1
|
Saulais M, Salem S, Sillard C, Choisy P, Dufresne A. Green synthesis of sacrificial UV-sensitive core and biobased shell for obtaining optically hollow nanoparticles. J Colloid Interface Sci 2025; 678:971-983. [PMID: 39270397 DOI: 10.1016/j.jcis.2024.08.260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Hollow nanoparticles have been extensively studied in recent years. Obtaining such structures with biobased materials, following greener synthetic routes, is still challenging, especially if accurate particle dimensions are required. This work reports the use of an innovative hybrid silica core (Si@azo) containing UV-sensitive molecule, wrapped in biobased multilayer shell composed of polysaccharides. It is a promising strategy for obtaining optically hollow nanoparticles. Indeed, Si@azo cores have the ability to be partially degraded when irradiated with UV light. Combined with a well-controlled and monodisperse diameter, they provide a good basis for layer-by-layer assembly, leading to a multilayer shell with controlled composition and thickness. Finally, UV irradiation of such a core-shell structure is harmless to the polysaccharide shell, but does impact the hybrid silica core, as revealed by turbidity measurements, among other. Each step, i.e. core synthesis, shell addition, and core-shell irradiation, has been carefully characterized at the macro (Fourier-transform infrared spectroscopy - FTIR, Dynamic Light Scattering - DLS, Zeta-potential measurement, Surface Plasmon Resonance - SPR, turbidity) and microscale (Transmission and Scanning Electron Microscopies). Emphasis is put on how turbidity measurements can be related to the core refractive index (ncore), giving information on the state of core degradation and whether the core-shell particle is optically hollow.
Collapse
Affiliation(s)
- Marlène Saulais
- Univ. Grenoble Alpes, CNRS, Grenoble-INP, LGP2, F-38000 Grenoble, France
| | - Sara Salem
- Univ. Grenoble Alpes, CNRS, Grenoble-INP, LGP2, F-38000 Grenoble, France
| | - Cécile Sillard
- Univ. Grenoble Alpes, CNRS, Grenoble-INP, LGP2, F-38000 Grenoble, France.
| | | | - Alain Dufresne
- Univ. Grenoble Alpes, CNRS, Grenoble-INP, LGP2, F-38000 Grenoble, France.
| |
Collapse
|
2
|
Cherniienko A, Lesyk R, Zaprutko L, Pawełczyk A. IR-EcoSpectra: Exploring sustainable ex situ and in situ FTIR applications for green chemical and pharmaceutical analysis. J Pharm Anal 2024; 14:100951. [PMID: 39291244 PMCID: PMC11406085 DOI: 10.1016/j.jpha.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/06/2024] [Accepted: 02/19/2024] [Indexed: 09/19/2024] Open
Abstract
In various industries, particularly in the chemical and pharmaceutical fields, Fourier transform infrared spectroscopy (FTIR) spectroscopy provides a unique capacity to detect and characterise complex chemicals while minimising environmental damage by minimal waste generation and reducing the need for extensive sample preparation or use of harmful reagents. This review showcases the versatility of ex situ and in situ FTIR applications for substance identification, analysis, and dynamic monitoring. Ex situ FTIR spectroscopy's accuracy in identifying impurities, monitoring crystallisation processes, and regulating medication release patterns improves product quality, safety, and efficacy. Furthermore, its quantification capabilities enable more effective drug development, dosage procedures, and quality control practices, all of which are consistent with green analytical principles. On the other hand, in situ FTIR spectroscopy appears to be a novel tool for the real-time investigation of molecular changes during reactions and processes, allowing for the monitoring of drug release kinetics, crystallisation dynamics, and surface contacts, as well as providing vital insights into material behaviour. The combination of ex situ FTIR precision and in situ FTIR dynamic capabilities gives a comprehensive analytical framework for developing green practices, quality control, and innovation in the chemical and pharmaceutical industries. This review presents the wide range of applications of ex situ and in situ FTIR spectroscopy in chemical, pharmaceutical and medical fields as an analytical green chemistry tool. However, further study is required to fully realise FTIR's potential and develop new applications that improve sustainability in these areas.
Collapse
Affiliation(s)
- Alina Cherniienko
- Department of Organic Chemistry, Poznan University of Medical Sciences, Poznan, 60-203, Poland
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Lucjusz Zaprutko
- Department of Organic Chemistry, Poznan University of Medical Sciences, Poznan, 60-203, Poland
| | - Anna Pawełczyk
- Department of Organic Chemistry, Poznan University of Medical Sciences, Poznan, 60-203, Poland
| |
Collapse
|
3
|
Davantès A, Nigen M, Sanchez C, Renard D. In Situ ATR Spectroscopy Study of the Interaction of Acacia senegal Gum with Gold Nanoparticles Films at the Solid-Liquid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:529-540. [PMID: 38105537 DOI: 10.1021/acs.langmuir.3c02769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The adsorption process of Acacia gum (A. senegal), a complex heteropolysaccharide, was followed by using a spectroscopic method to unravel the relative contribution of the protein moieties and the carbohydrate blocks on the adsorption process. In situ ATR-FTIR was used to investigate the kinetics and conformational changes associated with the adsorption of A. senegal gum on gold nanoparticle films (Au-NPs) at different pHs. The results of this thorough study highlighted the adsorption of A. senegal gum through its protein moieties, in particular, AGPs of low molecular weight and high protein content, close to the Au-NPs surface. Isotherm experiments, by gradually increasing the concentration, showed that the gum adsorption was heterogeneous and followed the Freundlich model for the amide part, while the polysaccharide part followed the Langmuir model. In addition, the hydration and structural organization of the gum layer depended on the gum concentration. A. senegal gum adsorbed irreversibly on Au-NPs whatever the pHs, but the adsorbed layer presented a different behavior depending on pH. A more aggregated and less hydrated structure was observed at acidic pH, while a very hydrated and continuous layer was detected at higher pH. The secondary structure analysis through amide III band revealed a change in the gum secondary structure at high pH with the increase in β-turn while random coil decreased.
