1
|
Abdelrahman N, Drescher S, Ann Dailey L, Klang V. Investigation of keratolytic impact of synthetic bolalipids on skin penetration of a model hydrophilic permeant. Eur J Pharm Biopharm 2024; 203:114433. [PMID: 39098617 DOI: 10.1016/j.ejpb.2024.114433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/26/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Synthetic single-chain bolalipids (SSCBs) are novel excipients in drug delivery, with potential as stabilizers or solubilizers. However, their impact on skin barrier function has not been comprehensively studied. Therefore, two SSCBs (PC-C24-PC and PC-C32-PC) were studied in aqueous systems for their impact on penetration of a model permeant into porcine skin. Concentrations of 0.05 - 5 % w/w were tested; PC-C24-PC formulations were low-viscosity liquids while PC-C32-PC formed viscous dispersions to gels at room temperature. Formulations were compared for their ability to enhance sodium fluorescein penetration (SF, 0.1 % w/w) into skin via tape stripping. Using NIR-densitometry, the effect of SSCB formulations on corneocyte cohesion was evaluated. Data were compared with phospholipid mixture Lipoid S-75, sodium dodecyl sulfate (SDS), and polyethylene glycol 12-hydroxystearate (PEG-HS), and distilled water as negative control. Contrary to the hypothesis, both SSCBs failed to increase SF penetration into the stratum corneum, but rather showed a significant decrease in penetration depth compared to water. Both SSCBs exhibited a keratolytic effect at 5 % w/w, leading to substantial removal of proteins from the skin surface. Consequently, SSCBs may not enhance penetration of hydrophilic drugs into skin, but could be used as keratolytic agents.
Collapse
Affiliation(s)
- Namarig Abdelrahman
- University of Vienna, Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, 1090, Vienna, Austria
| | - Simon Drescher
- Phospholipid Research Center, Im Neuenheimer Feld 515, 69120, Heidelberg, Germany
| | - Lea Ann Dailey
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
| | - Victoria Klang
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
| |
Collapse
|
2
|
Li F, Harvey RD, Modicano P, Hamdi F, Kyrilis F, Müller S, Gruhle K, Kastritis P, Drescher S, Dailey LA. Investigating bolalipids as solubilizing agents for poorly soluble drugs: Effects of alkyl chain length on solubilization and cytotoxicity. Colloids Surf B Biointerfaces 2022; 212:112369. [PMID: 35123195 DOI: 10.1016/j.colsurfb.2022.112369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 01/31/2023]
Abstract
Synthetic single-chain bolalipids with symmetrical headgroups have shown potential in various pharmaceutical applications, such as the stabilization of liposome bilayers. Despite their amphiphilic character, synthetic bolalipids have not yet been investigated for their suitability as solubilizing agents for poorly soluble drug compounds. In this study, three synthetic single-chain bolalipids with increasing alkyl chain lengths (C22, C24 and C26) were investigated. All three bolalipids were able to achieve an increased solubility of the model drug, mefenamic acid, by approximately 180% in a pH 7.4 buffer compared to only a 102-105% increase achieved by sodium dodecyl sulfate (SDS) or the non-ionic surfactant pegylated hydroxystearate (PEG-HS). Subsequently, interfacial activity of bolalipids and their ability to destabilize liposomal bilayers were investigated. The C22 bolalipid exhibited a consistently lower interfacial activity, which was consistent with its significantly lower cytotoxicity in the macrophage-like cell line, J774. A1, compared to C24 and C26 counterparts. The mean IC50 values of the bolalipids tested (0.035-0.093 mM) were approximately 4-100-fold lower than that of SDS (0.401 mM) or PEG-HS (0.922 mM), with the mechanism of toxicity linked to increased cell membrane permeability, as is expected for surfactants. In summary, evidence from this study shows that decreasing the length of the bolalipid alkyl linker from C26 to C22 resulted in a significantly decreased cytotoxicity with no loss in drug solubilization efficiency.
