1
|
Kakar E, Riaz S, Naseem S. Probing Relative Humidity Impact on Biological Protein Bovine Serum Albumin and Bovine Submaxillary Gland Mucin by Using Contact Resonance Atomic Force Microscopy. ACS OMEGA 2023; 8:32765-32774. [PMID: 37720735 PMCID: PMC10500683 DOI: 10.1021/acsomega.3c03740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023]
Abstract
In biomaterials, a substantial amount of research has been placed on the mechanical properties of biomolecules and their interactions with body fluids. Bovine serum albumin (BSA) is a widely studied model protein, while bovine submaxillary gland mucin (BSM) is another cow-derived protein frequently employed in research. Films were examined with contact resonance atomic force microscopy (CR-AFM), and the results showed that the mechanical characteristics of the films were affected by the relative humidity. We quantitatively analyze the viscoelasticity of these proteins after they have been subjected to humidity by measuring the resonance frequency and quality factor. The findings indicate that prolonged humidity exposure has a different effect on the mechanical properties of BSA and BSM films. The results show that after exposure to humidity, the resonance peaks of BSA shift to the left, indicating stiffness, while those of BSM shift to the right, indicating hydration. Moreover, BSM's hydration is caused by relative humidity, leading to a constant increase in resonance frequency and material softness. Contrarily, BSA showed a decrease in contact resonance frequency due to ongoing strain-induced deformation, indicating increased material stiffness. The findings have significance for the design and development of biomaterials for a variety of applications, such as the delivery of drugs, the engineering of tissue, and the development of biosensors. Our research demonstrates that CR-AFM has the potential to become a non-invasive and sensitive method that can be used to characterize the mechanical characteristics of biomolecules and their interactions with bodily fluids.
Collapse
Affiliation(s)
- Erum Kakar
- COE in Solid State
Physics, University of the Punjab, QAC, Lahore 54590, Pakistan
| | | | | |
Collapse
|
2
|
McCraw MR, Uluutku B, Solomon HD, Anderson MS, Sarkar K, Solares SD. Optimizing the accuracy of viscoelastic characterization with AFM force-distance experiments in the time and frequency domains. SOFT MATTER 2023; 19:451-467. [PMID: 36530043 DOI: 10.1039/d2sm01331b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Atomic Force Microscopy (AFM) force-distance (FD) experiments have emerged as an attractive alternative to traditional micro-rheology measurement techniques owing to their versatility of use in materials of a wide range of mechanical properties. Here, we show that the range of time dependent behaviour which can reliably be resolved from the typical method of FD inversion (fitting constitutive FD relations to FD data) is inherently restricted by the experimental parameters: sampling frequency, experiment length, and strain rate. Specifically, we demonstrate that violating these restrictions can result in errors in the values of the parameters of the complex modulus. In the case of complex materials, such as cells, whose behaviour is not specifically understood a priori, the physical sensibility of these parameters cannot be assessed and may lead to falsely attributing a physical phenomenon to an artifact of the violation of these restrictions. We use arguments from information theory to understand the nature of these inconsistencies as well as devise limits on the range of mechanical parameters which can be reliably obtained from FD experiments. The results further demonstrate that the nature of these restrictions depends on the domain (time or frequency) used in the inversion process, with the time domain being far more restrictive than the frequency domain. Finally, we demonstrate how to use these restrictions to better design FD experiments to target specific timescales of a material's behaviour through our analysis of a polydimethylsiloxane (PDMS) polymer sample.
Collapse
Affiliation(s)
- Marshall R McCraw
- Department of Mechanical and Aerospace Engineering, The George Washington University School of Engineering and Applied Science, Washington, District of Columbia, USA.
| | - Berkin Uluutku
- Department of Mechanical and Aerospace Engineering, The George Washington University School of Engineering and Applied Science, Washington, District of Columbia, USA.
| | - Halen D Solomon
- Department of Mechanical and Aerospace Engineering, The George Washington University School of Engineering and Applied Science, Washington, District of Columbia, USA.
| | - Megan S Anderson
- Department of Mechanical and Aerospace Engineering, The George Washington University School of Engineering and Applied Science, Washington, District of Columbia, USA.
| | - Kausik Sarkar
- Department of Mechanical and Aerospace Engineering, The George Washington University School of Engineering and Applied Science, Washington, District of Columbia, USA.
| | - Santiago D Solares
- Department of Mechanical and Aerospace Engineering, The George Washington University School of Engineering and Applied Science, Washington, District of Columbia, USA.