Collapse
Affiliation(s)
- Athénaïs Davantès
- UR BIA, INRAE Pays de la Loire, 3 impasse Yvette Cauchois, La Géraudière, CS 71627, Nantes Cedex 3 F-44316, France
| | - Michaël Nigen
- UMR IATE, UM-INRAE-CIRAD-Montpellier Supagro, 2 Place Viala, Montpellier Cedex F-34060, France
| | - Christian Sanchez
- UMR IATE, UM-INRAE-CIRAD-Montpellier Supagro, 2 Place Viala, Montpellier Cedex F-34060, France
| | - Denis Renard
- UR BIA, INRAE Pays de la Loire, 3 impasse Yvette Cauchois, La Géraudière, CS 71627, Nantes Cedex 3 F-44316, France
| |
Collapse
|
4
|
Ettoumi FE, Zhang R, Xu Y, Li L, Huang H, Luo Z. Synthesis and characterization of fucoidan/chitosan-coated nanoliposomes for enhanced stability and oral bioavailability of hydrophilic catechin and hydrophobic juglone. Food Chem 2023; 423:136330. [PMID: 37201260 DOI: 10.1016/j.foodchem.2023.136330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/12/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023]
Abstract
This study aimed to improve the thermodynamic performance of nanoliposomes (NLs) using fucoidan (F) as the second-layer coating biopolymer along with chitosan (CS), to control the delivery and bioavailability of catechin (C) and juglone (J). The stabilized liposomal carrier of F/CS-conjugated JC-NL (F-CS-JC-NL) was developed with optimum concentrations of CS (0.09 wt%) and F (0.10 wt%), with the highest encapsulation efficiency of juglone (95.47%) and catechin (90.88%). Physicochemical characterization revealed that F-CS-JC-NL disclosed improved stability under different pH and ionic strengths, with the maximum juglone/catechin retention under thermal, oxidative and storage conditions. In vitro digestion revealed that NL double-coating (F-CS-JC-NL) significantly reduced compound leakage in the gastrointestinal tract, providing a controlled release and better bioavailability of juglone/catechin compared to CS-JC-NL and JC-NL. Conclusively, this study provides a novel NL-based delivery carrier with enhanced physicochemical stability and controlled release that might have promising use in delivering functional ingredients.
Collapse
Affiliation(s)
- Fatima-Ezzahra Ettoumi
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Ruyuan Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, People's Republic of China
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Hao Huang
- College of Ecology, Lishui University, Lishui 323000, People's Republic of China.
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, People's Republic of China; Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
5
|
Papagiannopoulos A, Nikolakis SP, Pamvouxoglou A, Koutsopoulou E. Physicochemical properties of electrostatically crosslinked carrageenan/chitosan hydrogels and carrageenan/chitosan/Laponite nanocomposite hydrogels. Int J Biol Macromol 2023; 225:565-573. [PMID: 36410537 DOI: 10.1016/j.ijbiomac.2022.11.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Abstract
In this work physical carrageenan/chitosan (Car/Chit) hydrogels are prepared by electrostatic complexation between the two oppositely charged polysaccharides. The hydrogels have storage moduli in the order of 5-10 kPa and swelling ratios in the order of 5000-6000 %. At conditions where both polysaccharides are highly charged (pH 5) the swelling ratios are lower than the ones at conditions of lower dissociation i.e., at pH 2 and 7 and the opposite trend is found for the storage modulus. Chit appears to act as a crosslinker for Car as increasing its concentration the swelling ratio decreases and the moduli increase. The hydrogels can incorporate the nanoclay Laponite (Lap) and form hybrid nanocomposites where the intercalation by the two biopolymers leads to exfoliation of the clay nanoplatelets in the presence of both Car and Chit. The composite hydrogels retain the mechanical properties of the Car/Chit hydrogels at the studied pH range (pH 2 to pH 7). This shows the prepared hydrogels can be potentially used as multifunctional biomaterials for drug delivery, tissue engineering and bone regeneration applications.
