1
|
Rocha M, Abreu B, Nunes MS, Freire C, Marques EF. Ternary (molybdenum disulfide/graphene)/carbon nanotube nanocomposites assembled via a facile colloidal electrostatic path as electrocatalysts for the oxygen reduction reaction: Composition and nitrogen-doping play a key role in their performance. J Colloid Interface Sci 2024; 664:1056-1068. [PMID: 38531183 DOI: 10.1016/j.jcis.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/13/2024] [Accepted: 03/03/2024] [Indexed: 03/28/2024]
Abstract
Nanocomposites have garnered attention for their potential as catalysts in electrochemical reactions vital for technologies like fuel cells, water splitting, and metal-air batteries. This work focuses on developing three-dimensional (3D) nanocomposites through aqueous phase exfoliation, non-covalent functionalization of building blocks with surfactants and polymers, and electrostatic interactions in solution leading to the nanocomposites assembly and organization. By combining molybdenum disulfide (MoS2) layers with graphene nanoplatelets (GnPs) to form a binary 2D composite (MoS2/GnP), and subsequently incorporating multiwalled carbon nanotubes (MWNTs) to create ternary 3D composites, we explore their potential as catalysts for the oxygen reduction reaction (ORR) critical in fuel cells. Characterization techniques such as X-ray photoelectron spectroscopy, scanning electron microscopy, and X-ray diffraction elucidate material composition and structure. Our electrochemical studies reveal insights into the kinetics of the reactions and structure-activity relationships. Both the (MoS2/GnP)-to-MWNT mass ratio and nitrogen-doping of GnPs (N-GnPs) play a key role on the electrocatalytic ORR performance. Notably, the (MoS2/N-GnP)/MWNT material, with a 3:1 mass ratio, exhibits the most effective ORR activity. All catalysts demonstrate good long-term stability and methanol crossover tolerance. This facile fabrication method and observed trends offer avenues for optimizing composite electrocatalysts further.
Collapse
Affiliation(s)
- Marcos Rocha
- CIQUP - Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences (IMS), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Porto 4169-007, Portugal; REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Porto 4169-007, Portugal
| | - Bárbara Abreu
- CIQUP - Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences (IMS), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Porto 4169-007, Portugal; REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Porto 4169-007, Portugal
| | - Marta S Nunes
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Porto 4169-007, Portugal.
| | - Cristina Freire
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Porto 4169-007, Portugal
| | - Eduardo F Marques
- CIQUP - Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences (IMS), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Porto 4169-007, Portugal.
| |
Collapse
|
2
|
Li S, Yan J, Zhang Y, Qin Y, Zhang Y, Du S. Comparative investigation of carbon nanotubes dispersion using surfactants: A molecular dynamics simulation and experimental study. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
3
|
Zhao B, Sivasankar VS, Subudhi SK, Sinha S, Dasgupta A, Das S. Applications, fluid mechanics, and colloidal science of carbon-nanotube-based 3D printable inks. NANOSCALE 2022; 14:14858-14894. [PMID: 36196967 DOI: 10.1039/d1nr04912g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Additive manufacturing, also known as 3D printing (3DP), is a novel and developing technology, which has a wide range of industrial and scientific applications. This technology has continuously progressed over the past several decades, with improvement in productivity, resolution of the printed features, achievement of more and more complex shapes and topographies, scalability of the printed components and devices, and discovery of new printing materials with multi-functional capabilities. Among these newly developed printing materials, carbon-nanotubes (CNT) based inks, with their remarkable mechanical, electrical, and thermal properties, have emerged as an extremely attractive option. Various formulae of CNT-based ink have been developed, including CNT-nano-particle inks, CNT-polymer inks, and CNT-based non-nanocomposite inks (i.e., CNT ink that is not in a form where CNT particles are suspended in a polymer matrix). Various types of sensors as well as soft and smart electronic devices with a multitude of applications have been fabricated with CNT-based inks by employing different 3DP methods including syringe printing (SP), aerosol-jet printing (AJP), fused deposition modeling (FDM), and stereolithography (SLA). Despite such progress, there is inadequate literature on the various fluid mechanics and colloidal science aspects associated with the printability and property-tunability of nanoparticulate inks, specifically CNT-based inks. This review article, therefore, will focus on the formulation, dispersion, and the associated fluid mechanics and the colloidal science of 3D printable CNT-based inks. This article will first focus on the different examples where 3DP has been employed for printing CNT-based inks for a multitude of applications. Following that, we shall highlight the various key fluid mechanics and colloidal science issues that are central and vital to printing with such inks. Finally, the article will point out the open existing challenges and scope of future work on this topic.
Collapse
Affiliation(s)
- Beihan Zhao
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA.
| | | | - Swarup Kumar Subudhi
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA.
| | - Shayandev Sinha
- Defect Metrology Group, Logic Technology Development, Intel Corporation, Hillsboro, OR 97124, USA
| | - Abhijit Dasgupta
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA.
| | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
4
|
Qiao L, Du K. Scalable production of high-quality carbon nanotube dispersion in aqueous solution using cellulose as dispersant by a freezing/thawing process. J Colloid Interface Sci 2022. [DOI: 10.1016/j.jcis.2022.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Lopes RC, Rocha BG, Maçôas EM, Marques EF, Martinho JM. Combining metal nanoclusters and carbon nanomaterials: Opportunities and challenges in advanced nanohybrids. Adv Colloid Interface Sci 2022; 304:102667. [PMID: 35462268 DOI: 10.1016/j.cis.2022.102667] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 12/11/2022]
Abstract
The development of functional materials with uniquely advanced properties lies at the core of nanoscience and nanotechnology. From the myriad possible combinations of organic and/or inorganic blocks, hybrids combining metal nanoclusters and carbon nanomaterials have emerged as highly attractive colloidal materials for imaging, sensing (optical and electrochemical) and catalysis, among other applications. While the metal nanoclusters provide extraordinary luminescent and electronic properties, the carbon nanomaterials (of zero, one or two dimensions) convey versatility, as well as unique interfacial, electronic, thermal, optical, and mechanical properties, which altogether can be put to use for the desired application. Herein, we present an overview of the field, for experts and non-experts, encompassing the basic properties of the building blocks, a systematic view of the chemical preparation routes and physicochemical properties of the hybrids, and a critical analysis of their ongoing and emerging applications. Challenges and opportunities, including directions towards green chemistry approaches, are also discussed.
