1
|
Saotome H, Yatsuka Y, Minowa O, Shinotsuka K, Tsuchida K, Hirose H, Dai K, Tokuno H, Hayakawa T, Hiranuma H, Hasegawa A, Nakatomi I, Okazaki A, Okazaki Y. Microstripe pattern substrate consisting of alternating planar and nanoprotrusive regions improved hiPSC-derived cardiomyocytes' unidirectional alignment and functional properties. Biomed Mater 2024; 19:045031. [PMID: 38815609 DOI: 10.1088/1748-605x/ad525d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
The alignment of each cell in human myocardium is considered critical for the efficient movement of cardiac tissue. We investigated 96-well microstripe-patterned plates to align human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs), which resemble fetal myocardium. The aligned CMs (ACMs) cultured on the microstripe-patterned plates exhibited pathology, motor function, gene expression, and drug response that more closely resembled those of adult cells than did unaligned CMs cultured on a flat plate (FCMs). We used these ACMs to evaluate drug side effects and efficacy, and to determine whether these were similar to adult-like responses. When CMs from patients with hypertrophic cardiomyopathy (HCMs) were seeded and cultured on the microstripe-patterned plates or layered on top of the ACMs, both sets of HCMs showed increased heart rate and synchronized contractions, indicating improved cardiac function. It is suggested that the ACMs could be used for drug screening as cells representative of adult-like CMs and be transplanted in the form of a cell sheet for regenerative treatment of heart failure.
Collapse
Affiliation(s)
- Hideo Saotome
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yukiko Yatsuka
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Osamu Minowa
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kei Shinotsuka
- Strategic Planning Department, Innovation Promotion Division, Oji Holdings Corporation, Tokyo, Japan
| | - Katsuharu Tsuchida
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Hitomi Hirose
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kotaro Dai
- Strategic Planning Department, Innovation Promotion Division, Oji Holdings Corporation, Tokyo, Japan
| | - Hisako Tokuno
- Strategic Planning Department, Innovation Promotion Division, Oji Holdings Corporation, Tokyo, Japan
| | - Tomohiro Hayakawa
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Next Generation Medical Business Development Division, Sysmex Corporation, Kobe, Japan
| | - Hidenori Hiranuma
- Strategic Planning Department, Innovation Promotion Division, Oji Holdings Corporation, Tokyo, Japan
| | - Akari Hasegawa
- Strategic Planning Department, Innovation Promotion Division, Oji Holdings Corporation, Tokyo, Japan
| | - Ichiro Nakatomi
- Strategic Planning Department, Innovation Promotion Division, Oji Holdings Corporation, Tokyo, Japan
| | - Atsuko Okazaki
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
2
|
Saud KT, Solomon MJ. Microdynamics of active particles in defect-rich colloidal crystals. J Colloid Interface Sci 2023; 641:950-960. [PMID: 36989821 DOI: 10.1016/j.jcis.2023.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/04/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
HYPOTHESIS Because they are self-propulsive, active colloidal particles can interact with their environment in ways that differ from passive, Brownian particles. Here, we explore how interactions in different microstructural regions may contribute to colloidal crystal annealing. EXPERIMENTS We investigate active particles propagating in a quasi-2D colloidal crystal monolayer produced by alternating current electric fields (active-to-passive particle ratio ∼ 1:720). The active particle is a platinum Janus sphere propelled by asymmetric decomposition of hydrogen peroxide. Crystals are characterized for changes in void properties. The mean-squared-displacement of Janus particles are measured to determine how active microdynamics depend on the local microstructure, which is comprised of void regions, void-adjacent regions (defined as within three particle diameters of a void), and interstitial regions. FINDINGS At active particle energy EA = 2.55 kBT, the average void size increases as much as three times and the average void anisotropy increases about 40% relative to the passive case. The average microdynamical enhancement, <δ(t)>, of Janus particles in the crystal relative to an equivalent passive Janus particle is reduced compared to that of a free, active particle (<δ(t) > is 1.88 ± 0.04 and 2.66 ± 0.08, respectively). The concentration of active particles is enriched in void and void-adjacent regions. Active particles exhibit the greatest change in dynamics relative to the passive control in void-adjacent regions (<δ(t)> = 2.58 ± 0.06). The results support the conjecture that active particle microdynamical enhancement in crystal lattices is affected by local defect structure.