| |
Collapse
|
3
|
Integrated analysis of chain orientation induced anisotropy in nanoimprinted PVDF based copolymers. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Collinson DW, Sheridan RJ, Palmeri MJ, Brinson LC. Best practices and recommendations for accurate nanomechanical characterization of heterogeneous polymer systems with atomic force microscopy. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101420] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Gao Q, Tsai W, Balke N. In situ and operando force‐based atomic force microscopy for probing local functionality in energy storage materials. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Qiang Gao
- Department of Chemistry University of Wisconsin‐Madison Madison Wisconsin USA
| | - Wan‐Yu Tsai
- Chemical Science Division Oak Ridge National Laboratory Oak Ridge Tennessee USA
| | - Nina Balke
- Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge Tennessee USA
| |
Collapse
|
6
|
Efremov YM, Okajima T, Raman A. Measuring viscoelasticity of soft biological samples using atomic force microscopy. SOFT MATTER 2020; 16:64-81. [PMID: 31720656 DOI: 10.1039/c9sm01020c] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mechanical properties play important roles at different scales in biology. At the level of a single cell, the mechanical properties mediate mechanosensing and mechanotransduction, while at the tissue and organ levels, changes in mechanical properties are closely connected to disease and physiological processes. Over the past three decades, atomic force microscopy (AFM) has become one of the most widely used tools in the mechanical characterization of soft samples, ranging from molecules, cell organoids and cells to whole tissue. AFM methods can be used to quantify both elastic and viscoelastic properties, and significant recent developments in the latter have been enabled by the introduction of new techniques and models for data analysis. Here, we review AFM techniques developed in recent years for examining the viscoelastic properties of cells and soft gels, describe the main steps in typical data acquisition and analysis protocols, and discuss relevant viscoelastic models and how these have been used to characterize the specific features of cellular and other biological samples. We also discuss recent trends and potential directions for this field.
Collapse
Affiliation(s)
- Yuri M Efremov
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA. and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA and Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Takaharu Okajima
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Arvind Raman
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA. and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
7
|
Gonzalez-Martinez JF, Kakar E, Erkselius S, Rehnberg N, Sotres J. Effect of Relative Humidity on the Viscoelasticity of Thin Organic Films Studied by Contact Thermal Noise AFM. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6015-6023. [PMID: 30965008 DOI: 10.1021/acs.langmuir.8b04222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Material scientists are in need of experimental techniques that facilitate a quantitative mechanical characterization of mesoscale materials and, therefore, their rational design. An example is that of thin organic films, as their performance often relates to their ability to withstand use without damage. The mechanical characterization of thin films has benefited from the emergence of the atomic force microscope (AFM). In this regard, it is of relevance that most soft materials are not elastic but viscoelastic instead. While most AFM operation modes and analysis procedures are suitable for elasticity studies, the use of AFM for quantitative viscoelastic characterizations is still a challenge. This is now an emerging topic due to recent developments in contact resonance AFM. The aim of this work was to further explore the potential of this technique by investigating its sensitivity to viscoelastic changes induced by environmental parameters, specifically humidity. Here, we show that by means of this experimental approach, it was possible to quantitatively monitor the influence of humidity on the viscoelasticity of two different thin and hydrophobic polyurethane coatings representative of those typically used to protect materials from processes like weathering and wear. The technique was sensitive even to the transition between the antiplasticizing and plasticizing effects of ambient humidity. Moreover, we showed that this was possible without the need of externally exciting the AFM cantilever or the sample, i.e., just by monitoring the Brownian motion of cantilevers, which significantly facilitates the implementation of this technique in any AFM setup.
