1
|
Yakovlev EV, Kryuchkov NP, Gorbunov EA, Zotov AK, Ovcharov PV, Yurchenko SO. The influence of salt concentration on the dissolution of microbubbles in bulk aqueous electrolyte solutions. J Chem Phys 2024; 161:144704. [PMID: 39377335 DOI: 10.1063/5.0231481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/21/2024] [Indexed: 10/09/2024] Open
Abstract
We study microbubbles (MBs) in aqueous electrolyte solutions and show that increasing the salt concentration slows down the kinetics of MB dissolution. We modified the Epstein-Plesset theory and experimented with NaCl aqueous solutions to estimate the MB effective surface charge and to compare it with predictions from the modified Poisson-Boltzmann theory. Our results reveal a mechanism responsible for the change in the dissolution of MBs in aqueous electrolyte solutions, with implications for emerging fields ranging from physics of solutions to soft and biological matter.
Collapse
Affiliation(s)
- Egor V Yakovlev
- Bauman Moscow State Technical University, 2nd Baumanskaya str. 5/1, 105005 Moscow, Russia
| | - Nikita P Kryuchkov
- Bauman Moscow State Technical University, 2nd Baumanskaya str. 5/1, 105005 Moscow, Russia
| | | | - Arsen K Zotov
- Bauman Moscow State Technical University, 2nd Baumanskaya str. 5/1, 105005 Moscow, Russia
- Osipyan Institute of Solid State Physics RAS, Academician Osipyan str. 2, 142432 Chernogolovka, Russia
| | - Pavel V Ovcharov
- Bauman Moscow State Technical University, 2nd Baumanskaya str. 5/1, 105005 Moscow, Russia
| | - Stanislav O Yurchenko
- Bauman Moscow State Technical University, 2nd Baumanskaya str. 5/1, 105005 Moscow, Russia
| |
Collapse
|
2
|
Stepanov GO, Penkov NV, Rodionova NN, Petrova AO, Kozachenko AE, Kovalchuk AL, Tarasov SA, Tverdislov VA, Uvarov AV. The heterogeneity of aqueous solutions: the current situation in the context of experiment and theory. Front Chem 2024; 12:1456533. [PMID: 39391834 PMCID: PMC11464478 DOI: 10.3389/fchem.2024.1456533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
The advancement of experimental methods has provided new information about the structure and structural fluctuations of water. Despite the appearance of numerous models, which aim to describe a wide range of thermodynamic and electrical characteristics of water, there is a deficit in systemic understanding of structuring in aqueous solutions. A particular challenge is the fact that even pure water is a heterogeneous, multicomponent system composed of molecular and supramolecular structures. The possibility of the existence of such structures and their nature are of fundamental importance for various fields of science. However, great difficulties arise in modeling relatively large supramolecular structures (e.g. extended hydration shells), where the bonds between molecules are characterized by low energy. Generally, such structures may be non-equilibrium but relatively long-lived. Evidently, the short times of water microstructure exchanges do not mean short lifetimes of macrostructures, just as the instability of individual parts does not mean the instability of the entire structure. To explain this paradox, we review the data from experimental and theoretical research. Today, only some of the experimental results on the lifetime of water structures have been confirmed by modeling, so there is not a complete theoretical picture of the structure of water yet. We propose a new hierarchical water macrostructure model to resolve the issue of the stability of water structures. In this model, the structure of water is presented as consisting of many hierarchically related levels (the stratification model). The stratification mechanism is associated with symmetry breaking at the formation of the next level, even with minimal changes in the properties of the previous level. Such a hierarchical relationship can determine the unique physico-chemical properties of water systems and, in the future, provide a complete description of them.
Collapse
Affiliation(s)
- German O. Stepanov
- Department of General and Medical biophysics, Medical Biological Faculty, N.I. Pirogov Russian National Research Medical University, Moscow, Russia
- Research and Development Department, OOO "NPF "Materia Medica Holding", Moscow, Russia
| | - Nikita V. Penkov
- Institute of Cell Biophysics RAS, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
| | - Natalia N. Rodionova
- Research and Development Department, OOO "NPF "Materia Medica Holding", Moscow, Russia
| | - Anastasia O. Petrova
- Research and Development Department, OOO "NPF "Materia Medica Holding", Moscow, Russia
| | | | | | - Sergey A. Tarasov
- Research and Development Department, OOO "NPF "Materia Medica Holding", Moscow, Russia
| | - Vsevolod A. Tverdislov
- Department of Biophysics Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander V. Uvarov
- Department of Molecular Processes and Extreme States of Matter, Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Foudas AW, Kyzas GZ, Metaxa ZS, Mitropoulos AC. The effect of nanobubbles on Langmuir-Blodgett films. J Colloid Interface Sci 2024; 669:327-335. [PMID: 38718586 DOI: 10.1016/j.jcis.2024.04.233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/27/2024]
Abstract
Nanobubbles (NBs) are classified in two distinct categories: surface and bulk. Surface NBs are readily observed using atomic force microscopy (AFM), while the existence of bulk NBs has been a subject of debate, conflicting with the diffusion theory's predictions. Current methodologies for identifying bulk NBs yield inconclusive results. In this study, Langmuir Blodgett (LB) technique and AFM, are utilized to visualize NB imprints on anionic, cationic and zwitterionic lipid films deposited on glass-slide substrates. Our analysis of Langmuir monolayers compression isotherms reveals the impact of bulk NBs on lipid monolayer development. AFM scans of the deposited lipid films consistently show NB imprints. Notably, cationic and zwitterionic film depositions exhibit NB formations from the 1st layer, whereas in anionic films, these formations are observed only after the 3rd layer. These results suggest that the origin of these imprinted formations may be attributed to bulk NBs.
Collapse
Affiliation(s)
- Anastasios W Foudas
- Hephaestus Laboratory, Department of Chemistry, School of Science, Democritus University of Thrace, Kavala, Greece.
| | - George Z Kyzas
- Hephaestus Laboratory, Department of Chemistry, School of Science, Democritus University of Thrace, Kavala, Greece.
| | - Zoi S Metaxa
- Hephaestus Laboratory, Department of Chemistry, School of Science, Democritus University of Thrace, Kavala, Greece.
| | - Athanasios C Mitropoulos
- Hephaestus Laboratory, Department of Chemistry, School of Science, Democritus University of Thrace, Kavala, Greece.
| |
Collapse
|
4
|
Don E, Zakharova S, Yaroshenko S, Petrova A, Tarasov S. Biological Medicines Prepared Using Vibration Processing Are Able to Influence Their Targets Without Direct Contact With Them. Dose Response 2024; 22:15593258241284704. [PMID: 39351077 PMCID: PMC11440525 DOI: 10.1177/15593258241284704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/12/2024] [Accepted: 08/20/2024] [Indexed: 10/04/2024] Open
Abstract
Recently, there has been a radical change in understanding of the nature of drugs based on highly diluted solutions. It has been established that their activity does not depend on the content of the original substance in dilutions, but is a consequence of the technological processing (TP) of dilutions with vibration, which accompanies each dilution during the preparation of solutions and, among others, leads to the formation of nanoparticles with certain properties. Repeated vibration treatment leads to the appearance of modifying activity that is absent in the original substance, and these effects of TP solutions can be exerted without direct contact with their targets, which clearly indicates the physical nature of the TP solution's activity. In the framework of this article, a statistically significant effect of TP antibodies to the insulin receptor on glucose consumption by CHO cells both with and without contact exposure, as compared with control (P < 0.05) was shown in the vast majority of the experiments. The obtained results shed light on a possible source of activity of drugs based on TP antibodies, which should be associated with the applied vibration effect and can manifest itself both with contact exposure and without it.