Collapse
Affiliation(s)
- Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Spiridon-Paraskevas Nikolakis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Andreas Pamvouxoglou
- Experimental Soft Matter Group, Condensed Matter Physics Laboratory (IPKM), Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Eleni Koutsopoulou
- Technical University of Crete, Department of Mineral Resources Engineering, GR-73100 Chania, Greece; Hellenic Survey of Geology and Mineral Exploration (HSGME), 13677 Acharnes, Greece
| |
Collapse
|
6
|
Iqbal MW, Riaz T, Mahmood S, Bilal M, Manzoor MF, Qamar SA, Qi X. Fucoidan-based nanomaterial and its multifunctional role for pharmaceutical and biomedical applications. Crit Rev Food Sci Nutr 2022; 64:354-380. [PMID: 35930305 DOI: 10.1080/10408398.2022.2106182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fucoidans are promising sulfated polysaccharides isolated from marine sources that have piqued the interest of scientists in recent years due to their widespread use as a bioactive substance. Bioactive coatings and films, unsurprisingly, have seized these substances to create novel, culinary, therapeutic, and diagnostic bioactive nanomaterials. The applications of fucoidan and its composite nanomaterials have a wide variety of food as well as pharmacological properties, including anti-oxidative, anti-inflammatory, anti-cancer, anti-thrombic, anti-coagulant, immunoregulatory, and anti-viral properties. Blends of fucoidan with other biopolymers such as chitosan, alginate, curdlan, starch, etc., have shown promising coating and film-forming capabilities. A blending of biopolymers is a recommended approach to improve their anticipated properties. This review focuses on the fundamental knowledge and current development of fucoidan, fucoidan-based composite material for bioactive coatings and films, and their biological properties. In this article, fucoidan-based edible bioactive coatings and films expressed excellent mechanical strength that can prolong the shelf-life of food products and maintain their biodegradability. Additionally, these coatings and films showed numerous applications in the biomedical field and contribute to the economy. We hope this review can deliver the theoretical basis for the development of fucoidan-based bioactive material and films.
Collapse
Affiliation(s)
| | - Tahreem Riaz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shahid Mahmood
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | | | - Sarmad Ahmad Qamar
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei, Taiwan
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Webber JL, Bradshaw-Hajek BH, Krasowska M, Beattie DA. Polyelectrolyte multilayer formation on protein layer supports. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Kitsara M, Tassis G, Papagiannopoulos A, Simon A, Agbulut O, Pispas S. Polysaccharide-Protein Multilayers Based on Chitosan-Fibrinogen Assemblies for Cardiac Cell Engineering. Macromol Biosci 2021; 22:e2100346. [PMID: 34648684 DOI: 10.1002/mabi.202100346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/10/2021] [Indexed: 12/11/2022]
Abstract
The cell and tissue culture substrates play a pivotal role in the regulation of cell-matrix and cell-cell interactions. The surface properties of the materials control a wide variety of cell functions. Amongst various methods, layer-by-layer (LbL) assembly is a versatile surface coating technique for creating controllable bio-coatings. Here, polysaccharide/protein multilayers are proposed, which are fabricated by immersive LbL assembly and based on the chitosan/fibrinogen pair for improving the adhesion and spreading of cardiomyocytes. Two approaches in LbL assembly are employed for clarifying the effect of the bilayers order and their concentration on cardiomyocytes viability and morphology. Fourier transform infrared spectroscopy (FTIR) measurements show that the adsorption of the biopolymers is enhanced during the LbL deposition in a synergistic manner. Contact angle measurements indicate that the multilayers are alternating from less to more hydrophilic behavior depending on the biopolymer that is added last. Confocal microscopy with immunostained fibrinogen reveals that the amount of the protein is higher when the concentration of the immersion solution is increased, however, for low solution concentration it is speculated that interdigitation between the separate biopolymer layers takes place. This work motivates the use of fibrinogen in polysaccharide/protein multilayers for enhanced cytocompatibility in cardiac tissue engineering.
Collapse
Affiliation(s)
- Maria Kitsara
- Institut de Biologie Paris-Seine, CNRS UMR 8256, INSERM ERL 1164, Biological Adaptation and Ageing, Sorbonne Université, Paris, 75005, France
| | - George Tassis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens, 11635, Greece.,Department of Physics, University of Patras, Patras, 26504, Greece
| | - Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens, 11635, Greece
| | - Alexandre Simon
- Institut de Biologie Paris-Seine, CNRS UMR 8256, INSERM ERL 1164, Biological Adaptation and Ageing, Sorbonne Université, Paris, 75005, France
| | - Onnik Agbulut
- Institut de Biologie Paris-Seine, CNRS UMR 8256, INSERM ERL 1164, Biological Adaptation and Ageing, Sorbonne Université, Paris, 75005, France
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens, 11635, Greece
| |
Collapse
|
9
|
Co-immobilization of antioxidant enzymes on titania nanosheets for reduction of oxidative stress in colloid systems. J Colloid Interface Sci 2021; 590:28-37. [DOI: 10.1016/j.jcis.2021.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
|
10
|
Webber JL, Namivandi-Zangeneh R, Drozdek S, Wilk KA, Boyer C, Wong EHH, Bradshaw-Hajek BH, Krasowska M, Beattie DA. Incorporation and antimicrobial activity of nisin Z within carrageenan/chitosan multilayers. Sci Rep 2021; 11:1690. [PMID: 33462270 PMCID: PMC7814039 DOI: 10.1038/s41598-020-79702-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/02/2020] [Indexed: 01/08/2023] Open
Abstract
An antimicrobial peptide, nisin Z, was embedded within polyelectrolyte multilayers (PEMs) composed of natural polysaccharides in order to explore the potential of forming a multilayer with antimicrobial properties. Using attenuated total reflection Fourier transform infrared spectroscopy (ATR FTIR), the formation of carrageenan/chitosan multilayers and the inclusion of nisin Z in two different configurations was investigated. Approximately 0.89 µg cm-2 nisin Z was contained within a 4.5 bilayer film. The antimicrobial properties of these films were also investigated. The peptide containing films were able to kill over 90% and 99% of planktonic and biofilm cells, respectively, against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) strains compared to control films. Additionally, surface topography and wettability studies using atomic force microscopy (AFM) and the captive bubble technique revealed that surface roughness and hydrophobicity was similar for both nisin containing multilayers. This suggests that the antimicrobial efficacy of the peptide is unaffected by its location within the multilayer. Overall, these results demonstrate the potential to embed and protect natural antimicrobials within a multilayer to create functionalised coatings that may be desired by industry, such as in the food, biomaterials, and pharmaceutical industry sectors.