Collapse
|
6
|
Abreu B, Almeida B, Ferreira P, M. F. Fernandes R, Fernandes DM, Marques EF. A critical assessment of the role of ionic surfactants in the exfoliation and stabilization of 2D nanosheets: the case of the transition metal dichalcogenides MoS2, WS2 and MoSe2. J Colloid Interface Sci 2022; 626:167-177. [DOI: 10.1016/j.jcis.2022.06.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 10/31/2022]
|
7
|
Sims CM, Fagan JA. Surfactant Chemistry and Polymer Choice Affect Single-Wall Carbon Nanotube Extraction Conditions in Aqueous Two-Polymer Phase Extraction. CARBON 2022; 191:10.1016/j.carbon.2022.01.062. [PMID: 36579357 PMCID: PMC9791978 DOI: 10.1016/j.carbon.2022.01.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Quantitative determination of the effects of surfactant chemistry and polymer chain length on the concentration conditions necessary to yield extraction of specific single-wall carbon nanotube (SWNCT) species in an aqueous two-polymer phase extraction (ATPE) separation are reported. In particular, the effects of polyethylene glycol (PEG) chain length, surfactant ratios, and systematic structural variations of alkyl surfactants and bile salts on the surfactant ratios necessary for extraction were investigated using a recently reported fluorescence-based method. Alkyl surfactant tail length was observed to strongly affect the amount of surfactant necessary to cause PEG-phase extraction of nanotube species in ATPE, while variation in the anionic sulfate/sulfonate head group chemistry has less impact on the concentration necessary for extraction. Substitution of different bile salts results in different surfactant packings on the SWCNTs, with substitution greatly affecting the alkyl surfactant concentrations required for (n,m) extraction. Finally, distinct alkyl-to-bile surfactant ratios were found to extract specific (n,m) SWCNTs across the whole effective window of absolute concentrations, supporting the hypothesized competitive adsorption mechanism model of SWCNT sorting. Altogether, these results provide valuable insights into the underlying mechanisms behind ATPE-based SWCNT separations, towards further development and optimization of the ATPE method for SWCNT chirality and handedness sorting.
Collapse
|
8
|
Laguta AN, Mchedlov-Petrossyan NO, Bogatyrenko SI, Kovalenko SM, Bunyatyan ND, Trostianko PV, Karbivskii VL, Filatov DY. Interaction of aqueous suspensions of single-walled oxidized carbon nanotubes with inorganic and organic electrolytes. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Abdulhameed A, Halin IA, Mohtar MN, Hamidon MN. Optimization of Surfactant Concentration in Carbon Nanotube Solutions for Dielectrophoretic Ceiling Assembly and Alignment: Implications for Transparent Electronics. ACS OMEGA 2022; 7:3680-3688. [PMID: 35128276 PMCID: PMC8811757 DOI: 10.1021/acsomega.1c06323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/30/2021] [Indexed: 05/15/2023]
Abstract
Surfactants such as sodium dodecyl sulfate (SDS) are used to improve the dispersity of carbon nanotubes (CNTs) in aqueous solutions. The surfactant concentration in CNT solutions is a critical factor in the dielectrophoretic (DEP) manipulation of CNTs. A high surfactant concentration causes a rapid increase in the solution conductivity, while a low concentration results in undesirably large CNT bundles within the solution. The increase in the solution conductivity causes drag velocity that obstructs the CNT manipulation process due to the electrothermal forces induced by the electric field. The presence of large CNT bundles is undesirable since they degrade the device performance. In this work, mathematical modeling and experimental work were used to optimize the concentration of the SDS surfactant in multiwalled carbon nanotube (MWCNT) solutions. The solutions were characterized using dynamic light scattering (DLS) and ultraviolet-visible spectroscopy (UV-Vis) analysis. We found that the optimum SDS concentration in MWCNT solutions for the successful DEP manipulation of MWCNTs was between 0.1 and 0.01 wt %. A novel DEP configuration was then used to assemble MWCNTs across transparent electrodes. The configuration was based on ceiling deposition, where the electrodes were on top of a droplet. The newly proposed configuration reduced the drag velocity and prevented the assembly of large MWCNT bundles. MWCNTs were successfully assembled and aligned across interdigitated electrodes (IDEs). The assembly of MWCNTs from aqueous solutions across transparent electrodes has potential use in future transparent electronics and sensor devices.
Collapse
Affiliation(s)
- Abdullah Abdulhameed
- Department
of Electronic Engineering, Faculty of Engineering, Hadhramout University, Mukalla 50511, Yemen
| | - Izhal Abdul Halin
- Department
of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Mohd Nazim Mohtar
- Department
of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Mohd Nizar Hamidon
- Institute
of Advanced Technology (ITMA), Universiti
Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
10
|
Polymer/surfactant mixtures as dispersants and non-covalent functionalization agents of multiwalled carbon nanotubes: Synergism, morphological characterization and molecular picture. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
Vasseghian Y, Dragoi EN, Almomani F, Le VT. Graphene derivatives in bioplastic: A comprehensive review of properties and future perspectives. CHEMOSPHERE 2022; 286:131892. [PMID: 34418663 DOI: 10.1016/j.chemosphere.2021.131892] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/01/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The research and technological advancements observed in the latest years in the nanotechnology field translated into significant application developments in various areas. This is particularly true for the renewable polymers area, where the nano-reinforcement of biobased materials leads to an increase in their technique and economic competitiveness. The efforts were predominantly focused on materials development and energy consumption minimization. However, attention must also be given to the widespread commercialization and the full characterization of any particular potential toxicological and environmental impact. Some of the most important nanomaterials used in recent years as fillers in the bioplastic industry are graphene-based materials (GBMs). GBMs have high surface area and biocompatibility and have interesting characterizations such as strangeness and flexibility. In this paper, the current state of the art for these GBMs in the bioplastics area, their challenges, and the strategies to overcome them are analyzed.
Collapse
Affiliation(s)
- Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Elena-Niculina Dragoi
- Faculty of Chemical Engineering and Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University, Bld Mangeron No 73, Iasi, 700050, Romania.
| | - Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar.
| | - Van Thuan Le
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 550000, Vietnam; The Faculty of Environment and Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang, 550000, Vietnam.
| |
Collapse
|
12
|
Li C, Wei H, Zhan H, Bai J, Kou L, Gu Y. Tensile Performance of Polymer Nanocomposites with Randomly Dispersed Carbon Nanothreads. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chengkai Li
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
| | - Hanqing Wei
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Haifei Zhan
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
- Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
- Center for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
| | - Jingshuai Bai
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
| | - Liangzhi Kou
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
- Center for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
| | - Yuantong Gu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
- Center for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
| |
Collapse
|
13
|
Alves Z, Abreu B, Ferreira NM, Marques EF, Nunes C, Ferreira P. Enhancing the dispersibility of multiwalled carbon nanotubes within starch-based films by the use of ionic surfactants. Carbohydr Polym 2021; 273:118531. [PMID: 34560944 DOI: 10.1016/j.carbpol.2021.118531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/26/2022]
Abstract
The incorporation of carbon-based nanomaterials into biopolymer matrix, to provide mechanical reinforcement and to obtain electrically conductive bionanocomposites, requires the homogeneous dispersion of the fillers. Herein, it is investigated the influence of surfactant structures on the dispersibility of multiwalled carbon nanotubes (MWNT) within starch matrix. Three different ionic surfactants, sodium dodecyl sulphate (SDS), cetyltrimethylammonium bromide (CTAB) and sodium cholate (SC), are employed to disperse the MWNT. Films with MWNT-SC show better dispersibility and an increase of about 75% of tensile strength and 60% of Young's modulus compared with films using MWNT-SDS and MWNT-CTAB. Nevertheless, MWNT functionalized with CTAB impart the highest values of antioxidant activity (scavenging activity around 30% in 1.5 h) and electrical conductivity (σ =14.75 S/m) to starch matrix. The properties of starch-based films can be tailored according to the physical adsorption of each surfactant on MWNT surface and/or the interfacial interaction of the surfactant with starch chains.