Collapse
Affiliation(s)
- Elena Don
- R&D Department, OOO «NPF «Materia Medica Holding», Moscow, Russian Federation
| | - Svetlana Zakharova
- R&D Department, OOO «NPF «Materia Medica Holding», Moscow, Russian Federation
| | - Sabina Yaroshenko
- R&D Department, OOO «NPF «Materia Medica Holding», Moscow, Russian Federation
| | - Anastasia Petrova
- R&D Department, OOO «NPF «Materia Medica Holding», Moscow, Russian Federation
| | - Sergey Tarasov
- R&D Department, OOO «NPF «Materia Medica Holding», Moscow, Russian Federation
- Laboratory of Physiologically Active Substances, Federal State Budgetary Scientific Institute of General Pathology and Pathophysiology, Moscow, Russian Federation
| |
Collapse
|
5
|
Yadav G, Nirmalkar N, Ohl CD. Electrochemically reactive colloidal nanobubbles by water splitting. J Colloid Interface Sci 2024; 663:518-531. [PMID: 38422977 DOI: 10.1016/j.jcis.2024.02.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
HYPOTHESIS The existing literature reports have conflicting views on reactive oxygen species (ROS) generation by bulk nanobubbles. Consequently, we propose the hypothesis that (i) ROS may be generated during the process of nanobubble generation through water splitting, and (ii) bulk nanobubbles possess electrochemical reactivity, which could potentially lead to continuous ROS generation even after the cessation of nanobubble production. EXPERIMENTS A comprehensive set of experiments was conducted to generate nanobubbles in pure water using the water-splitting method. The primary aims of this study are as follows: (i) nanobubble generation by electrolysis and its characterization; (ii) to provide conclusive evidence that the nano-entities are indeed nanobubbles; (iii) to quantify the production of reactive oxygen species during the process of nanobubble generation and (iv) to establish evidence for the presence of electrochemically reactive nanobubbles. The findings of our experiment suggest that bulk nanobubbles possess the ability to generate reactive oxygen species (ROS) during the process of nanobubble nucleation. Additionally, our results indicate that bulk nanobubbles are electrochemically reactive after the cessation of nanobubble production. The electron spin spectroscopy (ESR) response and degradation of the dye compound over time confirm the electrochemical reactivity of bulk nanobubbles.
Collapse
Affiliation(s)
- Gaurav Yadav
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| | - Neelkanth Nirmalkar
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India.
| | - Claus-Dieter Ohl
- Otto von Guerricke University, Institute for Physics, Universitätsplatz, Magdeburg, 39106, Germany
| |
Collapse
|
6
|
Kouvalakidou SL, Varoutoglou A, Alibrahim KA, Alodhayb AN, Mitropoulos AC, Kyzas GZ. Batch adsorption study in liquid phase under agitation, rotation, and nanobubbles: comparisons in a multi-parametric study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114032-114043. [PMID: 37855962 PMCID: PMC10663206 DOI: 10.1007/s11356-023-30342-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
Concern for environmental protection has increased throughout the years from a global perspective. To date, the predominance of adsorption as treatment technique in environmental chemistry remains unchallenged. Moreover, the scientific attention for investigating nanobubbles due to their unique properties has turned the search for their application in environmental processes with special emphasis on water treatment. This study is aimed at investigating the effect of rotation on batch adsorption process using commercial activated carbon as adsorbent material, compared with the widely used method of agitation. As liquid medium, deionized water and deionized water enhanced with nanobubbles (of air) were used. The wastewater was simulated by dissolving a common dye as model pollutant, methylene blue, at concentration of 300 mg/L in the tested liquid. The results indicated that the utilization of nanobubbles resulted in an improvement on adsorption rate, compared to the corresponding values of deionized water solutions. These results may lead to promising applications in the future, since just 1 h of operation increases the water purification and thus provides a simply applied, cost-effective, and rapid alternative.
Collapse
Affiliation(s)
- Sofia L Kouvalakidou
- Hephaestus Laboratory, Department of Chemistry, International Hellenic University, GR-65404, Kavala, Greece
| | - Athanasios Varoutoglou
- Hephaestus Laboratory, Department of Chemistry, International Hellenic University, GR-65404, Kavala, Greece
| | - Khuloud A Alibrahim
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Abdullah N Alodhayb
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Athanasios C Mitropoulos
- Hephaestus Laboratory, Department of Chemistry, International Hellenic University, GR-65404, Kavala, Greece
| | - George Z Kyzas
- Hephaestus Laboratory, Department of Chemistry, International Hellenic University, GR-65404, Kavala, Greece.
| |
Collapse
|
7
|
Jia M, Farid MU, Kharraz JA, Kumar NM, Chopra SS, Jang A, Chew J, Khanal SK, Chen G, An AK. Nanobubbles in water and wastewater treatment systems: Small bubbles making big difference. WATER RESEARCH 2023; 245:120613. [PMID: 37738940 DOI: 10.1016/j.watres.2023.120613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/22/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023]
Abstract
Since the discovery of nanobubbles (NBs) in 1994, NBs have been attracting growing attention for their fascinating properties and have been studied for application in various environmental fields, including water and wastewater treatment. However, despite the intensive research efforts on NBs' fundamental properties, especially in the past five years, controversies and disagreements in the published literature have hindered their practical implementation. So far, reviews of NB research have mainly focused on NBs' role in specific treatment processes or general applications, highlighting proof-of-concept and success stories primarily at the laboratory scale. As such, there lacks a rigorous review that authenticates NBs' potential beyond the bench scale. This review aims to provide a comprehensive and up-to-date analysis of the recent progress in NB research in the field of water and wastewater treatment at different scales, along with identifying and discussing the challenges and prospects of the technology. Herein, we systematically analyze (1) the fundamental properties of NBs and their relevancy to water treatment processes, (2) recent advances in NB applications for various treatment processes beyond the lab scale, including over 20 pilot and full-scale case studies, (3) a preliminary economic consideration of NB-integrated treatment processes (the case of NB-flotation), and (4) existing controversies in NBs research and the outlook for future research. This review is organized with the aim to provide readers with a step-by-step understanding of the subject matter while highlighting key insights as well as knowledge gaps requiring research to advance the use of NBs in the wastewater treatment industry.