Collapse
Affiliation(s)
- Jessie L Webber
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
- UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Rashin Namivandi-Zangeneh
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sławomir Drozdek
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Kazimiera A Wilk
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Edgar H H Wong
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | | | - Marta Krasowska
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia.
- UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia.
| | - David A Beattie
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia.
- UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia.
| |
Collapse
|
11
|
Adsorption Properties of Soft Hydrophobically Functionalized PSS/MA Polyelectrolytes. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated the adsorption properties of the newly synthesized, hydrophobically functionalized polyelectrolyte (HF-PE), poly(4-styrenesulfonic-co-maleic acid) copolymer (PSS/MA). The hydrophobic alkyl side chains (C12 or C16) were incorporated into the polyelectrolyte backbone via the labile amid linker to obtain the soft HF-PE product with the assumed amount of 15% and 40% degree of grafting for every length of the alkyl chain, i.e., PSS/MA-g-C12NH2 (15% or 40%) as well as PSS/MA-g-C16NH2 (15% or 40%). In the present contribution, we determined both the effect of grafting density and the length of alkyl chain on adsorption at water/air and water/decane interfaces, as well as on top of the polyelectrolyte multilayer (PEM) deposited on a solid surface. The dependence of the interfacial tension on copolymer concentration was investigated by the pendant drop method, while the adsorption at solid surface coated by poly(diallyldimethylammonium chloride)/poly(styrene sulphonate) PEM by the quartz crystal microbalance with dissipation (QCM-D), attenuated total reflection Fourier transform infrared spectroscopy (FTIR-ATR) and contact angle analysis. We found that surface activity of the hydrophobized copolymer was practically independent of the grafting ratio for C16 side chains, whereas, for C12, the copolymer with a lower grafting ratio seemed to be more surface active. The results of QCM-D and FTIR-ATR experiments confirmed the adsorption of hydrophobized copolymer at PEM along with the modification of water structure at the interface. Finally, it can be concluded that the hydrophobically modified PSS/MA can be successfully applied either as the efficacious emulsifier for the formation of (nano)emulsions for further active substances encapsulation using the sequential adsorption method or as one of the convenient building blocks for the surface modification materials.
Collapse
|
12
|
Chen S, Sathuvan M, Zhang X, Zhang W, Tang S, Liu Y, Cheong KL. Characterization of polysaccharides from different species of brown seaweed using saccharide mapping and chromatographic analysis. BMC Chem 2021; 15:1. [PMID: 33430936 PMCID: PMC7798215 DOI: 10.1186/s13065-020-00727-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/08/2020] [Indexed: 02/05/2023] Open
Abstract
Brown seaweed polysaccharides (BSPs) are one of the primary active components from brown seaweed that has a range of pharmaceutical and biomedical applications. However, the quality control of BSPs is a challenge due to their complicated structure and macromolecule. In this study, saccharide mapping based on high-performance liquid chromatography (HPLC), multi-angle laser light scattering, viscometer, and refractive index detector (HPSEC-MALLS-Vis-RID), and Fourier transform infrared (FT-IR) were used to discriminate the polysaccharides from nine different species of brown algae (BA1-9). The results showed that BSPs were composed of β-D-glucans and β-1,3-1,4-glucan linkages. The molecular weight, radius of gyration, and intrinsic viscosity of BSPs were ranging from 1.718 × 105 Da to 6.630 × 105 Da, 30.2 nm to 51.5 nm, and 360.99 mL/g to 865.52 mL/g, respectively. Moreover, α values of BSPs were in the range of 0.635 to 0.971, which indicated a rigid rod chain conformation. The antioxidant activities of BSPs exhibited substantial radical scavenging activities against DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS (2, 2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid) radicals, which indicated that the use of BSPs might be a potential approach for antioxidant supplements. Thus, this study gives insights about the structure-function relationship of BSPs, which will be beneficial to improve the quality of polysaccharides derived from marine algae.
Collapse
Affiliation(s)
- Shengqin Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, 515063, Guangdong, People's Republic of China
| | - Malairaj Sathuvan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, 515063, Guangdong, People's Republic of China
| | - Xiao Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, 515063, Guangdong, People's Republic of China
| | - Wancong Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China.
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, 515063, Guangdong, People's Republic of China.
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, 515063, Guangdong, People's Republic of China.
| |
Collapse
|
13
|
Nguyen-Tri P, Ghassemi P, Carriere P, Nanda S, Assadi AA, Nguyen DD. Recent Applications of Advanced Atomic Force Microscopy in Polymer Science: A Review. Polymers (Basel) 2020; 12:E1142. [PMID: 32429499 PMCID: PMC7284686 DOI: 10.3390/polym12051142] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/26/2022] Open
Abstract
Atomic force microscopy (AFM) has been extensively used for the nanoscale characterization of polymeric materials. The coupling of AFM with infrared spectroscope (AFM-IR) provides another advantage to the chemical analyses and thus helps to shed light upon the study of polymers. This paper reviews some recent progress in the application of AFM and AFM-IR in polymer science. We describe the principle of AFM-IR and the recent improvements to enhance its resolution. We also discuss the latest progress in the use of AFM-IR as a super-resolution correlated scanned-probe infrared spectroscopy for the chemical characterization of polymer materials dealing with polymer composites, polymer blends, multilayers, and biopolymers. To highlight the advantages of AFM-IR, we report several results in studying the crystallization of both miscible and immiscible blends as well as polymer aging. Finally, we demonstrate how this novel technique can be used to determine phase separation, spherulitic structure, and crystallization mechanisms at nanoscales, which has never been achieved before. The review also discusses future trends in the use of AFM-IR in polymer materials, especially in polymer thin film investigation.