Collapse
Affiliation(s)
- Feng Li
- Department of Pharmaceutical Sciences, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Richard D Harvey
- Department of Pharmaceutical Sciences, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Paola Modicano
- Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Martin Luther University (MLU) Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Farzad Hamdi
- Biozentrum, MLU Halle-Wittenberg, Weinbergweg 22, Halle/Saale, Germany; Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, MLU Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Fotios Kyrilis
- Biozentrum, MLU Halle-Wittenberg, Weinbergweg 22, Halle/Saale, Germany; Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, MLU Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Sindy Müller
- Institute of Pharmacy, Department of Pharmaceutical Chemistry, MLU Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany
| | - Kai Gruhle
- Institute of Pharmacy, Department of Pharmaceutical Chemistry, MLU Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany
| | - Panagiotis Kastritis
- Biozentrum, MLU Halle-Wittenberg, Weinbergweg 22, Halle/Saale, Germany; Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, MLU Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Simon Drescher
- Phospholipid Research Center, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Lea Ann Dailey
- Department of Pharmaceutical Sciences, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria.
| |
Collapse
|
3
|
Goergen N, Wojcik M, Drescher S, Pinnapireddy SR, Brüßler J, Bakowsky U, Jedelská J. The Use of Artificial Gel Forming Bolalipids as Novel Formulations in Antimicrobial and Antifungal Therapy. Pharmaceutics 2019; 11:E307. [PMID: 31266209 PMCID: PMC6680875 DOI: 10.3390/pharmaceutics11070307] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 12/23/2022] Open
Abstract
The alarming growth of multi-drug resistant bacteria has led to a quest for alternative antibacterial therapeutics. One strategy to circumvent the already existing resistance is the use of photodynamic therapy. Antimicrobial photodynamic therapy (aPDT) involves the use of non-toxic photosensitizers in combination with light and in situ oxygen to generate toxic radical species within the microbial environment which circumvents the resistance building mechanism of the bacteria. Hydrogels are used ubiquitously in the biological and pharmaceutical fields, e.g., for wound dressing material or as drug delivery systems. Hydrogels formed by water-insoluble low-molecular weight gelators may potentially provide the much-needed benefits for these applications. Bolalipids are a superior example of such gelators. In the present work, two artificial bolalipids were used, namely PC-C32-PC and Me2PE-C32-Me2PE, which self-assemble in water into long and flexible nanofibers leading to a gelation of the surrounding solvent. The aim of the study was to create stable hydrogel formulations of both bolalipids and to investigate their applicability as a novel material for drug delivery systems. Furthermore, methylene blue-a well-known photosensitizer-was incorporated into the hydrogels in order to investigate the aPDT for the treatment of skin and mucosal infections using a custom designed LED device.
Collapse
Affiliation(s)
- Nathalie Goergen
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Matthias Wojcik
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Simon Drescher
- Institute of Pharmacy, Biophysical Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany
| | | | - Jana Brüßler
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Jarmila Jedelská
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany.
| |
Collapse
|
4
|
Müller S, Kind M, Gruhle K, Hause G, Meister A, Drescher S. Mixing behaviour of bilayer-forming phosphatidylcholines with single-chain alkyl-branched bolalipids: effect of lateral chain length. Biophys Chem 2018; 244:1-10. [PMID: 30388712 DOI: 10.1016/j.bpc.2018.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/08/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022]
Abstract
Liposomes are a promising class of drug delivery vehicles. However, no liposomal formulation has been approved for an oral application so far, due to stability issues of the liposomes in the gastrointestinal tract. Herein, we investigate the miscibility of three novel single-chain alkyl-branched bolalipids PC-C32(1,32Cn)-PC (n = 3, 6, 9) with either saturated or unsaturated phosphatidylcholines by means of differential scanning calorimetry (DSC), transmission electron microscopy (TEM) of stained samples, vitrified specimens, or replica of freeze-fractured samples, and dynamic light scattering (DLS). The novel bolalipids contain lateral alkyl chains of different length in 1- and 32-position of the long membrane-spanning C32 alkyl chain. We will show for the first time that these single-chain alkyl-branched bolalipids show a miscibility with bilayer-forming phospholipids-by maintaining the vesicular aggregate structure-due to the lateral alkyl substituents located next to the phosphocholine headgroup of the bolalipid. We are convinced that these alkyl side chains are able to fill the void volume, which is created when unmodified single-chain bolalipids are inserted in a transmembrane fashion into a phospholipid bilayer. Consequently, the miscibility of our alkyl-chained bolalipids with bilayer-forming phospholipids rose with increasing lengths of the lateral alkyl chain of the bolalipid. Finally, we were successful in preparing liposomes from various bolalipid/phospholipid mixtures, which were stable in size upon storage for at least 21 days. These mixed liposomes (bolasomes) could be used as oral drug delivery systems in the near future.