Collapse
Affiliation(s)
- Mingyi Jia
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region.
| | - Jehad A Kharraz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region; Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE
| | - Nallapaneni Manoj Kumar
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region; Center for Circular Supplies, HICCER - Hariterde International Council of Circular Economy Research, Palakkad, Kerala 678631, India
| | - Shauhrat S Chopra
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Am Jang
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - John Chew
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Manoa, 1955 East-West Road, Honolulu, HI 96822, United States
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
8
|
Montazeri SM, Kalogerakis N, Kolliopoulos G. Effect of chemical species and temperature on the stability of air nanobubbles. Sci Rep 2023; 13:16716. [PMID: 37794127 PMCID: PMC10550960 DOI: 10.1038/s41598-023-43803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023] Open
Abstract
The colloidal stability of air nanobubbles (NBs) was studied at different temperatures (0-30 °C) and in the presence of sulfates, typically found in mining effluents, in a wide range of Na2SO4 concentrations (0.001 to 1 M), along with the effect of surfactants (sodium dodecyl sulfate), chloride salts (NaCl), and acid/base reagents at a pH range from 4 to 9. Using a nanobubble generator based on hydrodynamic cavitation, 1.2 × 108 bubbles/mL with a typical radius of 84.66 ± 7.88 nm were generated in deionized water. Multiple evidence is provided to prove their presence in suspension, including the Tyndall effect, dynamic light scattering, and nanoparticle size analysis. Zeta potential measurements revealed that NBs are negatively charged even after two months (from - 19.48 ± 1.89 to - 10.13 ± 1.71 mV), suggesting that their stability is due to the negative charge on their surface. NBs were found to be more stable in alkaline solutions compared to acidic ones. Further, low amounts of both chloride and sulfate dissolved salts led to a reduction of the size of NBs. However, when high amounts of dissolved salts are present, NBs are more likely to coalesce, and their size to be increased. Finally, the investigation of the stability of air NBs at low temperatures revealed a non-monotonic relationship between temperature and NBs upon considering water self-ionization and ion mobility. This research aims to open a new frontier towards the application of the highly innovative NBs technology on the treatment of mining, mineral, and metal processing effluents, which are challenging aqueous solutions containing chloride and sulfate species.
Collapse
Affiliation(s)
- Seyed Mohammad Montazeri
- Department of Mining, Metallurgical, and Materials Engineering, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Nicolas Kalogerakis
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100, Chania, Greece
| | - Georgios Kolliopoulos
- Department of Mining, Metallurgical, and Materials Engineering, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
9
|
Wei W. Hofmeister Effects Shine in Nanoscience. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302057. [PMID: 37211703 PMCID: PMC10401134 DOI: 10.1002/advs.202302057] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Hofmeister effects play a crucial role in nanoscience by affecting the physicochemical and biochemical processes. Thus far, numerous wonderful applications from various aspects of nanoscience have been developed based on the mechanism of Hofmeister effects, such as hydrogel/aerogel engineering, battery design, nanosynthesis, nanomotors, ion sensors, supramolecular chemistry, colloid and interface science, nanomedicine, and transport behaviors, etc. In this review, for the first time, the progress of applying Hofmeister effects is systematically introduced and summarized in nanoscience. It is aimed to provide a comprehensive guideline for future researchers to design more useful Hofmeister effects-based nanosystems.
Collapse
Affiliation(s)
- Weichen Wei
- Department of NanoengineeringUniversity of California San DiegoLa JollaSan DiegoCA92093USA
| |
Collapse
|
10
|
Ivanov YD, Shumov ID, Kozlov AF, Ershova MO, Valueva AA, Ivanova IA, Tatur VY, Lukyanitsa AA, Ivanova ND, Ziborov VS. Stopped Flow of Glycerol Induces the Enhancement of Adsorption and Aggregation of HRP on Mica. MICROMACHINES 2023; 14:mi14051024. [PMID: 37241647 DOI: 10.3390/mi14051024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023]
Abstract
Glycerol is a usable component of heat-transfer fluids, and is thus suitable for the use in microchannel-based heat exchangers in biosensors and microelectronic devices. The flow of a fluid can lead to the generation of electromagnetic fields, which can affect enzymes. Herein, by means of atomic force microscopy (AFM) and spectrophotometry, a long-term effect of stopped flow of glycerol through a coiled heat exchanger on horseradish peroxidase (HRP) has been revealed. Samples of buffered HRP solution were incubated near either the inlet or the outlet sections of the heat exchanger after stopping the flow. It has been found that both the enzyme aggregation state and the number of mica-adsorbed HRP particles increase after such an incubation for 40 min. Moreover, the enzymatic activity of the enzyme incubated near the inlet section has been found to increase in comparison with that of the control sample, while the activity of the enzyme incubated near the outlet section remained unaffected. Our results can find application in the development of biosensors and bioreactors, in which flow-based heat exchangers are employed.
Collapse
Affiliation(s)
- Yuri D Ivanov
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10 Build. 8, Moscow 119121, Russia
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow 125412, Russia
| | - Ivan D Shumov
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10 Build. 8, Moscow 119121, Russia
| | - Andrey F Kozlov
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10 Build. 8, Moscow 119121, Russia
| | - Maria O Ershova
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10 Build. 8, Moscow 119121, Russia
| | - Anastasia A Valueva
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10 Build. 8, Moscow 119121, Russia
| | - Irina A Ivanova
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10 Build. 8, Moscow 119121, Russia
| | - Vadim Y Tatur
- Foundation of Perspective Technologies and Novations, Moscow 115682, Russia
| | - Andrei A Lukyanitsa
- Foundation of Perspective Technologies and Novations, Moscow 115682, Russia
- Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow 119991, Russia
| | - Nina D Ivanova
- Foundation of Perspective Technologies and Novations, Moscow 115682, Russia
- Moscow State Academy of Veterinary Medicine and Biotechnology Named after Skryabin, Moscow 109472, Russia
| | - Vadim S Ziborov
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10 Build. 8, Moscow 119121, Russia
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow 125412, Russia
| |
Collapse
|
11
|
Ninham BW, Battye MJ, Bolotskova PN, Gerasimov RY, Kozlov VA, Bunkin NF. Nafion: New and Old Insights into Structure and Function. Polymers (Basel) 2023; 15:2214. [PMID: 37177360 PMCID: PMC10181149 DOI: 10.3390/polym15092214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
The work reports a number of results on the dynamics of swelling and inferred nanostructure of the ion-exchange polymer membrane Nafion in different aqueous solutions. The techniques used were photoluminescent and Fourier transform IR (FTIR) spectroscopy. The centers of photoluminescence were identified as the sulfonic groups localized at the ends of the perfluorovinyl ether (Teflon) groups that form the backbone of Nafion. Changes in deuterium content of water induced unexpected results revealed in the process of polymer swelling. In these experiments, deionized (DI) water (deuterium content 157 ppm) and deuterium depleted water (DDW) with deuterium content 3 PPM, were investigated. The strong hydration of sulfonic groups involves a competition between ortho- and para-magnetic forms of a water molecule. Deuterium, as it seems, adsorbs competitively on the sulfonic groups and thus can change the geometry of the sulfate bonds. With photoluminescent spectroscopy experiments, this is reflected in the unwinding of the polymer fibers into the bulk of the adjoining water on swelling. The unwound fibers do not tear off from the polymer substrate. They form a vastly extended "brush" type structure normal to the membrane surface. This may have implications for specificity of ion transport in biology, where the ubiquitous glycocalyx of cells and tissues invariably involves highly sulfated polymers such asheparan and chondroitin sulfate.