Collapse
Affiliation(s)
- Phuong Nguyen-Tri
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G8Z 4M3, Canada;
| | - Payman Ghassemi
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G8Z 4M3, Canada;
| | - Pascal Carriere
- Laboratoire MAPIEM (EA 4323), Matériaux Polymères Interfaces Environnement Marin, Université de Toulon, CEDEX 9, 83041 Toulon, France;
| | - Sonil Nanda
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada;
| | - Aymen Amine Assadi
- ENSCR—Institut des Sciences Chimiques de Rennes (ISCR)—UMR CNRS 6226, Univ Rennes, 35700 Rennes, France;
| | - Dinh Duc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam;
- Department of Environmental Energy Engineering, Kyonggi University, Suwon 16227, Korea
| |
Collapse
|
14
|
Etman SM, Abdallah OY, Mehanna RA, Elnaggar YS. Lactoferrin/Hyaluronic acid double-coated lignosulfonate nanoparticles of quinacrine as a controlled release biodegradable nanomedicine targeting pancreatic cancer. Int J Pharm 2020. [DOI: https://doi.org/10.1016/j.ijpharm.2020.119097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Etman SM, Abdallah OY, Mehanna RA, Elnaggar YSR. Lactoferrin/Hyaluronic acid double-coated lignosulfonate nanoparticles of quinacrine as a controlled release biodegradable nanomedicine targeting pancreatic cancer. Int J Pharm 2020; 578:119097. [PMID: 32032904 DOI: 10.1016/j.ijpharm.2020.119097] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023]
Abstract
Quinacrine is an antimalarial drug that was repositioned for treatment of cancer. This is the first work to enhance quinacrine activity and minimize its associated hepatotoxicity via loading into bio-degradable, bio-renewable lignosulfonate nanoparticles. Particles were appraised for treatment of pancreatic cancer, one of the most life-threatening tumors with a five-year survival estimate. Optimum nanocomposites prepared by polyelectrolyte interaction exhibited a particle size of 138 nm, a negative surface charge (-28 mV) and a pH dependent release of the drug in an acidic environment. Ligands used for active targeting (lactoferrin and hyaluronic acid) were added to nanoparticles' surface via layer by layer coating technique. The highest anticancer activity on PANC-1 cells was demonstrated with dual active targeted particles (3-fold decrease in IC50) along with an increased ability to inhibit migration and invasion of pancreatic cancer cells. In vivo studies revealed that elaborated nanoparticles particles showed the highest tumor volume reduction with enhanced survival without any toxicity on major organs. In conclusion, the elaborated nanoparticles could be considered as a promising targeted nanotherapy for treatment of pancreatic cancer with higher efficacy& survival rate and lower organ toxicity.
Collapse
Affiliation(s)
- Samar M Etman
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| | - Radwa A Mehanna
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications CERRMA, Faculty of Medicine, Alexandria University, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt; Head of International Publication and Nanotechnology Center INCC, Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University of Alexandria, Egypt.
| |
Collapse
|
16
|
Hu C, Wei M, Chen J, Liu H, Kou M. Comparative study of the adsorption/immobilization of Cu by turmeric residues after microbial and chemical extraction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:1082-1088. [PMID: 31466190 DOI: 10.1016/j.scitotenv.2019.07.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
The turmeric industry produces a huge amount of residues annually. After undergoing different extraction process, turmeric residue biomass may be transformed from waste to resource. Turmeric residues exhibit different characteristics suitable for various environmental applications. In this work, the adsorption of Cu(II) onto turmeric residues from microbial (TR-A) and chemical (TR-B) extraction was investigated. The characteristics of the residues were examined via Brunauer-Emmett-Teller analysis, thermogravimetric analysis, scanning electron microscopy, Fourier-transform infrared spectroscopy, and elemental analysis. Then, applications to Cu(II) immobilization were identified. Results suggested that although TR-B had better thermal stability, larger surface area, and more pores than TR-A, the adsorption capacity of Cu(II) onto TR-A was higher (13.12 mg/g) than that onto TR-B (7.37 mg/g) because TR-A had more microbial cell debris, metabolites, and S element than TR-B. In practice, TR-A-added soil achieved 40% more Cu immobilization than TR-B-added soil under continuous leaching of simulated acid rain. Consequently, the residues extracted using the microbial method prevented pollution after the traditional extraction process and transformed waste into a material for environmental remediation.