Collapse
Affiliation(s)
- Zélia Alves
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; Department of Materials and Ceramic Engineering, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bárbara Abreu
- CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, P 4169-007 Porto, Portugal
| | - Nuno M Ferreira
- Department of Physics, I3N, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Eduardo F Marques
- CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, P 4169-007 Porto, Portugal
| | - Cláudia Nunes
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Paula Ferreira
- Department of Materials and Ceramic Engineering, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
14
|
Saleemi MA, Kong YL, Yong PVC, Wong EH. An Overview of Antimicrobial Properties of Carbon Nanotubes-Based Nanocomposites. Adv Pharm Bull 2021; 12:449-465. [PMID: 35935059 PMCID: PMC9348533 DOI: 10.34172/apb.2022.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/08/2021] [Accepted: 07/02/2021] [Indexed: 11/28/2022] Open
Abstract
The development of carbon-based nanomaterials has extensively facilitated new discoveries in various fields. Carbon nanotube-based nanocomposites (CNT-based nanocomposites) have lately recognized as promising biomaterials for a wide range of biomedical applications due to their unique electronic, mechanical, and biological properties. Nanocomposite materials such as silver nanoparticles (AgNPs), polymers, biomolecules, enzymes, and peptides have been reported in many studies, possess a broad range of antibacterial activity when incorporated with carbon nanotubes (CNTs). It is crucial to understand the mechanism which governs the antimicrobial activity of these CNT-based nanocomposite materials, including the decoupling individual and synergistic effects on the cells. In this review, the interaction behavior between microorganisms and different types of CNT-based nanocomposites is summarized to understand the respective antimicrobial performance in different conditions. Besides, the current development stage of CNT-based nanocomposite materials, the technical challenges faced, and the exceptional prospect of implementing potential antimicrobial CNT-based nanocomposite materials are also discussed.
Collapse
Affiliation(s)
- Mansab Ali Saleemi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Yeo Lee Kong
- Department of Engineering and Applied Sciences, American Degree Program, Taylor’s University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Phelim Voon Chen Yong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor’s University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
15
|
Comparative trends and molecular analysis on the surfactant-assisted dispersibility of 1D and 2D carbon materials: Multiwalled nanotubes vs graphene nanoplatelets. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Dispersion of Carbon Nanotubes with "Green" Detergents. Molecules 2021; 26:molecules26102908. [PMID: 34068851 PMCID: PMC8153609 DOI: 10.3390/molecules26102908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022] Open
Abstract
Solubilization of carbon nanotubes (CNTs) is a fundamental technique for the use of CNTs and their conjugates as nanodevices and nanobiodevices. In this work, we demonstrate the preparation of CNT suspensions with “green” detergents made from coconuts and bamboo as fundamental research in CNT nanotechnology. Single-walled CNTs (SWNTs) with a few carboxylic acid groups (3–5%) and pristine multi-walled CNTs (MWNTs) were mixed in each detergent solution and sonicated with a bath-type sonicator. The prepared suspensions were characterized using absorbance spectroscopy, scanning electron microscopy, and Raman spectroscopy. Among the eight combinations of CNTs and detergents (two types of CNTs and four detergents, including sodium dodecyl sulfate (SDS) as the standard), SWNTs/MWNTs were well dispersed in all combinations except the combination of the MWNTs and the bamboo detergent. The stability of the suspensions prepared with coconut detergents was better than that prepared with SDS. Because the efficiency of the bamboo detergents against the MWNTs differed significantly from that against the SWNTs, the natural detergent might be useful for separating CNTs. Our results revealed that the use of the “green” detergents had the advantage of dispersing CNTs as well as SDS.
Collapse
|
17
|
Nanocomposites Prepared from Carbon Nanotubes and the Transition Metal Dichalcogenides WS 2 and MoS 2 via Surfactant-Assisted Dispersions as Electrocatalysts for Oxygen Reactions. MATERIALS 2021; 14:ma14040896. [PMID: 33668549 PMCID: PMC7918728 DOI: 10.3390/ma14040896] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/23/2022]
Abstract
Fuel cells are emerging devices as clean and renewable energy sources, provided their efficiency is increased. In this work, we prepared nanocomposites based on multiwalled carbon nanotubes (MWNTs) and transition metal dichalcogenides (TMDs), namely WS2 and MoS2, and evaluated their performance as electrocatalysts for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR), relevant to fuel cells. The one- and two-dimensional (1D and 2D) building blocks were initially exfoliated and non-covalently functionalized by surfactants of opposite charge in aqueous media (tetradecyltrimethylammonium bromide, TTAB, for the nanotubes and sodium cholate, SC, for the dichalcogenides), and thereafter, the three-dimensional (3D) MoS2@MWNT and WS2@MWNT composites were assembled via surfactant-mediated electrostatic interactions. The nanocomposites were characterized by scanning electron microscopy (SEM) and structural differences were found. WS2@MWNT and MoS2@MWNT show moderate ORR performance with potential onsets of 0.71 and 0.73 V vs. RHE respectively, and diffusion-limiting current densities of -1.87 and -2.74 mA·cm-2, respectively. Both materials present, however, better tolerance to methanol crossover when compared to Pt/C and good stability. Regarding OER performance, MoS2@MWNT exhibits promising results, with η10 and jmax of 0.55 V and 17.96 mA·cm-2, respectively. The fabrication method presented here is cost-effective, robust and versatile, opening the doors for the optimization of electrocatalysts' performance.
Collapse
|
18
|
Barra A, Santos JDC, Silva MRF, Nunes C, Ruiz-Hitzky E, Gonçalves I, Yildirim S, Ferreira P, Marques PAAP. Graphene Derivatives in Biopolymer-Based Composites for Food Packaging Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2077. [PMID: 33096705 PMCID: PMC7589102 DOI: 10.3390/nano10102077] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
This review aims to showcase the current use of graphene derivatives, graphene-based nanomaterials in particular, in biopolymer-based composites for food packaging applications. A brief introduction regarding the valuable attributes of available and emergent bioplastic materials is made so that their contributions to the packaging field can be understood. Furthermore, their drawbacks are also disclosed to highlight the benefits that graphene derivatives can bring to bio-based formulations, from physicochemical to mechanical, barrier, and functional properties as antioxidant activity or electrical conductivity. The reported improvements in biopolymer-based composites carried out by graphene derivatives in the last three years are discussed, pointing to their potential for innovative food packaging applications such as electrically conductive food packaging.