Collapse
Affiliation(s)
- Barry W. Ninham
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 2600, Australia
| | | | - Polina N. Bolotskova
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya Str. 5, Moscow 105005, Russia
| | - Rostislav Yu. Gerasimov
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya Str. 5, Moscow 105005, Russia
| | - Valery A. Kozlov
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya Str. 5, Moscow 105005, Russia
| | - Nikolai F. Bunkin
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya Str. 5, Moscow 105005, Russia
| |
Collapse
|
12
|
Ninham B, Reines B, Battye M, Thomas P. Pulmonary surfactant and COVID-19: A new synthesis. QRB DISCOVERY 2022; 3:e6. [PMID: 37564950 PMCID: PMC10411325 DOI: 10.1017/qrd.2022.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/24/2022] [Accepted: 04/05/2022] [Indexed: 11/06/2022] Open
Abstract
Chapter 1 COVID-19 pathogenesis poses paradoxes difficult to explain with traditional physiology. For instance, since type II pneumocytes are considered the primary cellular target of SARS-CoV-2; as these produce pulmonary surfactant (PS), the possibility that insufficient PS plays a role in COVID-19 pathogenesis has been raised. However, the opposite of predicted high alveolar surface tension is found in many early COVID-19 patients: paradoxically normal lung volumes and high compliance occur, with profound hypoxemia. That 'COVID anomaly' was quickly rationalised by invoking traditional vascular mechanisms-mainly because of surprisingly preserved alveolar surface in early hypoxemic cases. However, that quick rejection of alveolar damage only occurred because the actual mechanism of gas exchange has long been presumed to be non-problematic, due to diffusion through the alveolar surface. On the contrary, we provide physical chemical evidence that gas exchange occurs by an process of expansion and contraction of the three-dimensional structures of PS and its associated proteins. This view explains anomalous observations from the level of cryo-TEM to whole individuals. It encompasses results from premature infants to the deepest diving seals. Once understood, the COVID anomaly dissolves and is straightforwardly explained as covert viral damage to the 3D structure of PS, with direct treatment implications. As a natural experiment, the SARS-CoV-2 virus itself has helped us to simplify and clarify not only the nature of dyspnea and its relationship to pulmonary compliance, but also the fine detail of the PS including such features as water channels which had heretofore been entirely unexpected. Chapter 2 For a long time, physical, colloid and surface chemistry have not intersected with physiology and cell biology as much as we might have hoped. The reasons are starting to become clear. The discipline of physical chemistry suffered from serious unrecognised omissions that rendered it ineffective. These foundational defects included omission of specific ion molecular forces and hydration effects. The discipline lacked a predictive theory of self-assembly of lipids and proteins. Worse, theory omitted any role for dissolved gases, O2, N2, CO2, and their existence as stable nanobubbles above physiological salt concentration. Recent developments have gone some way to explaining the foam-like lung surfactant structures and function. It delivers O2/N2 as nanobubbles, and efflux of CO2, and H2O nanobubbles at the alveolar surface. Knowledge of pulmonary surfactant structure allows an explanation of the mechanism of corona virus entry, and differences in infectivity of different variants. CO2 nanobubbles, resulting from metabolism passing through the molecular frit provided by the glycocalyx of venous tissue, forms the previously unexplained foam which is the endothelial surface layer. CO2 nanobubbles turn out to be lethal to viruses, providing a plausible explanation for the origin of 'Long COVID'. Circulating nanobubbles, stable above physiological 0.17 M salt drive various enzyme-like activities and chemical reactions. Awareness of the microstructure of Pulmonary Surfactant and that nanobubbles of (O2/N2) and CO2 are integral to respiratory and circulatory physiology provides new insights to the COVID-19 and other pathogen activity.
Collapse
Affiliation(s)
- Barry Ninham
- Materials Physics (formerly Department of Applied Mathematics), Research School of Physics, Australian National University, Canberra, ACT2600, Australia
- School of Science, University of New South Wales, Northcott Drive, Campbell, Canberra, ACT2612, Australia
| | - Brandon Reines
- Materials Physics (formerly Department of Applied Mathematics), Research School of Physics, Australian National University, Canberra, ACT2600, Australia
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, 5607 Baum Blvd, Pittsburgh, PA15206, USA
| | | | - Paul Thomas
- Materials Physics (formerly Department of Applied Mathematics), Research School of Physics, Australian National University, Canberra, ACT2600, Australia
| |
Collapse
|
13
|
Okamoto R, Koga K. Theory of Gas Solubility and Hydrophobic Interaction in Aqueous Electrolyte Solutions. J Phys Chem B 2021; 125:12820-12831. [PMID: 34756051 DOI: 10.1021/acs.jpcb.1c08050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ion-specific effects on the solubility of nonpolar solutes and on the solute-solute hydrophobic interaction in aqueous electrolyte solutions are studied on the basis of a continuum theory that incorporates the excluded volume of the molecules using the four-component (water, cations, anions, and solutes) Boublı́k-Mansoori-Carnahan-Starling-Leland model and ion hydration (electrostriction) using the Born model. We examine how the ordering of ions in the salt effect on the solubility as measured by the Sechenov coefficient KS changes with varying sizes of ions and solutes. Our calculation reproduces the general trend of experimentally measured KS and also provides insight into the irregular behavior of KS for lithium ion. The correlation between KS and the salt effect on the hydrophobic interaction that has been pointed out earlier is accounted for by an explicit connection between KS and the salt-enhanced-association coefficient CI in the expansion of the second osmotic virial coefficient B(ns) = B(0) - CIns + ··· in powers of the salt density ns at fixed pressure and temperature. The quadratic relation CI≈KS2/4 is derived for ions and solutes that are not very large.
Collapse
Affiliation(s)
- Ryuichi Okamoto
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Kenichiro Koga
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
14
|
Li T, Cui Z, Sun J, Jiang C, Li G. Generation of Bulk Nanobubbles by Self-Developed Venturi-Type Circulation Hydrodynamic Cavitation Device. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12952-12960. [PMID: 34714096 DOI: 10.1021/acs.langmuir.1c02010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bulk nanobubbles (BNBs) have attracted substantial interest from academia and industry owing to their peculiar properties and extensive potential applications. However, a scalable engineering method needs to be developed. Herein, we developed a nanobubble generator based on venturi-type recirculating hydrodynamic cavitation. The existence of nanobubbles produced by our generator was confirmed using physicochemical test methods, including the Tyndall effect, multiple freeze-thaw degassing experiments, and trace metal analysis. Subsequently, the effects of different operating parameters (circulation time and operating pressure) on bulk nanobubble production and properties, as well as their stability, were investigated. The results suggest that the characteristics of BNBs varied with the circulation time (5-20 min) and operating pressure (2-5 bar). However, all the particle size distribution of BNBs had a bimodal distribution with a mean diameter of 180-210 nm for the different circulation time and operating pressures. For example, by increasing the circulation time from 5 to 20 min, the peak value of size distribution decreased from 333/122 nm to 218/52 nm, and the average sample scattering signal count rate (Avg. Count Rate) increased from 133 to 303 Kcps. The evaluation of the stability of the BNBs formed for the circulation time of 15 min and the operating pressure of 3 bar showed that they could continue existence and stability in the suspension for 72 h. The study results might provide a valuable method for further investigation of industrial applications of venturi-type nanobubble generators.