Collapse
Affiliation(s)
- Chao Hu
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Mi Wei
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China; Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jiamin Chen
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Huiying Liu
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Meng Kou
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| |
Collapse
|
17
|
Odd-even effects on hydration of natural polyelectrolyte multilayers: An in situ synchrotron FTIR microspectroscopy study. J Colloid Interface Sci 2019; 553:720-733. [DOI: 10.1016/j.jcis.2019.06.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 11/20/2022]
|
18
|
Bernal-Ballen A, Lopez-Garcia JA, Ozaltin K. (PVA/Chitosan/Fucoidan)-Ampicillin: A Bioartificial Polymeric Material with Combined Properties in Cell Regeneration and Potential Antibacterial Features. Polymers (Basel) 2019; 11:polym11081325. [PMID: 31395803 PMCID: PMC6724007 DOI: 10.3390/polym11081325] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 12/31/2022] Open
Abstract
Chitosan, fucoidan, and polyvinyl alcohol are categorized as polymers with biomedical applications. Ampicillin, on the other hand, is considered as an important antibiotic that has shown effectivity in both gram-positive and gram-negative micro-organisms. The aforementioned polymers possess unique properties that are considered desirable for cell regeneration although they exhibit drawbacks that can affect their final application. Therefore, films of these biomaterials were prepared and they were characterized using FTIR, SEM, XRD, degree of swelling and solubility, and MTT assay. The statistical significance of the experiments was determined using a two-way analysis of variance (ANOVA) with p < 0.05. The characterization techniques demonstrated that the obtained material exhibits properties suitable for cell regeneration, and that a higher concentration of natural polymers promotes cells proliferation to a greater extent. The presence of PVA, on the other hand, is responsible for matrix stability and dictates the degree of swelling and solubility. The SEM images demonstrated that neither aggregations nor clusters were formed, which is favorable for the biological properties without detrimental to the morphological and physical features. Cell viability was comparatively similar in samples with and without antibiotic, and the physical and biological properties were not negatively affected. Indeed, the inherent bactericidal effect of chitosan was reinforced by the presence of ampicillin. The new material is an outstanding candidate for cell regeneration as a consequence of the synergic effect that each component provides to the blend.
Collapse
Affiliation(s)
- Andres Bernal-Ballen
- Grupo de Investigación en Ingeniería Biomédica, Vicerrectoría de Investigaciones, Universidad Manuela Beltrán, Avenida Circunvalar No. 60-00, Bogotá 110231, Colombia.
| | - Jorge-Andres Lopez-Garcia
- Centre of Polymer Systems, Tomas Bata University in Zlín, Tr. Tomase Bati 5678, 76001 Zlín, Czech Republic
| | - Kadir Ozaltin
- Centre of Polymer Systems, Tomas Bata University in Zlín, Tr. Tomase Bati 5678, 76001 Zlín, Czech Republic
| |
Collapse
|
19
|
Benbow NL, Webber JL, Pawliszak P, Sebben DA, Ho TTM, Vongsvivut J, Tobin MJ, Krasowska M, Beattie DA. A Novel Soft Contact Piezo-Controlled Liquid Cell for Probing Polymer Films under Confinement using Synchrotron FTIR Microspectroscopy. Sci Rep 2018; 8:17804. [PMID: 30546121 PMCID: PMC6292912 DOI: 10.1038/s41598-018-34673-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/11/2018] [Indexed: 12/21/2022] Open
Abstract
Soft polymer films, such as polyelectrolyte multilayers (PEMs), are useful coatings in materials science. The properties of PEMs often rely on the degree of hydration, and therefore the study of these films in a hydrated state is critical to allow links to be drawn between their characteristics and performance in a particular application. In this work, we detail the development of a novel soft contact cell for studying hydrated PEMs (poly(sodium 4-styrenesulfonate)/poly(allylamine hydrochloride)) using FTIR microspectroscopy. FTIR spectroscopy can interrogate the nature of the polymer film and the hydration water contained therein. In addition to reporting spectra obtained for hydrated films confined at the solid-solid interface, we also report traditional ATR FTIR spectra of the multilayer. The spectra (microspectroscopy and ATR FTIR) reveal that the PEM film build-up proceeds as expected based on the layer-by-layer assembly methodology, with increasing signals from the polymer FTIR peaks with increasing bilayer number. In addition, the spectra obtained using the soft contact cell indicate that the PEM film hydration water has an environment/degree of hydrogen bonding that is affected by the chemistry of the multilayer polymers, based on differences in the spectra obtained for the hydration water within the film compared to that of bulk electrolyte.
Collapse
Affiliation(s)
- Natalie L Benbow
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia.,School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Jessie L Webber
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia.,School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Piotr Pawliszak
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia.,School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Damien A Sebben
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Tracey T M Ho
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, Australian Synchrotron, Clayton, Victoria, 3168, Australia
| | - Mark J Tobin
- Infrared Microspectroscopy (IRM) Beamline, Australian Synchrotron, Clayton, Victoria, 3168, Australia
| | - Marta Krasowska
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia.,School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - David A Beattie
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia. .,School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, South Australia, 5095, Australia.
| |
Collapse
|
20
|
Somosi Z, Pavlovic M, Pálinkó I, Szilágyi I. Effect of Polyelectrolyte Mono- and Bilayer Formation on the Colloidal Stability of Layered Double Hydroxide Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E986. [PMID: 30487401 PMCID: PMC6316193 DOI: 10.3390/nano8120986] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/14/2018] [Accepted: 11/26/2018] [Indexed: 12/30/2022]
Abstract
Sequential adsorption of polyelectrolytes on nanoparticles is a popular method to obtain thin films after deposition. However, the effect of polyelectrolyte multilayer formation on the colloidal stability of the nanoparticles has not been studied in detail. In the present work, layered double hydroxides (LDH) were synthesized and interaction with oppositely and like-charged polyelectrolytes was investigated. Electrophoretic and light scattering measurements revealed that colloidal stability of LDH can be tuned by adsorption of poly(styrene sulfonate) (PSS) on the oppositely charged LDH surface in appropriate doses and thus, unstable or stable dispersions can be designed. Negatively charged LDH of adsorbed PSS monolayer was obtained and a poly(diallyldimethyl ammonium chloride) (PDADMAC) second layer was systematically built on the particles. The obtained polyelectrolyte bilayer provided high colloidal stability for the LDH-PSS-PDADMAC dispersions due to the presence of repulsive interparticle forces of electrostatic and steric origin. The results provide crucial quantitative information on designing highly stable particle-polyelectrolyte systems for the preparation of thin films or immobilization of guest substances between the layers for delivery processes.