Collapse
Affiliation(s)
- Juan F Gonzalez-Martinez
- Biomedical Science Department & Biofilms-Research Center for Biointerfaces , Malmö University , 20506 Malmö , Sweden
| | - Erum Kakar
- Biomedical Science Department & Biofilms-Research Center for Biointerfaces , Malmö University , 20506 Malmö , Sweden
- COE in Solid State Physics , University of the Punjab , QAC , Lahore 54590 , Pakistan
| | | | | | - Javier Sotres
- Biomedical Science Department & Biofilms-Research Center for Biointerfaces , Malmö University , 20506 Malmö , Sweden
| |
Collapse
|
8
|
Fiedler-Higgins CI, Cox LM, DelRio FW, Killgore JP. Monitoring Fast, Voxel-Scale Cure Kinetics via Sample-Coupled-Resonance Photorheology. SMALL METHODS 2019; 3:1800275. [PMID: 31289746 PMCID: PMC6615886 DOI: 10.1002/smtd.201800275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Indexed: 05/27/2023]
Abstract
Photopolymerizable materials are the focus of extensive research across a variety of fields ranging from additive manufacturing to regenerative medicine. However, poorly understood material mechanical and rheological properties during polymerization at the relevant exposure powers and single-voxel length-scales limit advancements in part performance and throughput. Here, a novel atomic force microscopy (AFM) technique, sample-coupled-resonance photorheology (SCRPR), to locally characterize the mechano-rheological properties of photopolymerized materials on the relevant reaction kinetic timescales, is demonstrated. By coupling an AFM tip to a photopolymer and exposing the coupled region to a laser, two fundamental photopolymerization phenomena: (1) timescales of photopolymerization at high laser power and (2) reciprocity between photodose and material properties are studied. The ability to capture rapid kinetic changes occurring during polymerization with SCRPR is demonstrated. It is found that reciprocity is only valid for a finite range of exposure powers in the verification material and polymerization is highly localized in a low-diffusion system. After polymerization, in situ imaging of a single polymerized voxel is performed using material-appropriate topographic and nanomechanical modalities of the AFM while still in the as-printed environment.
Collapse
Affiliation(s)
- Callie I Fiedler-Higgins
- Applied Chemicals and Materials Division, National Institute of Standards and Technology 325 Broadway, Boulder, CO 80305, USA
| | - Lewis M Cox
- Applied Chemicals and Materials Division, National Institute of Standards and Technology 325 Broadway, Boulder, CO 80305, USA
| | - Frank W DelRio
- Applied Chemicals and Materials Division, National Institute of Standards and Technology 325 Broadway, Boulder, CO 80305, USA
| | - Jason P Killgore
- Applied Chemicals and Materials Division, National Institute of Standards and Technology 325 Broadway, Boulder, CO 80305, USA
| |
Collapse
|
9
|
Zhu R, Diaz AJ, Shen Y, Qi F, Chang X, Durkin DP, Sun Y, Solares SD, Shuai D. Mechanism of humic acid fouling in a photocatalytic membrane system. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.06.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Killgore JP, DelRio FW. Contact Resonance Force Microscopy for Viscoelastic Property Measurements: From Fundamentals to State-of-the-Art Applications. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01178] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jason P. Killgore
- Applied Chemicals and Materials Division, Material Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Frank W. DelRio
- Applied Chemicals and Materials Division, Material Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| |
Collapse
|
11
|
Angeloni L, Reggente M, Passeri D, Natali M, Rossi M. Identification of nanoparticles and nanosystems in biological matrices with scanning probe microscopy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1521. [PMID: 29665287 DOI: 10.1002/wnan.1521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/26/2018] [Accepted: 03/10/2018] [Indexed: 01/22/2023]
Abstract
Identification of nanoparticles and nanosystems into cells and biological matrices is a hot research topic in nanobiotechnologies. Because of their capability to map physical properties (mechanical, electric, magnetic, chemical, or optical), several scanning probe microscopy based techniques have been proposed for the subsurface detection of nanomaterials in biological systems. In particular, atomic force microscopy (AFM) can be used to reveal stiff nanoparticles in cells and other soft biomaterials by probing the sample mechanical properties through the acquisition of local indentation curves or through the combination of ultrasound-based methods, like contact resonance AFM (CR-AFM) or scanning near field ultrasound holography. Magnetic force microscopy can detect magnetic nanoparticles and other magnetic (bio)materials in nonmagnetic biological samples, while electric force microscopy, conductive AFM, and Kelvin probe force microscopy can reveal buried nanomaterials on the basis of the differences between their electric properties and those of the surrounding matrices. Finally, scanning near field optical microscopy and tip-enhanced Raman spectroscopy can visualize buried nanostructures on the basis of their optical and chemical properties. Despite at a still early stage, these methods are promising for detection of nanomaterials in biological systems as they could be truly noninvasive, would not require destructive and time-consuming specific sample preparation, could be performed in vitro, on alive samples and in water or physiological environment, and by continuously imaging the same sample could be used to dynamically monitor the diffusion paths and interaction mechanisms of nanomaterials into cells and biological systems. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Livia Angeloni