Collapse
Affiliation(s)
- Ting Li
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Zhao Cui
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Jing Sun
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Chang Jiang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Guangyue Li
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| |
Collapse
|
15
|
Gao Z, Wu W, Sun W, Wang B. Understanding the Stabilization of a Bulk Nanobubble: A Molecular Dynamics Analysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11281-11291. [PMID: 34520212 DOI: 10.1021/acs.langmuir.1c01796] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bulk nanobubbles (NBs) have received considerable attention because of their extensive potential applications, such as in ultrasound imaging and water management. Although multiple types of experimental evidence have supported the existence and stabilization of bulk NBs, the underlying mechanism remains unclear. This study numerically investigates the bulk NB stabilization with molecular dynamics (MD) methods: the all-atom (AA) MD simulation is used for NBs of several nanometers diameter; the coarse-grained (CG) MD simulation is for the NBs of about 100 nm. The NB properties are statistically obtained and analyzed, including the inner density, inner pressure, surface charge, interfacial hydrogen bond (HB), and gaseous diffusion. The results show that the gas inside an NB has ultrahigh density (tens of kilograms per cubic meter). A double-layer surface charge exists on the NB. The inner/outer layer is positively/negatively charged, and the electrostatic stress can counteract part of the surface tension. In addition, the interfacial HB is weakened by the interaction between gas and water molecules, causing less surface tension. The above features are beneficial to NB stabilization. The NB equilibrium radii solved by the interfacial mechanical equilibrium equation agree with the MD results, indicating that this equation can describe the force balance of an NB as small as several nanometers. Besides, supersaturation appears to be necessary for the NB thermodynamic equilibrium. Based on Henry's law and the ideal gas law, the theoretical analysis suggests that the stability of the NB thermodynamic equilibrium is conditional: the number of gas molecules in NBs should be more than half that dissolved in liquid. This study unravels a stabilized bulk NB's properties and discusses the NB equilibrium and stabilization mechanism, which will advance the understanding and application of bulk NBs.
Collapse
Affiliation(s)
- Zhan Gao
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Wangxia Wu
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Weitao Sun
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Bing Wang
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
16
|
Dynamics of Polymer Membrane Swelling in Aqueous Suspension of Amino-Acids with Different Isotopic Composition; Photoluminescence Spectroscopy Experiments. Polymers (Basel) 2021; 13:polym13162635. [PMID: 34451175 PMCID: PMC8401552 DOI: 10.3390/polym13162635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 11/29/2022] Open
Abstract
In photoluminescence spectroscopy experiments, the interaction mode of the polymer membrane Nafion with various amino-acids was studied. The experiments were performed with physiological NaCl solutions prepared in an ordinary water (the deuterium content is 157 ± 1 ppm) and also in deuterium-depleted water (the deuterium content is ≤1 ppm). These studies were motivated by the fact that when Nafion swells in ordinary water, the polymer fibers are effectively “unwound” into the liquid bulk, while in the case of deuterium-depleted water, the unwinding effect is missing. In addition, polymer fibers, unwound into the liquid bulk, are similar to the extracellular matrix (glycocalyx) on the cell membrane surface. It is of interest to clarify the role of unwound fibers in the interaction of amino-acids with the polymer membrane surface. It turned out that the interaction of amino-acids with the membrane surface gives rise to the effects of quenching luminescence from the luminescence centers. We first observed various dynamic regimes arising upon swelling the Nafion membrane in amino-acid suspension with various isotopic content, including triggering effects, which is similar to the processes in the logical gates of computers.
Collapse
|
17
|
Li M, Ma X, Eisener J, Pfeiffer P, Ohl CD, Sun C. How bulk nanobubbles are stable over a wide range of temperatures. J Colloid Interface Sci 2021; 596:184-198. [DOI: 10.1016/j.jcis.2021.03.064] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/04/2021] [Accepted: 03/11/2021] [Indexed: 11/28/2022]
|
18
|
Long-Term Effect of Low-Frequency Electromagnetic Irradiation in Water and Isotonic Aqueous Solutions as Studied by Photoluminescence from Polymer Membrane. Polymers (Basel) 2021; 13:polym13091443. [PMID: 33947044 PMCID: PMC8124172 DOI: 10.3390/polym13091443] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/18/2021] [Accepted: 04/25/2021] [Indexed: 12/16/2022] Open
Abstract
The swelling of a polymer membrane NafionTM in deionized water and isotonic NaCl and Ringer’s solutions was studied by photoluminescent spectroscopy. According to our previous studies, the surface of this membrane could be considered as a model for a cellular surface. Liquid samples, in which the membrane was soaked, were subjected to preliminary electromagnetic treatment, which consisted of irradiating these samples with electric rectangular pulses of 1 µs duration using platinum electrodes immersed in the liquid. We used a series of pulses with a repetition rate of 11–125 Hz; the pulse amplitudes were equal to 100 and 500 mV. It turned out that at certain pulse repetition rates and their amplitudes, the characteristic swelling time of the polymer membrane significantly differs from the swelling time in untreated (reference) samples. At the same time, there is no effect for certain frequencies/pulse amplitudes. The time interval between electromagnetic treatment and measurements was about 20 min. Thus, in our experiments the effects associated with the long-term relaxation of liquids on the electromagnetic processing are manifested. The effect of long-term relaxation could be associated with a slight change in the geometric characteristics of bubston clusters during electromagnetic treatment.
Collapse
|
19
|
Bunkin NF, Shkirin AV, Penkov NV, Goltayev MV, Ignatiev PS, Gudkov SV, Izmailov AY. Effect of Gas Type and Its Pressure on Nanobubble Generation. Front Chem 2021; 9:630074. [PMID: 33869139 PMCID: PMC8044797 DOI: 10.3389/fchem.2021.630074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/13/2021] [Indexed: 12/31/2022] Open
Abstract
The dependence of the volume number density of ion-stabilized gas nanobubbles (bubstons) on the type of gas and the pressure created by this gas in deionized water and saline solution has been investigated. The range of external pressures from the saturated water vapor (17 Torr) to 5 atm was studied. It turned out that the growth rate of the volume number density of bubstons is controlled by the magnitude of the molecular polarizability of dissolved gases. The highest densities of bubstons were obtained for gases whose molecules have a dipole moment. At fixed external pressure and the polarizability of gas molecules, the addition of external ions leads to a sharp increase in the content of bubstons.