Collapse
Affiliation(s)
- Zoltán Somosi
- MTA-SZTE Lendület Biocolloids Research Group, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary.
- Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary.
| | - Marko Pavlovic
- MTA-SZTE Lendület Biocolloids Research Group, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary.
| | - István Pálinkó
- Material and Solution Structure Research Group, Department of Organic Chemistry, University of Szeged, H-6720 Szeged, Hungary.
| | - István Szilágyi
- MTA-SZTE Lendület Biocolloids Research Group, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary.
- Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary.
| |
Collapse
|
21
|
Practical guide to characterize biomolecule adsorption on solid surfaces (Review). Biointerphases 2018; 13:06D303. [PMID: 30352514 DOI: 10.1116/1.5045122] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The control over the adsorption or grafting of biomolecules from a liquid to a solid interface is of fundamental importance in different fields, such as drug delivery, pharmaceutics, diagnostics, and tissue engineering. It is thus important to understand and characterize how biomolecules interact with surfaces and to quantitatively measure parameters such as adsorbed amount, kinetics of adsorption and desorption, conformation of the adsorbed biomolecules, orientation, and aggregation state. A better understanding of these interfacial phenomena will help optimize the engineering of biofunctional surfaces, preserving the activity of biomolecules and avoiding unwanted side effects. The characterization of molecular adsorption on a solid surface requires the use of analytical techniques, which are able to detect very low quantities of material in a liquid environment without modifying the adsorption process during acquisition. In general, the combination of different techniques will give a more complete characterization of the layers adsorbed onto a substrate. In this review, the authors will introduce the context, then the different factors influencing the adsorption of biomolecules, as well as relevant parameters that characterize their adsorption. They review surface-sensitive techniques which are able to describe different properties of proteins and polymeric films on solid two-dimensional materials and compare these techniques in terms of sensitivity, penetration depth, ease of use, and ability to perform "parallel measurements."
Collapse
|
22
|
Razi MA, Wakabayashi R, Goto M, Kamiya N. Formation and Characterization of Caseinate–Chitosan Nanocomplexes for Encapsulation of Curcumin. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2018. [DOI: 10.1252/jcej.17we293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Muhamad Alif Razi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University
- Division of Biotechnology, Center for Future Chemistry, Kyushu University
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University
- Division of Biotechnology, Center for Future Chemistry, Kyushu University
| |
Collapse
|
23
|
Castilla-Casadiego DA, Pinzon-Herrera L, Perez-Perez M, Quiñones-Colón BA, Suleiman D, Almodovar J. Simultaneous characterization of physical, chemical, and thermal properties of polymeric multilayers using infrared spectroscopic ellipsometry. Colloids Surf A Physicochem Eng Asp 2018; 553:155-168. [PMID: 29988974 DOI: 10.1016/j.colsurfa.2018.05.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this study, multilayered films of polyethylenimine/poly (sodium-p-styrene sulfonate) (PEI)/(PSS) and type I collagen/heparin sodium (COL)/(HEP) were fabricated using the layer-by-layer technique, and fully characterized using Infrared Variable Angle Spectroscopic Ellipsometry (IRVASE) to simultaneously analyze the chemistry, thickness, and roughness of the multilayers with respect to changes in pH of the washing solution, and changes in temperature. Film topography and Young's modulus were obtained by atomic force microscopy (AFM) and nanoindentation. Our results show that with IRVASE it is possible to analyze the thickness of the multilayers prepared using a washing solution of pH 5, obtaining values of 71.7 nm and 40.3 nm for three bilayers of PEI/PSS and COL/HEP, respectively. Film roughness varies between multilayer systems, obtaining values of 37.76 nm for three bilayers of PEI/PSS and 33.58 nm for three bilayers of COL/HEP. Increasing the pH of the washing solution for PEI/PSS yielded thinner films that were less susceptible to thermal induced changes in film chemistry in the range of 25 - 150 °C. PEI/PSS films decreased in thickness with increasing temperature up to 75 °C, whereas above 75 °C film thickness increased. Through IRVASE, a transition temperature for the PEI/PSS multilayers was observed at 75 °C. Temperatures above 37 °C drastically alter the chemistry and the thickness of the COL/HEP multilayers indicating a possible degradation of the polymers. We obtained, through nanoindentation, a Young's modulus of 15000 kPa and 9000 kPa for 12 bilayers of PEI/PSS and COL/HEP, respectively. These results demonstrate that, using IRVASE, we can simultaneously evaluate the physical, chemical, and thermal properties of synthetic and natural multilayered polymeric films.