Collapse
Affiliation(s)
- Ana Barra
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (C.N.); (I.G.)
- Materials Science Institute of Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain;
| | - Jéssica D. C. Santos
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
| | - Mariana R. F. Silva
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
| | - Cláudia Nunes
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (C.N.); (I.G.)
| | - Eduardo Ruiz-Hitzky
- Materials Science Institute of Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain;
| | - Idalina Gonçalves
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (C.N.); (I.G.)
| | - Selçuk Yildirim
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
| | - Paula Ferreira
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
| | - Paula A. A. P. Marques
- Department of Mechanical Engineering, TEMA—Centre for Mechanical Technology and Automation, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
19
|
Reciprocal effects of multi-walled carbon nanotubes and oppositely charged surfactants in bulk water and at interfaces. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Grieger S, Szydłowska BM, Rao VJ, Steinmann E, Dodds M, Gholamvand Z, Duesberg GS, Zaumseil J, Backes C. Site-Selective Oxidation of Monolayered Liquid-Exfoliated WS 2 by Shielding the Basal Plane through Adsorption of a Facial Amphiphile. Angew Chem Int Ed Engl 2020; 59:13785-13792. [PMID: 32449582 PMCID: PMC7496821 DOI: 10.1002/anie.202005730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 12/31/2022]
Abstract
In recent years, various functionalization strategies for transition‐metal dichalcogenides have been explored to tailor the properties of materials and to provide anchor points for the fabrication of hybrid structures. Herein, new insights into the role of the surfactant in functionalization reactions are described. Using the spontaneous reaction of WS2 with chloroauric acid as a model reaction, the regioselective formation of gold nanoparticles on WS2 is shown to be heavily dependent on the surfactant employed. A simple model is developed to explain the role of the chosen surfactant in this heterogeneous functionalization reaction. The surfactant coverage is identified as the crucial element that governs the dominant reaction pathway and therefore can severely alter the reaction outcome. This study shows the general importance of the surfactant choice and how detrimental or beneficial a certain surfactant can be to the desired functionalization.
Collapse
Affiliation(s)
- Sebastian Grieger
- Institute for Physical Chemistry, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Beata M Szydłowska
- Institute for Physical Chemistry, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany.,Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577, Neubiberg, Germany
| | - Vaishnavi J Rao
- Institute for Physical Chemistry, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Eva Steinmann
- Institute for Physical Chemistry, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Marcus Dodds
- Institute for Physical Chemistry, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Zahra Gholamvand
- School of Physics and CRANN & AMBER Research Centres, Trinity College Dublin, Dublin, 2, Ireland
| | - Georg S Duesberg
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577, Neubiberg, Germany
| | - Jana Zaumseil
- Institute for Physical Chemistry, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany.,Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Claudia Backes
- Institute for Physical Chemistry, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| |
Collapse
|
21
|
Grieger S, Szydłowska BM, Rao VJ, Steinmann E, Dodds M, Gholamvand Z, Duesberg GS, Zaumseil J, Backes C. Site‐Selective Oxidation of Monolayered Liquid‐Exfoliated WS
2
by Shielding the Basal Plane through Adsorption of a Facial Amphiphile. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sebastian Grieger
- Institute for Physical Chemistry Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 253 69120 Heidelberg Germany
| | - Beata M. Szydłowska
- Institute for Physical Chemistry Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 253 69120 Heidelberg Germany
- Institute of Physics, EIT 2 Faculty of Electrical Engineering and Information Technology Universität der Bundeswehr München Werner-Heisenberg-Weg 39 85577 Neubiberg Germany
| | - Vaishnavi J. Rao
- Institute for Physical Chemistry Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 253 69120 Heidelberg Germany
| | - Eva Steinmann
- Institute for Physical Chemistry Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 253 69120 Heidelberg Germany
| | - Marcus Dodds
- Institute for Physical Chemistry Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 253 69120 Heidelberg Germany
| | - Zahra Gholamvand
- School of Physics and CRANN & AMBER Research Centres Trinity College Dublin Dublin 2 Ireland
| | - Georg S. Duesberg
- Institute of Physics, EIT 2 Faculty of Electrical Engineering and Information Technology Universität der Bundeswehr München Werner-Heisenberg-Weg 39 85577 Neubiberg Germany
| | - Jana Zaumseil
- Institute for Physical Chemistry Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 253 69120 Heidelberg Germany
- Centre for Advanced Materials Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany
| | - Claudia Backes
- Institute for Physical Chemistry Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 253 69120 Heidelberg Germany
| |
Collapse
|
22
|
Camisasca A, Giordani S. Surfactant-mediated dispersions of carbon nano-onions in aqueous solution. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/ab8481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
In this work, we investigate the ability of different surfactants to form homogeneous and stable dispersions of carbon nano-onions (CNOs) in water via non-covalent interactions. For our purposes, we select three ionic surfactants, namely the cationic hexadecyltrimethylammonium bromide (CTAB) and the two anionic deoxycholic acid sodium salt (DCAS) and sodium dodecylbenzenesulfonate (SDBS). We examine the dispersing efficacy at dispersing CNOs and long-term stability by UV–vis absorption spectroscopy, dynamic light scattering and zeta-potential. Among the three surfactants, the anionic surfactants show the best ability to create stable CNO dispersions, with SDBS exhibiting superior efficacy. Our non-covalent strategy provides a valuable approach to enhance the solubility features while preserving the unique properties of CNOs.
Collapse
|
23
|
Basheer BV, George JJ, Siengchin S, Parameswaranpillai J. Polymer grafted carbon nanotubes—Synthesis, properties, and applications: A review. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.nanoso.2020.100429] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
A systematic investigation of dispersion concentration and particle size distribution of multi-wall carbon nanotubes in aqueous solutions of various dispersants. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124369] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Sultana S, Alzahrani N, Alzahrani R, Alshamrani W, Aloufi W, Ali A, Najib S, Siddiqui NA. Stability issues and approaches to stabilised nanoparticles based drug delivery system. J Drug Target 2020; 28:468-486. [PMID: 31984810 DOI: 10.1080/1061186x.2020.1722137] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nanoparticles form the fundamental building blocks for many exciting applications in various scientific disciplines due to its unique features such as large surface to mass ratio, targeting potential, ability to adsorbed and carry other compound which makes them suitable for biomedical applications. However, the problem of the large-scale synthesis of nanoparticles remains challenging due to physical instability associated with nanoparticles which lead to generation of aggregates particles with high polydispersity index (PDI) indicating low particle homogeneity and eventually loss of their special nanoscale properties. The stabilisation concept can be generated by repulsive electrostatic force, which nanoparticles experience, when they are surrounded by a double layer of electric charges. Selection of proper stabiliser will govern the stability of NPs and ultimately development of optimised drug delivery system. This review summarises mechanism of physical instability issues likely to be encountered during the development of nanoformulations. It also discusses potential stabilising agents used so far and their mechanism in achieving stable nanosystems.