Collapse
Affiliation(s)
- Keara T Saud
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Michael J Solomon
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
3
|
Menath J, Mohammadi R, Grauer JC, Deters C, Böhm M, Liebchen B, Janssen LMC, Löwen H, Vogel N. Acoustic Crystallization of 2D Colloidal Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206593. [PMID: 36281801 DOI: 10.1002/adma.202206593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/13/2022] [Indexed: 06/16/2023]
Abstract
2D colloidal crystallization provides a simple strategy to produce defined nanostructure arrays over macroscopic areas. Regularity and long-range order of such crystals is essential to ensure functionality, but difficult to achieve in self-assembling systems. Here, a simple loudspeaker setup for the acoustic crystallization of 2D colloidal crystals (ACDC) of polystyrene, microgels, and core-shell particles at liquid interfaces is introduced. This setup anneals an interfacial colloidal monolayer and affords an increase in average grain size by almost two orders of magnitude. The order is characterized via the structural color of the colloidal crystal, the acoustic annealing process is optimized via the frequency and the amplitude of the applied sound wave, and its efficiency is rationalized via the surface coverage-dependent interactions within the interfacial colloidal monolayer. Computer simulations show that multiple rearrangement mechanisms at different length scales, from the local motion around voids to grain boundary movements via consecutive particle rotations around common centers, collude to remove defects. The experimentally simple ACDC process, paired with the demonstrated applicability toward complex particle systems, provides access to highly defined nanostructure arrays for a wide range of research communities.
Collapse
Affiliation(s)
- Johannes Menath
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany
| | - Reza Mohammadi
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany
| | - Jens Christian Grauer
- Institute for Theoretical Physics II: Soft Matter, Heinrich-Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Claudius Deters
- Institute for Theoretical Physics II: Soft Matter, Heinrich-Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Maike Böhm
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany
| | - Benno Liebchen
- Institute of Physics: Theory of Soft Matter, Technical University of Darmstadt, Hochschulstraße 12, 64289, Darmstadt, Germany
| | - Liesbeth M C Janssen
- Soft Matter and Biological Physics, Department of Applied Physics, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Hartmut Löwen
- Institute for Theoretical Physics II: Soft Matter, Heinrich-Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany
| |
Collapse
|
4
|
Qiu T, Akinoglu EM, Luo B, Konarova M, Yun JH, Gentle IR, Wang L. Nanosphere Lithography: A Versatile Approach to Develop Transparent Conductive Films for Optoelectronic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103842. [PMID: 35119141 DOI: 10.1002/adma.202103842] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Transparent conductive films (TCFs) are irreplaceable components in most optoelectronic applications such as solar cells, organic light-emitting diodes, sensors, smart windows, and bioelectronics. The shortcomings of existing traditional transparent conductors demand the development of new material systems that are both transparent and electrically conductive, with variable functionality to meet the requirements of new generation optoelectronic devices. In this respect, TCFs with periodic or irregular nanomesh structures have recently emerged as promising candidates, which possess superior mechanical properties in comparison with conventional metal oxide TCFs. Among the methods for nanomesh TCFs fabrication, nanosphere lithography (NSL) has proven to be a versatile platform, with which a wide range of morphologically distinct nanomesh TCFs have been demonstrated. These materials are not only functionally diverse, but also have advantages in terms of device compatibility. This review provides a comprehensive description of the NSL process and its most relevant derivatives to fabricate nanomesh TCFs. The structure-property relationships of these materials are elaborated and an overview of their application in different technologies across disciplines related to optoelectronics is given. It is concluded with a perspective on current shortcomings and future directions to further advance the field.