Collapse
Affiliation(s)
- Sindy Müller
- Institute of Pharmacy, Biophysical Pharmacy, Martin Luther University (MLU) Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, Halle (Saale) 06120, Germany
| | - Maximilian Kind
- Institute of Pharmacy, Biophysical Pharmacy, Martin Luther University (MLU) Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, Halle (Saale) 06120, Germany
| | - Kai Gruhle
- Institute of Pharmacy, Biophysical Pharmacy, Martin Luther University (MLU) Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, Halle (Saale) 06120, Germany
| | - Gerd Hause
- Biocenter, MLU Halle-Wittenberg, Weinbergweg 22, Halle (Saale) 06120, Germany
| | - Annette Meister
- HALOmem and Institute of Biochemistry and Biotechnology, MLU Halle-Wittenberg, Kurt-Mothes-Str. 3a, Halle (Saale) 06120, Germany
| | - Simon Drescher
- Institute of Pharmacy, Biophysical Pharmacy, Martin Luther University (MLU) Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, Halle (Saale) 06120, Germany.
| |
Collapse
|
5
|
Müller S, Meister A, Otto C, Hause G, Drescher S. Mixing behaviour of asymmetrical glycerol diether bolalipids with saturated and unsaturated phosphatidylcholines. Biophys Chem 2018; 238:39-48. [DOI: 10.1016/j.bpc.2018.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/17/2018] [Accepted: 04/21/2018] [Indexed: 12/17/2022]
|
6
|
Drescher S, Otto C, Müller S, Garamus VM, Garvey CJ, Grünert S, Lischka A, Meister A, Blume A, Dobner B. Impact of Headgroup Asymmetry and Protonation State on the Aggregation Behavior of a New Type of Glycerol Diether Bolalipid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:4360-4373. [PMID: 29557659 DOI: 10.1021/acs.langmuir.8b00527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the present work, we describe the synthesis and the temperature-dependent aggregation behavior of a new class of asymmetrical glycerol diether bolalipids. These bolalipids are composed of a membrane-spanning alkyl chain with 32 carbon atoms (C32) in the sn-3 position, a methyl-branched C16 alkyl chain in the sn-2 position, and a zwitterionic phosphocholine headgroup in the sn-1 position of a glycerol moiety. The long C32 alkyl chain is terminated either by a second phosphocholine (PC-Gly(2C16Me)C32-PC) or by a phosphodimethylethanolamine headgroup (PC-Gly(2C16Me)C32-Me2PE). The temperature- and pH-dependent aggregation behavior of both lipids was studied using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, small-angle X-ray scattering (SAXS), and small-angle neutron scattering (SANS) experiments. The morphology of the formed aggregates in an aqueous suspension was visualized by transmission electron microscopy (TEM). We show that PC-Gly(2C16Me)C32-PC and PC-Gly(2C16Me)C32-Me2PE at pH 5 self-assemble into large lamellar aggregates and large lipid vesicles. Within these structures, the bolalipid molecules are probably assembled in a monolayer with fully interdigitated chains. The lipid molecules seem to be tilted with respect to the layer normal to ensure a dense packing of the alkyl chains. A temperature increase leads to a transition from a lamellar gel phase to the liquid-crystalline phase at about 28-30 °C for both bolalipids. The lamellar aggregates of PC-Gly(2C16Me)C32-Me2PE started to transform into nanofibers when the pH value of the suspension was increased to above 11. At pH 12, these nanofibers were the dominant aggregates.
Collapse
Affiliation(s)
| | | | | | - Vasil M Garamus
- Helmholtz-Zentrum Geesthacht: Centre for Materials and Coastal Research (HZG) , Max-Planck-Strasse 1 , 21502 Geesthacht , Germany
| | - Christopher J Garvey
- Australian Nuclear Science and Technology Organisation (ANSTO) , Kirrawee DC , NSW Australia
| | | | | | - Annette Meister
- Institute of Biochemistry and Biotechnology , MLU Halle-Wittenberg , Kurt-Mothes-Strasse 3 , 06120 Halle (Saale) , Germany
| | - Alfred Blume
- Institute of Chemistry , MLU Halle-Wittenberg , von-Danckelmann-Platz 4 , 06120 Halle (Saale) , Germany
| | | |
Collapse
|
7
|
Markowski T, Müller S, Dobner B, Meister A, Blume A, Drescher S. An Asymmetrical Glycerol Diether Bolalipid with Protonable Phosphodimethylethanolamine Headgroup: The Impact of pH on Aggregation Behavior and Miscibility with DPPC. Polymers (Basel) 2017; 9:E573. [PMID: 30965876 PMCID: PMC6418739 DOI: 10.3390/polym9110573] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/25/2017] [Accepted: 10/31/2017] [Indexed: 01/07/2023] Open
Abstract
Investigations regarding the self-assembly of (bola)phospholipids in aqueous media are crucial to understand the complex relationship between chemical structure of lipids and the shape and size of their aggregates in water. Here, we introduce a new asymmetrical glycerol diether bolaphospholipid, the compound Me₂PE-Gly(2C16)C32-OH. This bolalipid contains a long (C32) ω-hydroxy alkyl chain bond to glycerol in the sn-3 position, a C16 alkyl chain at the sn-2 position, and a protonable phosphodimethylethanolamine (Me₂PE) headgroup at the sn-1 position of the glycerol. The aggregation behavior of this bolalipid was studied as a function of temperature and pH using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and Fourier transform infrared (FTIR) spectroscopy. We show that this bolalipid aggregates into condensed lamellar sheets in acidic milieu and in large sheet-like aggregates at neutral pH-value. By contrast, at a pH-value of 10, where the Me₂PE headgroup is only partially protonated, small lipid disks with diameter 50⁻100 nm were additionally found. Moreover, the miscibility of this asymmetrical bolalipid with the bilayer-forming phosphatidylcholine DPPC was investigated by means of DSC and TEM. The incorporation of bolalipids into phospholipid membranes could result in stabilized liposomes applicable for drug delivery purposes. We show that mixtures of DPPC and Me₂PE-Gly(2C16)C32-OH form large lamellar aggregates at pH of 5, 7, and 10. However, closed lipid vesicles (liposomes) with an increased thermal stability were not found.