Collapse
Affiliation(s)
| | | | | | | | - Waad Aloufi
- Pharmaceutics, Taif University, Taif, Saudi Arabia
| | - Amena Ali
- Pharmaceutical Chemistry, Taif University, Taif, Saudi Arabia
| | - Shehla Najib
- Pharmacognosy and Phytochemistry, King Khalid University, Abha, Saudi Arabia
| | | |
Collapse
|
26
|
Corletto A, Shapter JG. Nanoscale Patterning of Carbon Nanotubes: Techniques, Applications, and Future. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 8:2001778. [PMID: 33437571 PMCID: PMC7788638 DOI: 10.1002/advs.202001778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/30/2020] [Indexed: 05/09/2023]
Abstract
Carbon nanotube (CNT) devices and electronics are achieving maturity and directly competing or surpassing devices that use conventional materials. CNTs have demonstrated ballistic conduction, minimal scaling effects, high current capacity, low power requirements, and excellent optical/photonic properties; making them the ideal candidate for a new material to replace conventional materials in next-generation electronic and photonic systems. CNTs also demonstrate high stability and flexibility, allowing them to be used in flexible, printable, and/or biocompatible electronics. However, a major challenge to fully commercialize these devices is the scalable placement of CNTs into desired micro/nanopatterns and architectures to translate the superior properties of CNTs into macroscale devices. Precise and high throughput patterning becomes increasingly difficult at nanoscale resolution, but it is essential to fully realize the benefits of CNTs. The relatively long, high aspect ratio structures of CNTs must be preserved to maintain their functionalities, consequently making them more difficult to pattern than conventional materials like metals and polymers. This review comprehensively explores the recent development of innovative CNT patterning techniques with nanoscale lateral resolution. Each technique is critically analyzed and applications for the nanoscale-resolution approaches are demonstrated. Promising techniques and the challenges ahead for future devices and applications are discussed.
Collapse
Affiliation(s)
- Alexander Corletto
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueensland4072Australia
| | - Joseph G. Shapter
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueensland4072Australia
| |
Collapse
|
27
|
Lado-Touriño I, Ros Viñegla P. Molecular dynamics simulations of surfactant adsorption on carbon nanotubes intended for biomedical applications. ADSORPTION 2019. [DOI: 10.1007/s10450-019-00184-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Chaudhary H, Fernandes RMF, Gowda V, Claessens MMAE, Furó I, Lendel C. Intrinsically disordered protein as carbon nanotube dispersant: How dynamic interactions lead to excellent colloidal stability. J Colloid Interface Sci 2019; 556:172-179. [PMID: 31445446 DOI: 10.1016/j.jcis.2019.08.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 11/19/2022]
Abstract
The rich pool of protein conformations combined with the dimensions and properties of carbon nanotubes create new possibilities in functional materials and nanomedicine. Here, the intrinsically disordered protein α-synuclein is explored as a dispersant of single-walled carbon nanotubes (SWNTs) in water. We use a range of spectroscopic methods to quantify the amount of dispersed SWNT and to elucidate the binding mode of α-synuclein to SWNT. The dispersion ability of α-synuclein is good even with mild sonication and the obtained dispersion is very stable over time. The whole polypeptide chain is involved in the interaction accompanied by a fraction of the chain changing into a helical structure upon binding. Similar to other dispersants, we observe that only a small fraction (15-20%) of α-synuclein is adsorbed on the SWNT surface with an average residence time below 10 ms.
Collapse
Affiliation(s)
- Himanshu Chaudhary
- Department of Chemistry, Division of Applied Physical Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden.
| | - Ricardo M F Fernandes
- Department of Chemistry, Division of Applied Physical Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden; Centro de Investigação em Química, Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, s/n, P-4169-007 Porto, Portugal.
| | - Vasantha Gowda
- Department of Chemistry, Division of Applied Physical Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Mireille M A E Claessens
- MESA + Institute for Nanotechnology and Mira Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500AE Enschede, the Netherlands
| | - István Furó
- Department of Chemistry, Division of Applied Physical Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Christofer Lendel
- Department of Chemistry, Division of Applied Physical Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden.
| |
Collapse
|
29
|
Design of a pH-Responsive Conductive Nanocomposite Based on MWCNTs Stabilized in Water by Amphiphilic Block Copolymers. NANOMATERIALS 2019; 9:nano9101410. [PMID: 31623337 PMCID: PMC6835295 DOI: 10.3390/nano9101410] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/30/2019] [Accepted: 09/30/2019] [Indexed: 02/03/2023]
Abstract
Homogeneous water dispersions of multi-walled carbon nanotubes (MWCNTs) were prepared by ultrasonication in the presence of an amphiphilic polystyrene-block-poly(acrylic acid) (PS-b-PAA) copolymer. The ability of PS-b-PAA to disperse and stabilize MWCTNs was investigated by UV-vis, SEM and zeta potential. The results show that the addition of a styrene block to PAA enhances the dispersion efficiency of the graphitic filler compared to pure PAA, possibly due to the nanotube affinity with the polystyrene moiety. Notably, the dispersions show an evident pH-responsive behavior, being MWCNTs reaggregation promoted in basic environment. It is worth noting that the responsive character is maintained in solid composites obtained by drop casting, thus indicating potential applications in sensing.
Collapse
|
30
|
Zhu P, Liu Y, Fang Z, Kuang Y, Zhang Y, Peng C, Chen G. Flexible and Highly Sensitive Humidity Sensor Based on Cellulose Nanofibers and Carbon Nanotube Composite Film. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4834-4842. [PMID: 30892906 DOI: 10.1021/acs.langmuir.8b04259] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Flexible and highly sensitive humidity sensors are crucial for humidity detection. In this study, a flexible cellulose nanofiber/carbon nanotube (NFC/CNT) humidity sensor with high sensitivity performance was developed via fast vacuum filtration. CNTs were well dispersed in water by using 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-oxidized NFC as a dispersant. More importantly, NFC also acted as a humidity sensitive material, achieving superior performance of NFC/CNT humidity sensors. The obtained NFC/CNT humidity sensor with 5 wt % CNT loading exhibits outstanding sensitive performance, and its response value reaches a maximum of 69.9% (Δ I/ I0) at 95% relative humidity (RH). It also displays good bending resistance and long-term stability. In addition, the NFC/CNT humidity sensor was employed to monitor human breath. Therefore, we believe that the flexible, highly sensitive, and simply designed NFC/CNT humidity sensor is a promising candidate for various applications in the field of humidity measurement.