Collapse
Affiliation(s)
- Tengfei Qiu
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Eser Metin Akinoglu
- International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing, Guangdong, 526238, P. R. China
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Bin Luo
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Muxina Konarova
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Jung-Ho Yun
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Ian R Gentle
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Lianzhou Wang
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
| |
Collapse
|
5
|
Lu YC, Hsueh CH. Fabrication of periodic Ag tetrahedral nanopyramids via H2O2-assisted nanosphere lithography for plasmonic applications. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Vinzons LU, Lin SP. Facile fabrication of ordered discontinuous nanotopography on photosensitive substrates for enhanced neuronal differentiation. NANOTECHNOLOGY 2021; 32:365301. [PMID: 34015777 DOI: 10.1088/1361-6528/ac0381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Controlling the development and morphology of neurons is important for basic neuroscience research as well as for applications in nerve regeneration and neural interfaces. Various studies have shown that nanoscale topographies can promote the development of neuronal cells and the differentiation of neural stem cells; however, the fabrication of these nanotopographical features often involves expensive and sophisticated techniques. Here, we employ nanosphere lens lithography combined with UV-LED technology to create nanopatterns on an SU-8 photoresist. We develop a facile method to create a reusable polystyrene nanosphere (PS-NS) lens array by the spontaneous formation of a hexagonal close-packed array of PS-NSs at a water-air interface and its subsequent transfer to a polydimethylsiloxane carrier film without using any special equipment. We show that this simple technique can create ordered arrays of nanodots on an SU-8 film, the dimensions of which can be controlled by the size of the PS-NSs. When used as a substrate for the neuronal differentiation of pheochromocytoma (PC12) cells, the nanopatterned SU-8 films exhibit enhanced differentiation parameters with respect to conventional tissue culture plastic as compared with their flat counterparts. The method proposed here can greatly facilitate the nanopatterning of various photosensitive substrates for the development of implants for nerve regeneration and neural interfacing.
Collapse
Affiliation(s)
- Lester U Vinzons
- PhD Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Shu-Ping Lin
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
7
|
Cai Z, Li Z, Ravaine S, He M, Song Y, Yin Y, Zheng H, Teng J, Zhang A. From colloidal particles to photonic crystals: advances in self-assembly and their emerging applications. Chem Soc Rev 2021; 50:5898-5951. [PMID: 34027954 DOI: 10.1039/d0cs00706d] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the last three decades, photonic crystals (PhCs) have attracted intense interests thanks to their broad potential applications in optics and photonics. Generally, these structures can be fabricated via either "top-down" lithographic or "bottom-up" self-assembly approaches. The self-assembly approaches have attracted particular attention due to their low cost, simple fabrication processes, relative convenience of scaling up, and the ease of creating complex structures with nanometer precision. The self-assembled colloidal crystals (CCs), which are good candidates for PhCs, have offered unprecedented opportunities for photonics, optics, optoelectronics, sensing, energy harvesting, environmental remediation, pigments, and many other applications. The creation of high-quality CCs and their mass fabrication over large areas are the critical limiting factors for real-world applications. This paper reviews the state-of-the-art techniques in the self-assembly of colloidal particles for the fabrication of large-area high-quality CCs and CCs with unique symmetries. The first part of this review summarizes the types of defects commonly encountered in the fabrication process and their effects on the optical properties of the resultant CCs. Next, the mechanisms of the formation of cracks/defects are discussed, and a range of versatile fabrication methods to create large-area crack/defect-free two-dimensional and three-dimensional CCs are described. Meanwhile, we also shed light on both the advantages and limitations of these advanced approaches developed to fabricate high-quality CCs. The self-assembly routes and achievements in the fabrication of CCs with the ability to open a complete photonic bandgap, such as cubic diamond and pyrochlore structure CCs, are discussed as well. Then emerging applications of large-area high-quality CCs and unique photonic structures enabled by the advanced self-assembly methods are illustrated. At the end of this review, we outlook the future approaches in the fabrication of perfect CCs and highlight their novel real-world applications.