Collapse
Affiliation(s)
- Thomas Markowski
- Institute of Pharmacy-Biochemical Pharmacy, Martin Luther University (MLU) Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany.
| | - Sindy Müller
- Institute of Pharmacy-Biophysical Pharmacy, MLU Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany.
| | - Bodo Dobner
- Institute of Pharmacy-Biochemical Pharmacy, Martin Luther University (MLU) Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany.
| | - Annette Meister
- Institute of Chemistry-Biophysical Chemistry, MLU Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
- Institute of Biochemistry and Biotechnology, MLU Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany.
| | - Alfred Blume
- Institute of Chemistry-Biophysical Chemistry, MLU Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| | - Simon Drescher
- Institute of Pharmacy-Biophysical Pharmacy, MLU Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany.
| |
Collapse
|
8
|
Lindner S, Gruhle K, Schmidt R, Garamus VM, Ramsbeck D, Hause G, Meister A, Sinz A, Drescher S. Azide-Modified Membrane Lipids: Synthesis, Properties, and Reactivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4960-4973. [PMID: 28457130 DOI: 10.1021/acs.langmuir.7b00228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In the present work, we describe the synthesis and the temperature-dependent behavior of photoreactive membrane lipids as well as their capability to study peptide/lipid interactions. The modified phospholipids contain an azide group either in the middle part or at the end of an alkyl chain and also differ in the linkage (ester vs ether) of the second alkyl chain. The temperature-dependent aggregation behavior of the azidolipids was studied using differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, and small-angle X-ray scattering (SAXS). Aggregate structures were visualized by stain and cryo transmission electron microscopy (TEM) and were further characterized by dynamic light scattering (DLS). We show that the position of the azide group and the type of linkage of the alkyl chain at the sn-2 position of the glycerol influences the type of aggregates formed as well as their long-term stability: P10AzSPC and r12AzSHPC show the formation of extrudable liposomes, which are stable in size during storage. In contrast, azidolipids that carry a terminal azido moiety either form extrudable liposomes, which show time-dependent vesicle fusion (P15AzPdPC), or self-assemble in large sheet-like, nonextrudable aggregates (r15AzPdHPC) where the lipid molecules are arranged in an interdigitated orientation at temperatures below Tm (LβI phase). Finally, a P10AzSPC:DMPC mixture was used for photochemically induced cross-linking experiments with a transmembrane peptide (WAL-peptide) to demonstrate the applicability of the azidolipids for the analysis of peptide/lipid interactions. The efficiency of photo-cross-linking was monitored by attenuated total reflection infrared (ATR-IR) spectroscopy and mass spectrometry (MS).