Collapse
Affiliation(s)
- Penghui Zhu
- State Key Laboratory of Pulp and Paper Engineering, Guangdong Engineering Technology Research and Development Center of Specialty Paper and Paper-Based Functional Materials , South China University of Technology , Guangzhou 510640 , China
| | - Yu Liu
- State Key Laboratory of Pulp and Paper Engineering, Guangdong Engineering Technology Research and Development Center of Specialty Paper and Paper-Based Functional Materials , South China University of Technology , Guangzhou 510640 , China
| | - Zhiqiang Fang
- State Key Laboratory of Pulp and Paper Engineering, Guangdong Engineering Technology Research and Development Center of Specialty Paper and Paper-Based Functional Materials , South China University of Technology , Guangzhou 510640 , China
| | - Yudi Kuang
- State Key Laboratory of Pulp and Paper Engineering, Guangdong Engineering Technology Research and Development Center of Specialty Paper and Paper-Based Functional Materials , South China University of Technology , Guangzhou 510640 , China
| | - Yazeng Zhang
- State Key Laboratory of Pulp and Paper Engineering, Guangdong Engineering Technology Research and Development Center of Specialty Paper and Paper-Based Functional Materials , South China University of Technology , Guangzhou 510640 , China
| | - Congxing Peng
- State Key Laboratory of Pulp and Paper Engineering, Guangdong Engineering Technology Research and Development Center of Specialty Paper and Paper-Based Functional Materials , South China University of Technology , Guangzhou 510640 , China
| | - Gang Chen
- State Key Laboratory of Pulp and Paper Engineering, Guangdong Engineering Technology Research and Development Center of Specialty Paper and Paper-Based Functional Materials , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
31
|
Abreu B, Rocha J, Fernandes RMF, Regev O, Furó I, Marques EF. Gemini surfactants as efficient dispersants of multiwalled carbon nanotubes: Interplay of molecular parameters on nanotube dispersibility and debundling. J Colloid Interface Sci 2019; 547:69-77. [PMID: 30939346 DOI: 10.1016/j.jcis.2019.03.082] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/18/2019] [Accepted: 03/24/2019] [Indexed: 12/26/2022]
Abstract
Surfactants have been widely employed to debundle, disperse and stabilize carbon nanotubes in aqueous solvents. Yet, a thorough understanding of the dispersing mechanisms at molecular level is still warranted. Herein, we investigated the influence of the molecular structure of gemini surfactants on the dispersibility of multiwalled carbon nanotubes (MWNTs). We used dicationic n-s-n gemini surfactants, varying n and s, the number of alkyl tail and alkyl spacer carbons, respectively; for comparisons, single-tailed surfactant homologues were also studied. Detailed curves of dispersed MWNT concentration vs. surfactant concentration were obtained through a stringently controlled experimental procedure, allowing for molecular insight. The gemini are found to be much more efficient dispersants than their single-tailed homologues, i.e. lower surfactant concentration is needed to attain the maximum dispersed MWNT concentration. In general, the spacer length has a comparatively higher influence on the dispersing efficiency than the tail length. Further, scanning electron microscopy imaging shows a sizeable degree of MWNT debundling by the gemini surfactants in the obtained dispersions. Our observations also point to an adsorption process that does not entail the formation of micelle-like aggregates on the nanotube surface, but rather coverage by individual molecules, among which the ones that seem to be able to adapt best to the nanotube surface provide the highest efficiency. These studies are relevant for the rational design and choice of optimal dispersants for carbon nanomaterials and other similarly water-insoluble materials.
Collapse
Affiliation(s)
- Bárbara Abreu
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Jessica Rocha
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Ricardo M F Fernandes
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; Division of Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Oren Regev
- Department of Chemical Engineering, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel; Ilse Katz Institute for Nanotechnology, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - István Furó
- Division of Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Eduardo F Marques
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
32
|
Anjum H, Johari K, Gnanasundaram N, Ganesapillai M, Arunagiri A, Regupathi I, Thanabalan M. A review on adsorptive removal of oil pollutants (BTEX) from wastewater using carbon nanotubes. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.10.105] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Fernandes RMF, Dai J, Regev O, Marques EF, Furó I. Block Copolymers as Dispersants for Single-Walled Carbon Nanotubes: Modes of Surface Attachment and Role of Block Polydispersity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13672-13679. [PMID: 30335395 DOI: 10.1021/acs.langmuir.8b02658] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
When using amphiphilic polymers to exfoliate and disperse carbon nanotubes in water, the balance between the hydrophobic and hydrophilic moieties is critical and nontrivial. Here, we investigate the mode of surface attachment of a triblock copolymer, Pluronics F127, composed of a central hydrophobic polypropylene oxide block flanked by hydrophilic polyethylene oxide blocks, onto single-walled carbon nanotubes (SWNTs). Crucially, we analyze the composition in dispersant of both the as-obtained dispersion (the supernatant) and the precipitate-containing undispersed materials. For this, we combine the carefully obtained data from 1H NMR peak intensities and self-diffusion and thermogravimetric analysis. The molecular motions behind the observed NMR features are clarified. We find that the hydrophobic blocks attach to the dispersed SWNT surface and remain significantly immobilized leading to 1H NMR signal loss. On the other hand, the hydrophilic blocks remain highly mobile and thus readily detectable by NMR. The dispersant is shown to possess significant block polydispersity that has a large effect on dispersibility. Polymers with large hydrophobic blocks adsorb on the surface of the carbonaceous particles that precipitate, indicating that although a larger hydrophobic block is good for enhancing adsorption, it may be less effective in dispersing the tubes. A model is also proposed that consistently explains our observations in SWNT dispersions and some contradicting findings obtained previously in carbon nanohorn dispersions. Overall, our findings help elucidating the molecular picture of the dispersion process for SWNTs and are of interest when looking for more effective (i.e., well-balanced) polymeric dispersants.
Collapse
Affiliation(s)
- Ricardo M F Fernandes
- Division of Applied Physical Chemistry, Department of Chemistry , KTH Royal Institute of Technology , SE-10044 Stockholm , Sweden
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , P-4169-007 Porto , Portugal
| | - Jing Dai
- Division of Applied Physical Chemistry, Department of Chemistry , KTH Royal Institute of Technology , SE-10044 Stockholm , Sweden
| | - Oren Regev
- Department of Chemical Engineering and the Ilse Katz Institute for Nanotechnology , Ben-Gurion University of Negev , 84105 Beer-Sheva , Israel
| | - Eduardo F Marques
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , P-4169-007 Porto , Portugal
| | - István Furó
- Division of Applied Physical Chemistry, Department of Chemistry , KTH Royal Institute of Technology , SE-10044 Stockholm , Sweden
| |
Collapse
|
34
|
Jiang Y, Song H, Xu R. Research on the dispersion of carbon nanotubes by ultrasonic oscillation, surfactant and centrifugation respectively and fiscal policies for its industrial development. ULTRASONICS SONOCHEMISTRY 2018; 48:30-38. [PMID: 30080555 DOI: 10.1016/j.ultsonch.2018.05.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/05/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
Carbon nanotubes (CNTs) have attracted wide attention because of their unique structure and properties. However, the prepared CNTs often present agglomeration state, which destroys the excellent properties of single carbon nanotubes and seriously affects the application of carbon nanotubes. How to effectively disperse carbon nanotubes has become an urgent problem to be solved. There are many factors affecting the dispersion of carbon nanotubes. In this paper, the effects of three aspects of surfactant, ultrasonic oscillation and centrifugation on the dispersion of carbon nanotubes and fiscal policies for the development of nano high-tech industry are mainly studied.