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy
| | - Melania Reggente
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy
| | - Daniele Passeri
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy
| | - Marco Natali
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy
| | - Marco Rossi
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy.,Research Center for Nanotechnology Applied to Engineering of Sapienza University of Rome (CNIS), Rome, Italy
| |
Collapse
|
12
|
Reggente M, Natali M, Passeri D, Lucci M, Davoli I, Pourroy G, Masson P, Palkowski H, Hangen U, Carradò A, Rossi M. Multiscale mechanical characterization of hybrid Ti/PMMA layered materials. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Multi-characterization of LiCoO 2 cathode films using advanced AFM-based techniques with high resolution. Sci Rep 2017; 7:11164. [PMID: 28924172 PMCID: PMC5603513 DOI: 10.1038/s41598-017-11623-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/25/2017] [Indexed: 11/09/2022] Open
Abstract
ABSTARCT The thin film Li-ion batteries have been extensively used in micro-electronic devices due to their miniaturization, high capacity density and environmental friendliness, etc. In order to further prolong the lifetime of the film batteries, one of important tasks is to explore the aging mechanisms of the cathode films. In this paper, we especially focused on the multi-characterization of the LiCoO2 film in nanoscale, which is carried out by combining advanced AFM-based techniques with capacity measurement. The surface morphology, contact stiffness as well as surface potential were measured by amplitude modulation-frequency modulation (AM-FM) and kelvin probe force microscope (KPFM), respectively. Remarkable changes after different numbers of charge/discharge cycling were observed and the intrinsic reasons of them were discussed in detail. To acknowledge the relationship with these microscopic changes, the macro-capacity of the thin films was also measured by the galvanostatic charge/discharge method. These comprehensive results would provide a deep insight into the fading mechanism of the cathode film, being helpful for the design and selection of the cathode film materials for high performance batteries.
Collapse
|
14
|
Wagner R, Killgore J. Reconstructing the distributed force on an atomic force microscope cantilever. NANOTECHNOLOGY 2017; 28:104002. [PMID: 28085006 PMCID: PMC11404189 DOI: 10.1088/1361-6528/aa5965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A methodology is developed to reconstruct the force applied to an atomic force microscopy (AFM) cantilever given the shape in which it vibrates. This is accomplished by rewriting Bernoulli-Euler beam theory such that the force on the cantilever is approximated as a linear superposition of the theoretical cantilever eigenmodes. The weighting factors in this summation are calculated from the amplitude and phase measured along the length of the cantilever. The accuracy of the force reconstruction is shown to depend on the frequency at which the measurement is performed, the number of discrete points measured along the length of the cantilever, and the signal-to-noise ratio of the measured signal. In contrast to other AFM force reconstruction techniques, this method can reconstruct the distribution of force applied over the length of the AFM cantilever. However, this method performs poorly for localized forces applied to the cantilever, such as is typical of most tip-sample interaction forces. Proof of concept experiments are performed on an electrostatically excited cantilever and the expected force distribution is recovered. This force reconstruction technique offers previously unavailable insight into the distributed forces experienced by an AFM cantilever.
Collapse
Affiliation(s)
- Ryan Wagner
- Applied Chemicals and Materials, Division, National Institute of Standards and Technology Boulder, CO 80305, United States of America
| | | |
Collapse
|
15
|
Visualization of Au Nanoparticles Buried in a Polymer Matrix by Scanning Thermal Noise Microscopy. Sci Rep 2017; 7:42718. [PMID: 28210001 PMCID: PMC5314356 DOI: 10.1038/srep42718] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/13/2017] [Indexed: 12/16/2022] Open
Abstract
Several researchers have recently demonstrated visualization of subsurface features with a nanometer-scale resolution using various imaging schemes based on atomic force microscopy. Since all these subsurface imaging techniques require excitation of the oscillation of the cantilever and/or sample surface, it has been difficult to identify a key imaging mechanism. Here we demonstrate visualization of Au nanoparticles buried 300 nm into a polymer matrix by measurement of the thermal noise spectrum of a microcantilever with a tip in contact to the polymer surface. We show that the subsurface Au nanoparticles are detected as the variation in the contact stiffness and damping reflecting the viscoelastic properties of the polymer surface. The variation in the contact stiffness well agrees with the effective stiffness of a simple one-dimensional model, which is consistent with the fact that the maximum depth range of the technique is far beyond the extent of the contact stress field.
Collapse
|
16
|
Developments in dynamic atomic force microscopy techniques to characterize viscoelastic behaviors of food materials at the nanometer-scale. Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|