Collapse
Affiliation(s)
- Sindy Lindner
- Institute of Pharmacy - Pharmaceutical Chemistry and Bioanalytics, Martin Luther University (MLU) Halle-Wittenberg , Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
- Institute of Pharmacy - Biophysical Pharmacy, MLU Halle-Wittenberg , Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Kai Gruhle
- Institute of Pharmacy - Biophysical Pharmacy, MLU Halle-Wittenberg , Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Rico Schmidt
- Institute of Pharmacy - Pharmaceutical Chemistry and Bioanalytics, Martin Luther University (MLU) Halle-Wittenberg , Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Vasil M Garamus
- Helmholtz-Zentrum Geesthacht: Zentrum für Material und Küstenforschung GmbH (HZG), Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - Daniel Ramsbeck
- Fraunhofer Institute for Cell Therapy and Immunology IZI , Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Gerd Hause
- Biocenter, MLU Halle-Wittenberg , Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Annette Meister
- Institute of Chemistry and Institute of Biochemistry and Biotechnology, MLU Halle-Wittenberg , von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Andrea Sinz
- Institute of Pharmacy - Pharmaceutical Chemistry and Bioanalytics, Martin Luther University (MLU) Halle-Wittenberg , Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Simon Drescher
- Institute of Pharmacy - Biophysical Pharmacy, MLU Halle-Wittenberg , Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| |
Collapse
|
9
|
Mitchell GM, Hesketh A, Lombardi C, Ho C, Fyles TM. A membrane-spanning macrocyclic bolaamphiphile lipid mimic of archaeal lipids. CAN J CHEM 2017. [DOI: 10.1139/cjc-2016-0252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The synthesis of a 72-membered macrocyclic tetraester bolaamphiphile is accomplished in six chemical steps from commercially available starting materials using copper-accelerated azide–alkyne coupling to close the macrocycle in high yield. Related diester amphiphiles and an acyclic tetraester bolaamphiphile were also prepared. The set of lipids bearing nitrophenyl phosphate head groups were incorporated into phospholipid vesicles but failed to undergo phosphate hydrolysis in basic conditions, undergoing efficient elimination in competition. The same lipid cores bearing phosphate-linked nitrobenzoxadiazole (NBD) head groups also incorporated into phospholipid vesicles and the NBD fluorescence was quenched with cobalt ions. The proportion of membrane-spanning bolaamphiphiles was determined from the ratio of cobalt quenching in the presence and in the absence of a detergent. The macrocyclic bolaamphiphile is incorporated into phospholipid vesicles such that 48 ± 4% of the NBD head groups are in the outer leaflet, consistent with a membrane-spanning orientation. The acyclic bolaamphiphile is incorporated with 75 ± 3% of the NBD head groups accessible to quencher in the absence of a detergent suggesting U-shaped incorporation in the outer leaflet of the bilayer membrane. In ring size and spanning ability, the macrocyclic bolaamphiphile mimics naturally occurring macrocyclic archaeal lipids.
Collapse
Affiliation(s)
- Gavin M. Mitchell
- Department of Chemistry, University of Victoria, Box 1700 STN CSC, Victoria, BC V8W 3V6, Canada
- Department of Chemistry, University of Victoria, Box 1700 STN CSC, Victoria, BC V8W 3V6, Canada
| | - Amelia Hesketh
- Department of Chemistry, University of Victoria, Box 1700 STN CSC, Victoria, BC V8W 3V6, Canada
- Department of Chemistry, University of Victoria, Box 1700 STN CSC, Victoria, BC V8W 3V6, Canada
| | - Christie Lombardi
- Department of Chemistry, University of Victoria, Box 1700 STN CSC, Victoria, BC V8W 3V6, Canada
- Department of Chemistry, University of Victoria, Box 1700 STN CSC, Victoria, BC V8W 3V6, Canada
| | - Cally Ho
- Department of Chemistry, University of Victoria, Box 1700 STN CSC, Victoria, BC V8W 3V6, Canada
- Department of Chemistry, University of Victoria, Box 1700 STN CSC, Victoria, BC V8W 3V6, Canada
| | - Thomas M. Fyles
- Department of Chemistry, University of Victoria, Box 1700 STN CSC, Victoria, BC V8W 3V6, Canada
- Department of Chemistry, University of Victoria, Box 1700 STN CSC, Victoria, BC V8W 3V6, Canada
| |
Collapse
|
10
|
Affiliation(s)
- Mark B. Frampton
- Department of Chemistry and Centre for BiotechnologyBrock UniversityOntarioCanada
| | - Paul M. Zelisko
- Department of Chemistry and Centre for BiotechnologyBrock UniversityOntarioCanada
| |
Collapse
|
11
|
Janni DS, Reddy UC, Saroj S, Muraleedharan KM. A modular approach towards drug delivery vehicles using oxanorbornane-based non-ionic amphiphiles. J Mater Chem B 2016; 4:8025-8032. [DOI: 10.1039/c6tb02192a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The self-assembly of non-ionic amphiphiles with hydroxylated oxanorbornane head-group was controlled using amino acid units as spacers between hydrophilic and lipophilic domains to get spherical supramolecular aggregates suitable for drug delivery applications.
Collapse
Affiliation(s)
- D. Sirisha Janni
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai
- India
| | | | - Soumya Saroj
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai
- India
| | | |
Collapse
|