Collapse
Affiliation(s)
- Yanfeng Jiang
- Shanghai Maritime University, Shanghai 201306, China; Chinese Academy of Science and Technology for Development Joint Training Postdoctoral Workstation with Nankai University, Ministry of Science and Technology, Beijing 100038, China
| | - Hao Song
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Rui Xu
- Zhangzhou Pury Chemical Co., Ltd, Zhangzhou 363107, China
| |
Collapse
|
35
|
Nadiv R, Fernandes RM, Ochbaum G, Dai J, Buzaglo M, Varenik M, Biton R, Furó I, Regev O. Polymer nanocomposites: Insights on rheology, percolation and molecular mobility. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.07.079] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Yu Z, Li B, Chu J, Zhang P. Silica in situ enhanced PVA/chitosan biodegradable films for food packages. Carbohydr Polym 2018; 184:214-220. [DOI: 10.1016/j.carbpol.2017.12.043] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 02/09/2023]
|
37
|
Chen J, Liu B, Gao X, Xu D. A review of the interfacial characteristics of polymer nanocomposites containing carbon nanotubes. RSC Adv 2018; 8:28048-28085. [PMID: 35542749 PMCID: PMC9083916 DOI: 10.1039/c8ra04205e] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022] Open
Abstract
This paper provides an overview of recent advances in research on the interfacial characteristics of carbon nanotube–polymer nanocomposites. The state of knowledge about the chemical functionalization of carbon nanotubes as well as the interaction at the interface between the carbon nanotube and the polymer matrix is presented. The primary focus of this paper is on identifying the fundamental relationship between nanocomposite properties and interfacial characteristics. The progress, remaining challenges, and future directions of research are discussed. The latest developments of both microscopy and scattering techniques are reviewed, and their respective strengths and limitations are briefly discussed. The main methods available for the chemical functionalization of carbon nanotubes are summarized, and particular interest is given to evaluation of their advantages and disadvantages. The critical issues related to the interaction at the interface are discussed, and the important techniques for improving the properties of carbon nanotube–polymer nanocomposites are introduced. Additionally, the mechanism responsible for the interfacial interaction at the molecular level is briefly described. Furthermore, the mechanical, electrical, and thermal properties of the nanocomposites are discussed separately, and their influencing factors are briefly introduced. Finally, the current challenges and opportunities for efficiently translating the remarkable properties of carbon nanotubes to polymer matrices are summarized in the hopes of facilitating the development of this emerging area. Potential topics of oncoming focus are highlighted, and several suggestions concerning future research needs are also presented. The state of research on the characteristics at the interface in polymer nanocomposites is reviewed. Special emphasis is placed on the recent advances in the fundamental relationship between interfacial characteristics and nanocomposite properties.![]()
Collapse
Affiliation(s)
- Junjie Chen
- Department of Energy and Power Engineering
- School of Mechanical and Power Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Baofang Liu
- Department of Energy and Power Engineering
- School of Mechanical and Power Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Xuhui Gao
- Department of Energy and Power Engineering
- School of Mechanical and Power Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Deguang Xu
- Department of Energy and Power Engineering
- School of Mechanical and Power Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| |
Collapse
|
38
|
Liang C, Wang B, Chen J, Yong Q, Huang Y, Liao B. Dispersion of Multi-Walled Carbon Nanotubes by Polymers with Carbazole Pendants. J Phys Chem B 2017; 121:8408-8416. [DOI: 10.1021/acs.jpcb.7b05481] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Caizhen Liang
- Key
Laboratory of Cellulose and Lignocellulosics Chemistry, Guangzhou
Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, P.R. China
- University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Bin Wang
- Key
Laboratory of Cellulose and Lignocellulosics Chemistry, Guangzhou
Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, P.R. China
| | - Jianjun Chen
- Key
Laboratory of Cellulose and Lignocellulosics Chemistry, Guangzhou
Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, P.R. China
- University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Qiwen Yong
- Key
Laboratory of Cellulose and Lignocellulosics Chemistry, Guangzhou
Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, P.R. China
- University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Yuewen Huang
- Key
Laboratory of Cellulose and Lignocellulosics Chemistry, Guangzhou
Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, P.R. China
| | - Bing Liao
- Guangdong Academy of Sciences, Guangzhou 510650, P.R. China
| |
Collapse
|
39
|
Saint-Cricq M, Carrete J, Gaboriaud C, Gravel E, Doris E, Thielens N, Mingo N, Ling WL. Human Immune Protein C1q Selectively Disaggregates Carbon Nanotubes. NANO LETTERS 2017; 17:3409-3415. [PMID: 28530824 DOI: 10.1021/acs.nanolett.7b00189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We atomistically compute the change in free energy upon binding of the globular domain of the complement protein C1q to carbon nanotubes (CNTs) and graphene in solution. Our modeling results imply that C1q is able to disaggregate and disperse bundles of large diameter multiwalled CNTs but not those of thin single-walled CNTs, and we validate this prediction with experimental observations. The results support the view of a strong binding with potential implications for the understanding of the immune response and biomedical applications of graphitic nanomaterials.