Collapse
Affiliation(s)
- David A Castilla-Casadiego
- Department of Chemical Engineering, University of Puerto Rico Mayaguez, Call Box 9000, Mayaguez, PR 00681-9000, USA
| | - Luis Pinzon-Herrera
- Department of Chemical Engineering, University of Puerto Rico Mayaguez, Call Box 9000, Mayaguez, PR 00681-9000, USA
| | - Maritza Perez-Perez
- Department of Chemical Engineering, University of Puerto Rico Mayaguez, Call Box 9000, Mayaguez, PR 00681-9000, USA
| | - Beatriz A Quiñones-Colón
- Department of Biology, University of Puerto Rico Mayaguez, Call Box 9000, Mayaguez, PR 00681-9000, USA
| | - David Suleiman
- Department of Chemical Engineering, University of Puerto Rico Mayaguez, Call Box 9000, Mayaguez, PR 00681-9000, USA
| | - Jorge Almodovar
- Department of Chemical Engineering, University of Puerto Rico Mayaguez, Call Box 9000, Mayaguez, PR 00681-9000, USA
| |
Collapse
|
24
|
Benbow NL, Webber JL, Karpiniec S, Krasowska M, Ferri JK, Beattie DA. The influence of polyanion molecular weight on polyelectrolyte multilayers at surfaces: protein adsorption and protein-polysaccharide complexation/stripping on natural polysaccharide films on solid supports. Phys Chem Chem Phys 2018; 19:23790-23801. [PMID: 28664960 DOI: 10.1039/c7cp02599h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two different fucoidan polymers (unfractionated Fucus vesiculosus fucoidan, and fractionated low molecular weight Fucus vesiculosus fucoidan) have been used to create substrates for protein adsorption studies. Polyelectrolyte multilayers were formed using the fucoidans (polyanions) with chitosan as the corresponding polycation. Multilayer formation was studied using zeta potential measurements, quartz crystal microbalance with dissipation monitoring (QCM-D) and attenuated total reflectance (ATR) FTIR spectroscopy. The formation studies reveal that the low molecular weight (LMW) fucoidan produces a less hydrated multilayer, with a significantly increased adsorbed mass, and with fucoidan as the diffusing species during formation. Protein adsorption studies using bovine serum albumin (BSA) were undertaken for solution conditions designed to mimic biological conditions, and to minimise the role of electrical double layer forces in influencing adsorption. Under these conditions, and as revealed by ATR FTIR spectroscopy, BSA is seen to adsorb less substantially to multilayers formed with the LMW fucoidan, and to cause extraction/stripping of the LMW fucoidan from the multilayer. FTIR spectra reveal that the protein adopts a different conformation when adsorbed to the LMW fucoidan multilayer, both relative to the protein in solution and when adsorbed at the surface of the multilayer formed from unfractionated fucoidan.
Collapse
Affiliation(s)
- Natalie L Benbow
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia.
| | | | | | | | | | | |
Collapse
|
25
|
Rouster P, Pavlovic M, Szilagyi I. Immobilization of Superoxide Dismutase on Polyelectrolyte-Functionalized Titania Nanosheets. Chembiochem 2017; 19:404-410. [DOI: 10.1002/cbic.201700502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Paul Rouster
- Department of Inorganic and Analytical Chemistry; University of Geneva; 30 Quai Ernest-Ansermet 1205 Geneva Switzerland
| | - Marko Pavlovic
- Department of Inorganic and Analytical Chemistry; University of Geneva; 30 Quai Ernest-Ansermet 1205 Geneva Switzerland
| | - Istvan Szilagyi
- Department of Inorganic and Analytical Chemistry; University of Geneva; 30 Quai Ernest-Ansermet 1205 Geneva Switzerland
- MTA-SZTE Lendület Biocolloids Research Group; Department of Physical Chemistry and Materials Science; University of Szeged; 1 Aradi vértanúk tere 6720 Szeged Hungary
| |
Collapse
|
26
|
Ho TT, Selway N, Krasowska M, Yakubov GE, Stokes JR, Beattie DA. Formation and tribology of fucoidan/chitosan polyelectrolyte multilayers on PDMS substrates. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.biotri.2017.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Webber JL, Benbow NL, Krasowska M, Beattie DA. Formation and enzymatic degradation of poly-l-arginine/fucoidan multilayer films. Colloids Surf B Biointerfaces 2017; 159:468-476. [DOI: 10.1016/j.colsurfb.2017.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 12/17/2022]
|
28
|
Gao L, Kong T, Huo Y. Dual Thermoresponsive and pH-Responsive Poly(vinyl alcohol) Derivatives: Synthesis, Phase Transition Study, and Functional Applications. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01316] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Liang Gao
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Tengfei Kong
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Yanping Huo
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
29
|
Role of the OH and NH vibrational groups in polysaccharide-nanocomposite interactions: A FTIR-ATR study on chitosan and chitosan/clay films. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.07.086] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Gong L, Dai H, Zhang S, Lin Y. Silver Iodide-Chitosan Nanotag Induced Biocatalytic Precipitation for Self-Enhanced Ultrasensitive Photocathodic Immunosensor. Anal Chem 2016; 88:5775-82. [DOI: 10.1021/acs.analchem.6b00297] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Lingshan Gong
- College of Chemistry and
Chemical Engineering, Fujian Normal University, Fuzhou 350108, P. R. China
| | - Hong Dai
- College of Chemistry and
Chemical Engineering, Fujian Normal University, Fuzhou 350108, P. R. China
| | - Shupei Zhang
- College of Chemistry and
Chemical Engineering, Fujian Normal University, Fuzhou 350108, P. R. China
| | - Yanyu Lin
- College of Chemistry and
Chemical Engineering, Fujian Normal University, Fuzhou 350108, P. R. China
| |
Collapse
|