Collapse
Affiliation(s)
- Zhongyu Cai
- Research Institute for Frontier Science, Beijing Advanced Innovation Center for Biomedical Engineering, School of Space and Environment, Beihang University, Beijing 100191, China. and Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117576, Singapore and Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Zhiwei Li
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Serge Ravaine
- CNRS, Univ. Bordeaux, CRPP, UMR 5031, F-33600 Pessac, France
| | - Mingxin He
- Department of Physics, Center for Soft Matter Research, New York University, New York, NY 10003, USA
| | - Yanlin Song
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Hanbin Zheng
- CNRS, Univ. Bordeaux, CRPP, UMR 5031, F-33600 Pessac, France
| | - Jinghua Teng
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore.
| | - Ao Zhang
- Research Institute for Frontier Science, Beijing Advanced Innovation Center for Biomedical Engineering, School of Space and Environment, Beihang University, Beijing 100191, China.
| |
Collapse
|
8
|
Li X, Zhang Y, Li M, Zhao Y, Zhang L, Huang C. Convex-Meniscus-Assisted Self-Assembly at the Air/Water Interface to Prepare a Wafer-Scale Colloidal Monolayer Without Overlap. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:249-256. [PMID: 33355471 DOI: 10.1021/acs.langmuir.0c02851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-assembly at the air/water interface (AWI) has proven to be an efficient strategy for fabricating two-dimensional (2D) colloidal monolayers, which was widely used as the template for nanosphere lithography in nanophononics, optofluidics, and solar cell studies. However, the monolayers fabricated at the AWI usually suffer from a small domain area and quasi-double layer structure caused by submerged particles. To overcome this, we proposed an improved protocol to prepare 2D colloidal monolayers free of overlapping nanospheres at the AWI. Utilizing the stable suspension infusion to the water surface, a convex meniscus, whose height is related to viscous force, was formed adjoining the three-phase boundary. As a result of the resistance of the convex meniscus, the polystyrene nanospheres in the initial suspension directly self-assembled into a preliminary monolayer, which proved effective in preventing nanospheres' sinking and increasing the colloidal crystal domain size. An optimal parameter for transferring the monolayer was also developed based on the numerical simulation results. Finally, a wafer-scale monolayer, covered with less than one nanosphere per 100 μm × 100 μm area, was achieved on the desired substrate with an average domain size attaining centimeter scale. The high-quality 2D colloidal crystal may further promote the application of nanosphere lithography, especially in the fields that require a defect-free template.
Collapse
Affiliation(s)
- Xin Li
- R&D Center of Healthcare Electronics, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yijun Zhang
- R&D Center of Healthcare Electronics, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingxiao Li
- R&D Center of Healthcare Electronics, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yang Zhao
- R&D Center of Healthcare Electronics, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| | - Lingqian Zhang
- R&D Center of Healthcare Electronics, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| | - Chengjun Huang
- R&D Center of Healthcare Electronics, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Ma YY, Qian DJ. Visual Luminescent Probes Constructed by Eu 3+ Complex-Functionalized Silica Nanocomposites and Their Langmuir-Blodgett Films at Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14092-14103. [PMID: 33170711 DOI: 10.1021/acs.langmuir.0c02728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The trivalent europium ion (Eu3+) has garnered a great deal of interest for the design of luminescent materials possessing compound-independent emission bands, strong luminescent intensity, and long emission lifetimes. We herein introduce a synthetic methodology capable of constructing visual luminescent probes from Eu3+ complex-functionalized silica nanocomposites and their Langmuir-Blodgett (LB) films at interfaces. In order to facilitate the coordinative stabilization of Eu3+ over carrier surfaces, silica nanoparticles (nanoSiO2) were pregrafted with terpyridyl (TPy) to make nanoSiO2TPy linkers. Then, a well-designed coordination reaction of nanoSiO2TPy with EuCl3 and 2,6-pyridinedicarboxylic acid (DPA) was carried out at solid-liquid and air-water interfaces, where our desired material (denoted as nanoSiO2TPy@EuDPA) and its corresponding LB film are obtained. The presence of TPy and DPA interacting with Eu3+ plays a key role in regulating the chemical nature of the particle surface, hence giving rise to closely packed nanocomposite arrays in the film. As a result, the improvement in uniformity and stability is achieved alongside the enhancement in emission intensity and lifetime. With such advantageous optical properties, we find them workable as facile, green, and affordable luminescent sensors, by which a range of common toxic anions (Cr2O72-, MnO4-, and PO43-) can be visually and quantitatively recognized. Notably, the LB film-based material could afford a higher Ksv value (1.53 × 105 M-1), a lower detection limit (0.157 μM), and better recyclability than its original powder analogue, showcasing its utility as a more promising candidate for practical use.
