature-response and salt irritation from self-assemblies of polyzwitterion-sodium lauryl sulfonate. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.01.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Ren H, Mei Z, Chen Y, Chen S, Ge Z, Hu J. Synthesis of zwitterionic acrylamide copolymers for biocompatible applications. J BIOACT COMPAT POL 2017. [DOI: 10.1177/0883911517707776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In order to prepare acrylamide copolymers with non-toxicity for environment-friendly materials, a series of zwitterionic acrylamide copolymers with varying acrylamide content were synthesized with DMAPS (3-dimethyl (methacryloyloxyethyl) ammonium propane sulfonate) and acrylamide via free radical polymerization. The structural properties and cytotoxicity are carefully investigated. The results demonstrate that DMAPS- co-acrylamide copolymers contain DMAPS and acrylamide segments that form a matrix consisting of strong electrostatic interactions as well as strong hydrogen bonding. DMAPS segments exhibit negligible influence on the glass phase transition behavior, yet affect the composite’s water-contact angle. The optimum hydrophilic properties are obtained by adjusting the acrylamide content to 50 wt%. All DMAPS- co-acrylamide copolymers are measured to be non-toxic. The DMAPS segments allow for suitable contribution to the biocompatibility of the synthesized copolymer, in which copolymers containing higher DMAPS content demonstrate better biocompatibility.
Collapse
Affiliation(s)
- Huanhuan Ren
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Zhankui Mei
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Yangyang Chen
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Shaojun Chen
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Zaochuan Ge
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Jinlian Hu
- Insititute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
18
|
High temperature stability and low adsorption of sub-100 nm magnetite nanoparticles grafted with sulfonated copolymers on Berea sandstone in high salinity brine. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.01.080] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Maji T, Banerjee S, Bose A, Mandal TK. A stimuli-responsive methionine-based zwitterionic methacryloyl sulfonium sulfonate monomer and the corresponding antifouling polymer with tunable thermosensitivity. Polym Chem 2017. [DOI: 10.1039/c7py00460e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This report describes a dual pH- and thermo-responsive methionine-based zwitterionic methacryloyl sulfonium sulfonate monomer and the corresponding zwitterionic antifouling polymer with ion-induced tunable thermosensitivity.
Collapse
Affiliation(s)
- Tanmoy Maji
- Polymer Science Unit
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Sanjib Banerjee
- Polymer Science Unit
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Avijit Bose
- Polymer Science Unit
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Tarun K. Mandal
- Polymer Science Unit
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| |
Collapse
|
20
|
Huang KT, Fang YL, Hsieh PS, Li CC, Dai NT, Huang CJ. Non-sticky and antimicrobial zwitterionic nanocomposite dressings for infected chronic wounds. Biomater Sci 2017; 5:1072-1081. [DOI: 10.1039/c7bm00039a] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Zwitterionic poly(sulfobetaine acrylamide) (pSBAA)-based nanocomposite hydrogels can have high potential for the treatment of infected chronic wounds.
Collapse
Affiliation(s)
- Kang-Ting Huang
- Department of Biomedical Sciences and Engineering
- National Central University
- Taoyuan 320
- Taiwan
| | - Yun-Lung Fang
- Department of Biomedical Sciences and Engineering
- National Central University
- Taoyuan 320
- Taiwan
- Division of Plastic and Reconstructive Surgery
| | - Pai-Shan Hsieh
- Division of Plastic and Reconstructive Surgery
- Department of Surgery
- Tri-Service General Hospital
- National Defense Medical Center
- Taiwan
| | - Chun-Chang Li
- Division of Plastic Surgery
- Department of Surgery
- Wan Fan Hospital
- Taipei Medical University
- Taiwan
| | - Niann-Tzyy Dai
- Division of Plastic and Reconstructive Surgery
- Department of Surgery
- Tri-Service General Hospital
- National Defense Medical Center
- Taiwan
| | - Chun-Jen Huang
- Department of Biomedical Sciences and Engineering
- National Central University
- Taoyuan 320
- Taiwan
- Department of Chemical & Materials Engineering
| |
Collapse
|
21
|
Hu P, Chen L, Deming CP, Lu JE, Bonny LW, Chen S. Effects of para-substituents of styrene derivatives on their chemical reactivity on platinum nanoparticle surfaces. NANOSCALE 2016; 8:12013-12021. [PMID: 27242019 DOI: 10.1039/c6nr02296k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Stable platinum nanoparticles were successfully prepared by the self-assembly of para-substituted styrene derivatives onto the platinum surfaces as a result of platinum-catalyzed dehydrogenation and transformation of the vinyl groups to the acetylene ones, forming platinum-vinylidene/-acetylide interfacial bonds. Transmission electron microscopic measurements showed that the nanoparticles were well dispersed without apparent aggregation, suggesting sufficient protection of the nanoparticles by the organic capping ligands, and the average core diameter was estimated to be 2.0 ± 0.3 nm, 1.3 ± 0.2 nm, and 1.1 ± 0.2 nm for the nanoparticles capped with 4-tert-butylstyrene, 4-methoxystyrene, and 4-(trifluoromethyl)styrene, respectively, as a result of the decreasing rate of dehydrogenation with the increasing Taft (polar) constant of the para-substituents. Importantly, the resulting nanoparticles exhibited unique photoluminescence, where an increase of the Hammett constant of the para-substituents corresponded to a blue-shift of the photoluminescence emission, suggesting an enlargement of the HOMO-LUMO band gap of the nanoparticle-bound acetylene moieties. Furthermore, the resulting nanoparticles exhibited apparent electrocatalytic activity towards oxygen reduction in acidic media, with the best performance among the series of samples observed with the 4-tert-butylstyrene-capped nanoparticles due to an optimal combination of the nanoparticle core size and ligand effects on the bonding interactions between platinum and oxygen species.