Collapse
Affiliation(s)
- Nikolai F Bunkin
- Bauman Moscow State Technical University, Moscow, Russia.,Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Alexey V Shkirin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia.,National Research Nuclear University MEPhI, Moscow, Russia
| | - Nikita V Penkov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, Moscow, Russia
| | - Mikhail V Goltayev
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, Moscow, Russia
| | - Pavel S Ignatiev
- JSC "Production Association "Ural Optical and Mechanical Plant named after E.S. Yalamov" (UOMZ), Ekaterinburg, Russia
| | - Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia.,Federal State Budgetary Scientific Institution "Federal Scientific Agroengineering Center VIM"(FSAC VIM), Moscow, Russia
| | - Andrey Yu Izmailov
- Federal State Budgetary Scientific Institution "Federal Scientific Agroengineering Center VIM"(FSAC VIM), Moscow, Russia
| |
Collapse
|
20
|
Hewage SA, Kewalramani J, Meegoda JN. Stability of nanobubbles in different salts solutions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125669] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
21
|
Ninham BW, Bolotskova PN, Gudkov SV, Juraev Y, Kiryanova MS, Kozlov VA, Safronenkov RS, Shkirin AV, Uspenskaya EV, Bunkin NF. Formation of Water-Free Cavity in the Process of Nafion Swelling in a Cell of Limited Volume; Effect of Polymer Fibers Unwinding. Polymers (Basel) 2020; 12:polym12122888. [PMID: 33276553 PMCID: PMC7761572 DOI: 10.3390/polym12122888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023] Open
Abstract
When Nafion swells in water, colloidal particles are repelled from the polymer surface; this effect is called the formation exclusion zone (EZ), and the EZ size amounts to several hundred microns. However, still no one has investigated the EZ formation in a cell whose dimension is close to the EZ size. It was also shown that, upon swelling in water, Nafion fibers “unwind” into the water bulk. In the case of a cell of limited volume, unwound fibers abut against the cell windows, and water is completely pushed out from the region between the polymer and the cell window, resulting in a cavity appearance. The temporal dynamics of the collapse of this cavity was studied depending on the cell size. It is shown that the cavity formation occurs due to long-range forces between polymer strands. It turned out that this scenario depends on the isotopic composition of the water, ionic additives and water pretreatment. The role of nanobubbles in the formation and collapse of the cavity were analyzed. The results obtained allowed us to conclude that the EZ formation is precisely due to the unwinding of polymer fibers into the liquid bulk.
Collapse
Affiliation(s)
- Barry W. Ninham
- Department of Applied Mathematics, The Australian National University, Acton, ACT 2601, Australia;
| | - Polina N. Bolotskova
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya str. 5, 105005 Moscow, Russia; (P.N.B.); (M.S.K.); (V.A.K.); (R.S.S.)
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova str. 38, 119991 Moscow, Russia; (S.V.G.); (A.V.S.)
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova str. 38, 119991 Moscow, Russia; (S.V.G.); (A.V.S.)
- Department Biophysics, Lobachevsky State University of Nizhni Novgorod, Gagarina Ave., 23, 603950 Nizhni Novgorod, Russia
| | - Yulchi Juraev
- Department of Theoretical Physics and Quantum Electronics, Samarkand State University, University blv. 15, Samarkand City 140104, Uzbekistan;
| | - Mariya S. Kiryanova
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya str. 5, 105005 Moscow, Russia; (P.N.B.); (M.S.K.); (V.A.K.); (R.S.S.)
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova str. 38, 119991 Moscow, Russia; (S.V.G.); (A.V.S.)
| | - Valeriy A. Kozlov
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya str. 5, 105005 Moscow, Russia; (P.N.B.); (M.S.K.); (V.A.K.); (R.S.S.)
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova str. 38, 119991 Moscow, Russia; (S.V.G.); (A.V.S.)
| | - Roman S. Safronenkov
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya str. 5, 105005 Moscow, Russia; (P.N.B.); (M.S.K.); (V.A.K.); (R.S.S.)
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova str. 38, 119991 Moscow, Russia; (S.V.G.); (A.V.S.)
| | - Alexey V. Shkirin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova str. 38, 119991 Moscow, Russia; (S.V.G.); (A.V.S.)
| | - Elena V. Uspenskaya
- Department of Pharmaceutical and Toxicological Chemistry, RUDN University, Miklukho-Maklaya str. 6, 117198 Moscow, Russia;
| | - Nikolai F. Bunkin
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya str. 5, 105005 Moscow, Russia; (P.N.B.); (M.S.K.); (V.A.K.); (R.S.S.)
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova str. 38, 119991 Moscow, Russia; (S.V.G.); (A.V.S.)
- Correspondence:
| |
Collapse
|
22
|
Satpute PA, Earthman JC. Hydroxyl ion stabilization of bulk nanobubbles resulting from microbubble shrinkage. J Colloid Interface Sci 2020; 584:449-455. [PMID: 33091868 DOI: 10.1016/j.jcis.2020.09.100] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
HYPOTHESIS The shrinkage of microbubbles that are less than about 50 µm in diameter is a well-known phenomenon that results from the surface tension. It has also been shown recently that hydroxyl ions have an extremely strong affinity for gas-water interfaces including bubble surfaces. A theoretical model is proposed that predicts bulk nanobubble stability in water, based on a force balance that results from the shrinkage of microbubbles. This model was designed to test the hypothesis that the surface tension of a shrinking microbubble can ultimately be balanced by the repulsion of the hydroxyl ions that initially adsorb onto the microbubble surface prior to shrinking. THEORY The present model considers the forces due to ionic repulsion as microbubbles shrink under the surface tension. No special assumptions are required in the present model other than the recently reported strong affinity hydroxyl ions have to gas/water interfaces. The Debye-Hückel theory was used to determine the number of ions on the microbubble surface. FINDINGS The results of this model predict a stable balance between the surface tension and the electrostatic repulsion of hydroxyl ions for nanobubble diameters less than 1100 nm. This predicted maximum in nanobubble size is shown to be consistent with experimental findings.
Collapse
Affiliation(s)
- Pratik A Satpute
- Department of Materials Science and Engineering, University of California, Irvine, CA 92627-2585, United States
| | - James C Earthman
- Department of Materials Science and Engineering, University of California, Irvine, CA 92627-2585, United States.
| |
Collapse
|
23
|
Liu Y, Bernardi S, Widmer-Cooper A. Stability of pinned surface nanobubbles against expansion: Insights from theory and simulation. J Chem Phys 2020; 153:024704. [PMID: 32668938 DOI: 10.1063/5.0013223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
While growth and dissolution of surface nanobubbles have been widely studied in recent years, their stability under pressure changes or a temperature increase has not received the same level of scrutiny. Here, we present theoretical predictions based on classical theory for pressure and temperature thresholds (pc and Tc) at which unstable growth occurs for the case of air nanobubbles on a solid surface in water. We show that bubbles subjected to pinning have much lower pc and higher Tc compared to both unpinned and bulk bubbles of similar size, indicating that pinned bubbles can withstand a larger tensile stress (negative pressure) and higher temperatures. The values of pc and Tc obtained from many-body dissipative particle dynamics simulations of quasi-two-dimensional (quasi-2D) surface nanobubbles are consistent with the theoretical predictions, provided that the lateral expansion during growth is taken into account. This suggests that the modified classical thermodynamic description is valid for pinned bubbles as small as several nanometers. While some discrepancies still exist between our theoretical results and previous experiments, further experimental data are needed before a comprehensive understanding of the stability of surface nanobubbles can be achieved.