Collapse
Affiliation(s)
- Yue-Yang Ma
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Dong-Jin Qian
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| |
Collapse
|
10
|
Wang H, Chen W, Chen B, Jiao Y, Wang Y, Wang X, Du X, Hu Y, Lv X, Zeng Y, Wang X, Qian L, Xiong J. Interfacial Capillary-Force-Driven Self-Assembly of Monolayer Colloidal Crystals for Supersensitive Plasmonic Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905480. [PMID: 31994288 DOI: 10.1002/smll.201905480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Colloidal lithography technology based on monolayer colloidal crystals (MCCs) is considered as an outstanding candidate for fabricating large-area patterned functional nanostructures and devices. Although many efforts have been devoted to achieve various novel applicatons, the quality of MCCs, a key factor for the controllability and reproducibility of the patterned nanostructures, is often overlooked. In this work, an interfacial capillary-force-driven self-assembly strategy (ICFDS) is designed to realize a high-quality and highly-ordered hexagonal monolayer MCCs array by resorting the capillary effect of the interfacial water film at substrate surface as well as controlling the zeta potential of the polystyrene particles. Compared with the conventional self-assembly method, this approach can realize the reself-assembly process on the substrate surface with few colloidal aggregates, vacancy, and crystal boundary defects. Furthermore, various typical large-scale nanostructure arrays are achieved by combining reactive ion etching, metal-assisted chemical etching, and so forth. Specifically, benefiting from the as-fabricated high-quality 2D hexagonal colloidal crystals, the surface plasmon resonance (SPR) sensors achieve an excellent refractive index sensitivity value of 3497 nm RIU-1 , which is competent for detecting bovine serum albumin with an ultralow concentration of 10-8 m. This work opens a window to prepare high-quality MCCs for more potential applications.
Collapse
Affiliation(s)
- Hongbo Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, P. R. China
| | - Wei Chen
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, P. R. China
| | - Bo Chen
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing, 100029, P. R. China
| | - Yu Jiao
- School of Applied and Chemical Engineering, Xichang College, Xichang, 615053, P. R. China
| | - Yang Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, P. R. China
| | - Xuepeng Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, P. R. China
| | - Xinchuan Du
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, P. R. China
| | - Yin Hu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, P. R. China
| | - Xiaoxue Lv
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, P. R. China
| | - Yushuang Zeng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, P. R. China
| | - Xianfu Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, P. R. China
| | - Linmao Qian
- Tribology Research Institute, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, 610031, Sichuan, P. R. China
| | - Jie Xiong
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, P. R. China
| |
Collapse
|
11
|
Chausse P, Le Boulbar E, Coulon PM, Shields PA. "Double" displacement Talbot lithography: fast, wafer-scale, direct-writing of complex periodic nanopatterns. OPTICS EXPRESS 2019; 27:32037-32046. [PMID: 31684423 DOI: 10.1364/oe.27.032037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
We describe a new low-cost nanolithographic tool for creating periodic arrays of complex, nano-motifs, across large areas within minutes. Displacement Talbot lithography is combined with lateral nanopositioning to enable large-area patterning with the flexibility of a direct-write system. In this way, we can create different periodic patterns in short timescales using a single mask with no mask degradation. We demonstrate multiple exposures, combined with discrete lateral displacements, and single exposures, with continuous displacements, to achieve image inversion, pitch reduction, and nanogaps between metal nanoparticles. Our approach provides a flexible route to create large-area nanopatterned materials and devices in high volumes.