Collapse
Affiliation(s)
- Peiguang Hu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, USA.
| | - Limei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, USA.
| | - Christopher P Deming
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, USA.
| | - Jia-En Lu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, USA.
| | - Lewis W Bonny
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, USA.
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, USA.
| |
Collapse
|
22
|
Zhang H, Guo S, Fan W, Zhao Y. Ultrasensitive pH-Induced Water Solubility Switch Using UCST Polymers. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02522] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Hu Zhang
- Département
de chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
| | - Shengwei Guo
- Département
de chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
- School of Material Science & Engineering, Beifang University of Nationalities, Yinchuan, China 750021
| | - Weizheng Fan
- Département
de chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
| | - Yue Zhao
- Département
de chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
| |
Collapse
|
23
|
Huang KT, Fang YL, Hsieh PS, Li CC, Dai NT, Huang CJ. Zwitterionic nanocomposite hydrogels as effective wound dressings. J Mater Chem B 2016; 4:4206-4215. [DOI: 10.1039/c6tb00302h] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Zwitterionic poly(sulfobetaine acrylamide) (pSBAA) nanocomposite hydrogels were synthesized and implemented as effective chronic wound dressings.
Collapse
Affiliation(s)
- Kang-Ting Huang
- Department of Biomedical Sciences and Engineering
- National Central University
- Jhong-Li
- Taiwan
| | - Yun-Lung Fang
- Department of Biomedical Sciences and Engineering
- National Central University
- Jhong-Li
- Taiwan
- Division of Plastic and Reconstructive Surgery
| | - Pai-Shan Hsieh
- Division of Plastic and Reconstructive Surgery
- Department of Surgery
- Tri-Service General Hospital
- National Defense Medical Center
- Taipei
| | - Chun-Chang Li
- Division of Plastic and Reconstructive Surgery
- Department of Surgery
- Tri-Service General Hospital
- National Defense Medical Center
- Taipei
| | - Niann-Tzyy Dai
- Division of Plastic and Reconstructive Surgery
- Department of Surgery
- Tri-Service General Hospital
- National Defense Medical Center
- Taipei
| | - Chun-Jen Huang
- Department of Biomedical Sciences and Engineering
- National Central University
- Jhong-Li
- Taiwan
- Department of Chemical & Materials Engineering
| |
Collapse
|
24
|
Vasantha VA, Zainul Rahim SZ, Jayaraman S, Junyuan GH, Puniredd SR, Ramakrishna S, Teo SLM, Parthiban A. Antibacterial, electrospun nanofibers of novel poly(sulfobetaine) and poly(sulfabetaine)s. J Mater Chem B 2016; 4:2731-2738. [DOI: 10.1039/c6tb00595k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zwitterionic polymers have gained increasing attention due to their ability to form environmentally friendly antifouling surfaces.
Collapse
Affiliation(s)
- Vivek Arjunan Vasantha
- Institute of Chemical and Engineering Sciences (ICES)
- Agency for Science
- Technology and Research (A*STAR)
- Singapore 627833
| | - Siti Zarina Zainul Rahim
- Tropical Marine Science Institute
- National University of Singapore
- Singapore 119227
- Department of Biological Sciences
- National University of Singapore
| | - Sundaramurthy Jayaraman
- Environmental & Water Technology Centre of Innovation
- Ngee Ann Polytechnic
- Singapore 599489
- Department of Mechanical Engineering
- National University of Singapore
| | - Gabriel Han Junyuan
- Environmental & Water Technology Centre of Innovation
- Ngee Ann Polytechnic
- Singapore 599489
| | - Sreenivasa Reddy Puniredd
- Institute of Materials Research and Engineering (IMRE)
- Agency for Science
- Technology and Research (A*STAR)
- Singapore 138634
| | - Seeram Ramakrishna
- Department of Mechanical Engineering
- National University of Singapore
- Singapore 117576
| | - Serena Lay-Ming Teo
- Department of Biological Sciences
- National University of Singapore
- Singapore 117543
| | - Anbanandam Parthiban
- Institute of Chemical and Engineering Sciences (ICES)
- Agency for Science
- Technology and Research (A*STAR)
- Singapore 627833
| |
Collapse
|