Collapse
Affiliation(s)
- Yawei Liu
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Stefano Bernardi
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Asaph Widmer-Cooper
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
24
|
Bunkin NF, Shkirin AV, Ninham BW, Chirikov SN, Chaikov LL, Penkov NV, Kozlov VA, Gudkov SV. Shaking-Induced Aggregation and Flotation in Immunoglobulin Dispersions: Differences between Water and Water-Ethanol Mixtures. ACS OMEGA 2020; 5:14689-14701. [PMID: 32596606 PMCID: PMC7315612 DOI: 10.1021/acsomega.0c01444] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/03/2020] [Indexed: 05/25/2023]
Abstract
Structural characterization by three complementary methods of laser diagnostics (dynamic light scattering, laser phase microscopy, and laser polarimetric scatterometry) has established that shaking of immunoglobulin G (IgG) dispersions in water and ethanol-water mixtures (36.7 vol %) results in two effects. First, it intensifies the aggregation of IgG macromolecules. Second, it generates bubbles with a size range that is different in each solvent. The aggregation is enhanced in ethanol-water mixtures because of IgG denaturation. IgG aggregates have a size of ∼300 nm in water and ∼900 nm in ethanol-water mixtures. The flotation of IgG is much more efficient in water. This can be explained by a better adsorption of IgG particles (molecules and aggregates) on bubbles in water as compared to ethanol-water mixtures. Bulk nanobubbles and their association with IgG aggregates were visualized by laser phase microscopy in water but were not detected in ethanol-water mixtures. Therefore, the nanobubble flotation mechanism for IgG aggregates acting in water is not feasible for ethanol-water mixtures.
Collapse
Affiliation(s)
- Nikolai F. Bunkin
- Bauman
Moscow State Technical University, 2-nd Baumanskaya str. 5, Moscow 105005, Russia
- Prokhorov
General Physics Institute of the Russian Academy of Sciences, Vavilova str. 38, Moscow 119991, Russia
| | - Alexey V. Shkirin
- Prokhorov
General Physics Institute of the Russian Academy of Sciences, Vavilova str. 38, Moscow 119991, Russia
- National
Research Nuclear University MEPhI, Kashirskoe sh. 31, Moscow 115409, Russia
| | - Barry W. Ninham
- The
Australian National University, Acton, Canberra ACT 2600, Australia
| | - Sergey N. Chirikov
- National
Research Nuclear University MEPhI, Kashirskoe sh. 31, Moscow 115409, Russia
| | - Leonid L. Chaikov
- Lebedev
Physics Institute of the Russian Academy of Sciences, Leninskiy pr. 53, Moscow 119991, Russia
| | - Nikita V. Penkov
- Federal Research
Center “Pushchino Scientific Center for Biological Research
of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, Institutskaya str. 3, Pushchino 142290, Moscow
region, Russia
| | - Valeriy A. Kozlov
- Bauman
Moscow State Technical University, 2-nd Baumanskaya str. 5, Moscow 105005, Russia
- Prokhorov
General Physics Institute of the Russian Academy of Sciences, Vavilova str. 38, Moscow 119991, Russia
| | - Sergey V. Gudkov
- Prokhorov
General Physics Institute of the Russian Academy of Sciences, Vavilova str. 38, Moscow 119991, Russia
| |
Collapse
|
25
|
Zhang H, Guo Z, Zhang X. Surface enrichment of ions leads to the stability of bulk nanobubbles. SOFT MATTER 2020; 16:5470-5477. [PMID: 32484196 DOI: 10.1039/d0sm00116c] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Numerous experiments have shown that bulk nanobubble suspensions are often characterized by a high magnitude of zeta potential. However, the underlying physical mechanism of how the bulk nanobubbles can stably exist has remained unclear so far. In this paper, based on theoretical analysis, we report a stability mechanism for charged bulk nanobubbles. The strong affinity of negative charges for the nanobubble interface causes charge enrichment, and the resulting electric field energy gives rise to a local minimum for the free energy cost of bubble formation, leading to thermodynamic metastability of the charged nanobubbles. The excess surface charges mechanically generate a size-dependent force, which balances the Laplace pressure and acts as a restoring force when a nanobubble is thermodynamically perturbed away from its equilibrium state. With this negative feedback mechanism, we discuss the nanobubble stability as a function of surface charge and gas supersaturation. We also compare our theoretical prediction with recent experimental observations, and a good agreement is found. This mechanism provides new fundamental insights into the origin of the unexplained stability of bulk nanobubbles.
Collapse
Affiliation(s)
- Hongguang Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | | | | |
Collapse
|
26
|
Explosion of Microbubbles Generated by the Alternating Polarity Water Electrolysis. ENERGIES 2019. [DOI: 10.3390/en13010020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Water electrolysis with a fast change of polarity generates a high concentration of bulk nanobubbles containing H 2 and O 2 gases. When this concentration reaches a critical value, a microbubble pops up, which is terminated quickly in an explosion process. In this paper, we provide experimental information on the phenomenon concentrating on the dynamics of exploding microbubble observed from the top and from the side. An initial bubble with a size of 150 μ m expands to a maximum size of 1200 μ m for 150 μ s and then shrinks in the cavitation process. The sound produced by the event is coming from two sources separated in time: exploding bubble and cavitating bubble. The observed dynamics supports expansion of the bubble with steam but not with H 2 and O 2 mixture. A qualitative model of this puzzling phenomenon proposed earlier is refined. It is demonstrated that the pressure and temperature in the initial bubble can be evaluated using only the energy conservation law for which the driving energy is the energy of the combusted gas. The temperature in the bubble reaches 200 ∘ C that shows that the process cannot be ignited by standard combustion, but the surface-assisted spontaneous combustion agrees well with the observations and theoretical estimates. The pressure in the microbubble varies with the size of the merging nanobubbles and is evaluated as 10–20 bar. Large pressure difference between the bubble and liquid drives the bubble expansion, and is the source of the sound produced by the process. Exploding microbubbles are a promising principle to drive fast and strong micropumps for microfluidic and other applications.
Collapse
|
27
|
Structure and function of the endothelial surface layer: unraveling the nanoarchitecture of biological surfaces. Q Rev Biophys 2019; 52:e13. [PMID: 31771669 DOI: 10.1017/s0033583519000118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Among the unsolved mysteries of modern biology is the nature of a lining of blood vessels called the 'endothelial surface layer' or ESL. In venous micro-vessels, it is half a micron in thickness. The ESL is 10 times thicker than the endothelial glycocalyx (eGC) at its base, has been presumed to be comprised mainly of water, yet is rigid enough to exclude red blood cells. How is this possible? Developments in physical chemistry suggest that the venous ESL is actually comprised of nanobubbles of CO2, generated from tissue metabolism, in a foam nucleated in the eGC. For arteries, the ESL is dominated by nanobubbles of O2 and N2 from inspired air. The bubbles of the foam are separated and stabilized by thin layers of serum electrolyte and proteins, and a palisade of charged polymer strands of the eGC. The ESL seems to be a respiratory organ contiguous with the flowing blood, an extension of, and a 'lung' in miniature. This interpretation may have far-reaching consequences for physiology.
Collapse
|
28
|
Generation and Stability of Size-Adjustable Bulk Nanobubbles Based on Periodic Pressure Change. Sci Rep 2019; 9:1118. [PMID: 30718777 PMCID: PMC6362149 DOI: 10.1038/s41598-018-38066-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/18/2018] [Indexed: 01/27/2023] Open
Abstract
Recently, bulk nanobubbles have attracted intensive attention due to the unique physicochemical properties and important potential applications in various fields. In this study, periodic pressure change was introduced to generate bulk nanobubbles. N2 nanobubbles with bimodal distribution and excellent stabilization were fabricated in nitrogen-saturated water solution. O2 and CO2 nanobubbles have also been created using this method and both have good stability. The influence of the action time of periodic pressure change on the generated N2 nanobubbles size was studied. It was interestingly found that, the size of the formed nanobubbles decreases with the increase of action time under constant frequency, which could be explained by the difference in the shrinkage and growth rate under different pressure conditions, thereby size-adjustable nanobubbles can be formed by regulating operating time. This study might provide valuable methodology for further investigations about properties and performances of bulk nanobubbles.