Collapse
|
12
|
Wang J, Tu T, Chen M, Qian D. Interfacial Self‐Assembly of Closely Packed Nanoparticle Arrays of Silica@Multiporphyrin Hybrids as Light‐Sensitizers for Dye Degradation and Viologen Photochromism. Chem Asian J 2019; 14:3035-3045. [DOI: 10.1002/asia.201900803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/11/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Jing Wang
- Department of ChemistryFudan University 2005 Songhu Road Shanghai 200438 P. R. China
| | - Tao Tu
- Department of ChemistryFudan University 2005 Songhu Road Shanghai 200438 P. R. China
| | - Meng Chen
- Department of Materials ScienceFudan University 220 Handan Road Shanghai 200433 P. R. China
| | - Dong‐Jin Qian
- Department of ChemistryFudan University 2005 Songhu Road Shanghai 200438 P. R. China
| |
Collapse
|
13
|
Hummel MEJ, Stelling C, Kopera BAF, Nutz FA, Karg M, Retsch M, Förster S. Ordered Particle Arrays via a Langmuir Transfer Process: Access to Any Two-Dimensional Bravais Lattice. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:973-979. [PMID: 30472854 DOI: 10.1021/acs.langmuir.8b03047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We demonstrate how to directly transform a close-packed hexagonal colloidal monolayer into nonclose-packed particle arrays of any two-dimensional symmetry at the air/water interface. This major advancement in the field of nanoparticle self-assembly is based on a simple one-dimensional stretching step in combination with the particle array orientation. Our method goes far beyond existing strategies and allows access to all possible two-dimensional Bravais lattices. A key element of our work is the possibility to macroscopically stretch a particle array in a truly one-dimensional manner, which has not been possible up to now. We achieve this by stretching the nanoparticle array at an air/water interface during the transfer process. The degree of stretching is simply controlled by the wettability of the transfer substrate. To retain the symmetry of the transferred structure, the capillary forces upon drying have to be circumvented. We demonstrate two concepts based on thermal fixation for this. It allows for the first time to fabricate nonclose-packed, nonhexagonal colloidal monolayers on a macroscopic length scale.
Collapse
Affiliation(s)
- Miriam E J Hummel
- Department of Chemistry , University of Bayreuth , 95447 Bayreuth , Germany
- JCNS-1/ICS-1 , Forschungszentrum Jülich , 52425 Jülich , Germany
| | - Christian Stelling
- Department of Chemistry , University of Bayreuth , 95447 Bayreuth , Germany
| | - Bernd A F Kopera
- Department of Chemistry , University of Bayreuth , 95447 Bayreuth , Germany
| | - Fabian A Nutz
- Department of Chemistry , University of Bayreuth , 95447 Bayreuth , Germany
| | - Matthias Karg
- Physical Chemistry I , Heinrich-Heine-University , 40204 Düsseldorf , Germany
| | - Markus Retsch
- Department of Chemistry , University of Bayreuth , 95447 Bayreuth , Germany
| | - Stephan Förster
- Department of Chemistry , University of Bayreuth , 95447 Bayreuth , Germany
- JCNS-1/ICS-1 , Forschungszentrum Jülich , 52425 Jülich , Germany
- Physical Chemistry , RWTH University , 52074 Aachen , Germany
| |
Collapse
|
14
|
Rey M, Yu T, Guenther R, Bley K, Vogel N. A Dirty Story: Improving Colloidal Monolayer Formation by Understanding the Effect of Impurities at the Air/Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:95-103. [PMID: 30543431 DOI: 10.1021/acs.langmuir.8b02605] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Colloidal monolayers are important tools to fabricate surface structures at the nanoscale. A typical monolayer fabrication strategy involves the self-assembly of colloidal building blocks at liquid interfaces, which are subsequently deposited on a solid substrate. Even though this process is well