Collapse
Affiliation(s)
- M Saint-Cricq
- Université Grenoble Alpes, CEA LITEN , F-38000 Grenoble, France
| | - J Carrete
- Université Grenoble Alpes, CEA LITEN , F-38000 Grenoble, France
| | - C Gaboriaud
- Université Grenoble Alpes, CEA, CNRS, IBS , F-38000 Grenoble, France
| | - E Gravel
- Service de Chimie Bioorganique et de Marquage (SCBM), CEA, Université Paris-Saclay , 91191 Gif-sur-Yvette, France
| | - E Doris
- Service de Chimie Bioorganique et de Marquage (SCBM), CEA, Université Paris-Saclay , 91191 Gif-sur-Yvette, France
| | - N Thielens
- Université Grenoble Alpes, CEA, CNRS, IBS , F-38000 Grenoble, France
| | - N Mingo
- Université Grenoble Alpes, CEA LITEN , F-38000 Grenoble, France
| | - W L Ling
- Université Grenoble Alpes, CEA, CNRS, IBS , F-38000 Grenoble, France
| |
Collapse
|
40
|
Zheng Y, Bachilo SM, Weisman RB. Quenching of Single-Walled Carbon Nanotube Fluorescence by Dissolved Oxygen Reveals Selective Single-Stranded DNA Affinities. J Phys Chem Lett 2017; 8:1952-1955. [PMID: 28406641 DOI: 10.1021/acs.jpclett.7b00583] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The selective interactions between short oligomers of single-stranded DNA (ssDNA) and specific structures of single-walled carbon nanotubes have been exploited in powerful methods for nanotube sorting. We report here that nanotubes coated with ssDNA also display selective interactions through the selective quenching of nanotube fluorescence by dissolved oxygen. In aqueous solutions equilibrated under 1 atm of O2, emission intensity from semiconducting nanotubes is reduced by between 9 and 40%, varying with the combination of ssDNA sequence and nanotube structure. This quenching reverses promptly and completely on the removal of dissolved O2 and may be due to physisorption on nanotube surfaces. Fluorescence quenching offers a simple, nondestructive approach for studying the structure-selective interactions of ssDNA with single-walled carbon nanotubes and identifying recognition sequences.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Chemistry and the Smalley-Curl Institute and ‡Department of Materials Science and NanoEngineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Sergei M Bachilo
- Department of Chemistry and the Smalley-Curl Institute and ‡Department of Materials Science and NanoEngineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - R Bruce Weisman
- Department of Chemistry and the Smalley-Curl Institute and ‡Department of Materials Science and NanoEngineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
41
|
Fernandes RM, Buzaglo M, Regev O, Furó I, Marques EF. Mechanical agitation induces counterintuitive aggregation of pre-dispersed carbon nanotubes. J Colloid Interface Sci 2017; 493:398-404. [DOI: 10.1016/j.jcis.2017.01.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 12/25/2022]
|
42
|
Zhang N, Zhou D, Zhou N, Zhang Z, Zhu X. Dispersion of single-walled carbon nanotubes in an aqueous medium by using a cyclic copolymer. REACT FUNCT POLYM 2017. [DOI: 10.1016/j.reactfunctpolym.2017.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Ramos E, Pardo WA, Mir M, Samitier J. Dependence of carbon nanotubes dispersion kinetics on surfactants. NANOTECHNOLOGY 2017; 28:135702. [PMID: 28151432 DOI: 10.1088/1361-6528/aa5dd4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Carbon nanotubes (CNTs) have been the subject of many studies due to their unique structure and desirable properties. However, the ability to solubilize and separate single CNTs from the bundles they form is still a challenge that needs to be overcome in order to extend their applications in the field of Nanotechnology. Covalent interactions are designed to modify CNTs surface and so prevent agglomeration. Though, this method alters the structures and intrinsic properties of CNTs. In the present work, noncovalent approaches to functionalize and solubilize CNTs are studied in detail. A dispersion kinetic study was performed to characterize the ability of different type of surfactants (non-ionic, anionic, cationic and biopolymer) to unzip CNT bundles. The dispersion kinetic study performed depicts the distinct CNTs bundles unzipping behavior of the different type of surfactants and the results elucidate specific wavelengths in relation with the degree of CNT clustering, which provides new tools for a deeper understanding and characterization of CNTs. Small angle x-ray scattering and transmission electron microscopy results are in agreement with UV-vis-NIR observations, revealing perfectly monodispersed CNTs for the biopolymer and cationic surfactant.
Collapse
Affiliation(s)
- Erika Ramos
- Nanobioengineering group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, E-08028 Barcelona, Spain. Department of Electronics, University of Barcelona, Martí i Franquès 1, E-08028 Barcelona, Spain
| | | | | | | |
Collapse
|
44
|
Kim J, Kim SW, Yun H, Kim BJ. Impact of size control of graphene oxide nanosheets for enhancing electrical and mechanical properties of carbon nanotube–polymer composites. RSC Adv 2017. [DOI: 10.1039/c7ra04015f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The size effects of GOs on the dispersion behavior of multi-walled carbon nanotubes (MWCNTs) were evaluated, and the GOs were exploited to develop conducting film and polymer-CNT composites with excellent electrical and mechanical properties.
Collapse
Affiliation(s)
- Jeonghwan Kim
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Sang Woo Kim
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Hongseok Yun
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Bumjoon J. Kim
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| |
Collapse
|
45
|
Goodman S, Ferguson N, Dichiara AB. Lignin-assisted double acoustic irradiation for concentrated aqueous dispersions of carbon nanotubes. RSC Adv 2017. [DOI: 10.1039/c6ra25986c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Carbon nanotube (CNTs) dispersion is one of the most challenging tasks for many applications. Lignin-assisted double sonication represents a low-cost and renewable alternative to prepare stable and concentrated suspensions of individualized CNTs.
Collapse
Affiliation(s)
- Sheila M. Goodman
- School of Environmental and Forest Sciences
- University of Washington
- Seattle
- USA
| | - Noah Ferguson
- School of Environmental and Forest Sciences
- University of Washington
- Seattle
- USA
| | - Anthony B. Dichiara
- School of Environmental and Forest Sciences
- University of Washington
- Seattle
- USA
| |
Collapse
|
46
|
Di Crescenzo A, Di Profio P, Siani G, Zappacosta R, Fontana A. Optimizing the Interactions of Surfactants with Graphitic Surfaces and Clathrate Hydrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6559-6570. [PMID: 27264111 DOI: 10.1021/acs.langmuir.6b01435] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Surfactants are amphiphilic molecules active at the surface/interface and able to self-assemble. Because of these properties, surfactants have been extensively used as detergents, emulsifiers, foaming agents, and wetting agents. New perspectives have been opened by the exploitation of surfactants for their capacity to interact as well with simple molecules or surfaces. This feature article gives an overview of significant contributions in the panorama of the current research on surfactants, partly accomplished as well by our research group. We look at several recent applications (e.g., adsorption to graphitic surfaces and interactions with hydrate crystals) with the eye of physical organic chemists. We demonstrate that, from the detailed investigation of the forces involved in the interactions with hydrophobic surfaces, it is possible to optimize the design of the surfactant that is able to form a stable and unbundled carbon nanotube dispersion as well as the best exfoliating agent for graphitic surfaces. By studying the effect of different surfactants on the capacity to favor or disfavor the formation of a gas hydrate, it is possible to highlight the main features that a surfactant should possess in order to be devoted to that specific application.
Collapse
Affiliation(s)
- Antonello Di Crescenzo
- Dipartimento di Farmacia, Università "G. d'Annunzio" , Via dei Vestini, 66100 Chieti, Italy
| | - Pietro Di Profio
- Dipartimento di Farmacia, Università "G. d'Annunzio" , Via dei Vestini, 66100 Chieti, Italy
| | - Gabriella Siani
- Dipartimento di Farmacia, Università "G. d'Annunzio" , Via dei Vestini, 66100 Chieti, Italy
| | - Romina Zappacosta
- Dipartimento di Farmacia, Università "G. d'Annunzio" , Via dei Vestini, 66100 Chieti, Italy
| | - Antonella Fontana
- Dipartimento di Farmacia, Università "G. d'Annunzio" , Via dei Vestini, 66100 Chieti, Italy
| |
Collapse
|