established, the resulting order of the particles within the colloidal monolayer differs between batches of colloidal particles and can even change with the age of the dispersion. In this study, we investigate the origins of this variation of monolayer quality for polystyrene particles synthesized by surfactant-free emulsion polymerization. We correlate the interfacial behavior of the colloidal particles at the air/water interface on a Langmuir trough with the resulting quality of the monolayer after transfer to a solid substrate. We identify surface-active impurities as a major cause for a disturbed self-assembly of the colloidal particles. These impurities form during the particle synthesis and consist of copolymers of styrene, the comonomer acrylic acid, and sulfonate species from the initiator. We show that they can be removed by cleaning protocols to increase the monolayer quality. However, our experiments demonstrate that the impurities reappear over time even for cleaned dispersions, indicating desorption from the surface of the colloidal particles. We identify strategies to avoid the presence of the impurities at the air/water interface or to inhibit their effect on the self-assembly process. These simple guidelines improve the quality of the resulting colloidal monolayer, which is a prerequisite for the reliable fabrication of high-quality surface nanostructures from colloidal templates.
Collapse
Affiliation(s)
- Marcel Rey
- Institute of Particle Technology , Friedrich-Alexander University Erlangen-Nürnberg , Cauerstrasse 4 , 91058 Erlangen , Germany
| | - Taotao Yu
- Institute of Particle Technology , Friedrich-Alexander University Erlangen-Nürnberg , Cauerstrasse 4 , 91058 Erlangen , Germany
| | - Roman Guenther
- Institute of Particle Technology , Friedrich-Alexander University Erlangen-Nürnberg , Cauerstrasse 4 , 91058 Erlangen , Germany
| | - Karina Bley
- Institute of Particle Technology , Friedrich-Alexander University Erlangen-Nürnberg , Cauerstrasse 4 , 91058 Erlangen , Germany
| | - Nicolas Vogel
- Institute of Particle Technology , Friedrich-Alexander University Erlangen-Nürnberg , Cauerstrasse 4 , 91058 Erlangen , Germany
| |
Collapse
|
15
|
Heo Y, Lee SY, Kim JW, Jeon TY, Kim SH. Controlled Insertion of Planar Defect in Inverse Opals for Anticounterfeiting Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:43098-43104. [PMID: 29165980 DOI: 10.1021/acsami.7b13946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Inverse opals have been used for structural coloration and photonic applications owing to their photonic bandgap properties. When the photonic structures contain planar defects, they provide defect modes, which are useful for lasing, sensing, and waveguiding. However, it remains a challenge to insert a planar defect into inverse opals in a reproducible manner. Here, we report a new method for producing planar-defect-inserted inverse opals using sequential capillary wetting of colloidal crystals and creating micropatterns through photolithography. Three cycles of deposition and thermal embedding of colloidal crystals into the underlying film of negative photoresist were performed. In the three cycles, opal, particle monolayer, and opal were sequentially employed, which yielded the monolayer-templated planar defect sandwiched by two inverse opals after particle removal. The planar defect provided a passband whose wavelength can be controlled by adjusting the diameter of particles for the defect layer. Moreover, the defect-inserted inverse opals can be micropatterned by photolithography as the negative photoresist is used as a matrix. The resulting micropatterns deliver a unique spectral code featured by a combination of stop band and defect mode and a graphical code dictated by photolithography, being useful for anticounterfeiting applications.
Collapse
Affiliation(s)
- Yongjoon Heo
- Department of Chemical and Biomolecular Engineering (BK21+ Program), Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| | - Su Yeon Lee
- Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT) , Daejeon 34114, Republic of Korea
| | - Ji-Won Kim
- Department of Chemical and Biomolecular Engineering (BK21+ Program), Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| | - Tae Yoon Jeon
- Department of Chemical and Biomolecular Engineering (BK21+ Program), Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering (BK21+ Program), Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| |
Collapse
|
16
|
Lotito V, Zambelli T. Approaches to self-assembly of colloidal monolayers: A guide for nanotechnologists. Adv Colloid Interface Sci 2017; 246:217-274. [PMID: 28669390 DOI: 10.1016/j.cis.2017.04.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 01/08/2023]
Abstract
Self-assembly of quasi-spherical colloidal particles in two-dimensional (2D) arrangements is essential for a wide range of applications from optoelectronics to surface engineering, from chemical and biological sensing to light harvesting and environmental remediation. Several self-assembly approaches have flourished throughout the years, with specific features in terms of complexity of the implementation, sensitivity to process parameters, characteristics of the final colloidal assembly. Selecting the proper method for a given application amidst the vast literature in this field can be a challenging task. In this review, we present an extensive classification and comparison of the different techniques adopted for 2D self-assembly in order to provide useful guidelines for scientists approaching this field. After an overview of the main applications of 2D colloidal assemblies, we describe the main mechanisms underlying their formation and introduce the mathematical tools commonly used to analyse their final morphology. Subsequently, we examine in detail each class of self-assembly techniques, with an explanation of the physical processes intervening in crystallization and a thorough investigation of the technical peculiarities of the different practical implementations. We point out the specific characteristics of the set-ups and apparatuses developed for self-assembly in terms of complexity, requirements, reproducibility, robustness, sensitivity to process parameters and morphology of the final colloidal pattern. Such an analysis will help the reader to individuate more easily the approach more suitable for a given application and will draw the attention towards the importance of the details of each implementation for the final results.
Collapse
|
17
|
Smith NL, Coukouma A, Dubnik S, Asher SA. Debye ring diffraction elucidation of 2D photonic crystal self-assembly and ordering at the air–water interface. Phys Chem Chem Phys 2017; 19:31813-31822. [DOI: 10.1039/c7cp07130b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diffraction intensities and Debye ring widths depend on the colloidal particle ordering of the 2D photonic crystals.
Collapse
Affiliation(s)
- N. L. Smith
- Department of Chemistry
- University of Pittsburgh
- Pittsburgh
- USA
| | - A. Coukouma
- Department of Chemistry
- University of Pittsburgh
- Pittsburgh
- USA
| | - S. Dubnik
- Department of Chemistry
- University of Pittsburgh
- Pittsburgh
- USA
| | - S. A. Asher
- Department of Chemistry
- University of Pittsburgh
- Pittsburgh
- USA
| |
Collapse
|
18
|
Lotito V, Zambelli T. Self-Assembly of Single-Sized and Binary Colloidal Particles at Air/Water Interface by Surface Confinement and Water Discharge. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9582-9590. [PMID: 27574790 DOI: 10.1021/acs.langmuir.6b02157] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present an innovative apparatus allowing self-assembly at air/water interface in a smooth and reproducible way. The combination of water discharge and surface confinement of the area over which self-assembly takes place allows transfer of the assembled monolayer without any risk of damage to the colloidal crystal. As we demonstrate, the designed approach offers remarkable advantages in terms of cost and robustness compared to state-of-the art methods and is suitable for the fabrication of highly ordered monolayers even for more challenging assembly experiments such as transfer on rough substrates or assembly of binary colloids. Hence, our apparatus represents a significant headway toward high scale production of large area colloidal crystals. For the binary colloid assembly experiments, we also report the first experimental demonstration of a morphology based on the alternation of three and four small particles in the interstices between large particles.
Collapse
Affiliation(s)
- Valeria Lotito
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| |
Collapse
|