Collapse
|
29
|
Nirmalkar N, Pacek AW, Barigou M. Interpreting the interfacial and colloidal stability of bulk nanobubbles. SOFT MATTER 2018; 14:9643-9656. [PMID: 30457138 DOI: 10.1039/c8sm01949e] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This paper elucidates parts of the mystery behind the interfacial and colloidal stability of the novel bubble system of bulk nanobubbles. Stable bulk nanobubble suspensions have been generated in pure water using hydrodynamic cavitation in a high-pressure microfluidic device. The effects of pH adjustment, addition of different types of surfactant molecules and salts on the nanobubble suspensions have been studied. Results show that nanobubble interfaces in pure water are negatively charged, suggesting the formation of an electric double layer around the nanobubbles. It is presumed that the external electrostatic pressure created by the charged nanobubble interface, balances the internal Laplace pressure; therefore, no net diffusion of gas occurs at equilibrium and the nanobubbles are stable. Such stability increases with increasing alkalinity of the suspending medium. The addition of mono- and multi-valent salts leads to the screening of the electric double layer, hence, destabilizing the nanobubbles. Different surfactant molecules (non-ionic, anionic, cationic) affect the stability of bulk nanobubbles in different ways. Calculations based on the DLVO theory predict a stable colloidal system for bulk nanobubbles in pure water and this could be a further reason for their observed longevity. All in all, in pure water, the long-term stability of bulk nanobubbles seems to be caused by a combination of ion-stabilisation of their interface against dissolution and colloidal stability of the suspension.
Collapse
Affiliation(s)
- N Nirmalkar
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | |
Collapse
|
30
|
Khrapak SA, Kryuchkov NP, Mistryukova LA, Khrapak AG, Yurchenko SO. Collective modes of two-dimensional classical Coulomb fluids. J Chem Phys 2018; 149:134114. [DOI: 10.1063/1.5050708] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Sergey A. Khrapak
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 82234 Weßling, Germany
| | | | | | - Alexey G. Khrapak
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| | | |
Collapse
|
31
|
Eklund F, Swenson J. Stable Air Nanobubbles in Water: the Importance of Organic Contaminants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11003-11009. [PMID: 30198268 DOI: 10.1021/acs.langmuir.8b01724] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanobubbles, surprisingly stable submicrometer gas bubbles in water, appear to be common in water and biological fluids and are of great interest in technical applications ranging from ultrasound contrast agents to flotation in the mining industry. Nanobubbles on surfaces have been more researched than freely floating bulk nanobubbles, and the reason for their stability appears to be better explained. The stability of bulk nanobubbles is less well explained, several theories exist, and even their existence is sometimes questioned. In the present study, an attempt was made to generate nanobubbles through hydrodynamic cavitation as well as through vigorous shaking in test tubes, and it was found that none of these methods generated a detectable concentration of possible bulk nanobubbles if pure water was used, with or without a small addition of NaCl, the equipment was cleaned properly, and certain plastic materials were avoided. These results indicate that trace organic contaminants are necessary for nanobubble stabilization. Experiments were also made with the dissolution of a high concentration of inorganic salts, which generated bubbles by creating air supersaturation. Light scattering submicron particles were found in all solutions and appeared to be actual gas bubbles in at least one case. However, in many cases, these light scattering particles were unaffected by vacuum and pressure and appear, therefore, to be something else other than air bubbles. It is concluded that, in future research on nanobubble stability, it is very important to avoid contamination, as well as to ascertain that light scattering objects really are bubbles and not oil droplets or particles.
Collapse
Affiliation(s)
- Fredrik Eklund
- Division of Biological Physics, Department of Physics , Chalmers University of Technology , SE-41296 Göteborg , Sweden
| | - Jan Swenson
- Division of Biological Physics, Department of Physics , Chalmers University of Technology , SE-41296 Göteborg , Sweden
| |
Collapse
|
32
|
Kryuchkov NP, Khrapak SA, Yurchenko SO. Thermodynamics of two-dimensional Yukawa systems across coupling regimes. J Chem Phys 2018; 146:134702. [PMID: 28390340 DOI: 10.1063/1.4979325] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Thermodynamics of two-dimensional Yukawa (screened Coulomb or Debye-Hückel) systems is studied systematically using molecular dynamics (MD) simulations. Simulations cover very broad parameter range spanning from weakly coupled gaseous states to strongly coupled fluid and crystalline states. Important thermodynamic quantities, such as internal energy and pressure, are obtained and accurate physically motivated fits are proposed. This allows us to put forward simple practical expressions to describe thermodynamic properties of two-dimensional Yukawa systems. For crystals, in addition to numerical simulations, the recently developed shortest-graph interpolation method is applied to describe pair correlations and hence thermodynamic properties. It is shown that the finite-temperature effects can be accounted for by using simple correction of peaks in the pair correlation function. The corresponding correction coefficients are evaluated using MD simulation. The relevance of the obtained results in the context of colloidal systems, complex (dusty) plasmas, and ions absorbed to interfaces in electrolytes is pointed out.
Collapse
Affiliation(s)
- Nikita P Kryuchkov
- Bauman Moscow State Technical University, 2nd Baumanskaya Str. 5, 105005 Moscow, Russia
| | - Sergey A Khrapak
- CNRS, PIIM, Aix Marseille University, Marseille, France; Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany; and Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
| | - Stanislav O Yurchenko
- Bauman Moscow State Technical University, 2nd Baumanskaya Str. 5, 105005 Moscow, Russia
| |
Collapse
|
33
|
Kryuchkov NP, Yurchenko SO, Fomin YD, Tsiok EN, Ryzhov VN. Complex crystalline structures in a two-dimensional core-softened system. SOFT MATTER 2018; 14:2152-2162. [PMID: 29488995 DOI: 10.1039/c7sm02429k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A transition from a square to a hexagonal lattice is studied in a 2D system of particles interacting via a core-softened potential. Due to the presence of two length scales of repulsion, different local configurations with four, five, and six neighbors are possible, leading to the formation of complex crystals. The previously proposed interpolation method is generalized to calculate pair correlations in crystals whose unit cell consists of more than one particle. The high efficiency of the method is illustrated using a snub square lattice as a representative example. Molecular dynamics simulations show that the snub square lattice is broken upon heating, generating a high-density quasicrystalline phase with 12-fold symmetry (HD12 phase). A simple theoretical model is proposed to explain the physical mechanism responsible for this phenomenon: with an increase in the density (from square to hexagonal phases), the concentrations of different local configurations randomly realized through a plane tiling change, which minimizes the energy of the system. The calculated phase diagram in the intermediate density range justifies the existence of the HD12 phase and demonstrates a cascade of first-order transitions "square - HD12 - hexagonal" solid phases with increasing density. The results allow us to better understand the physical mechanisms responsible for the formation of quasicrystals, and, therefore, should be of interest for broad community in materials science and soft matter.
Collapse
Affiliation(s)
- Nikita P Kryuchkov
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia.
| | | | | | | | | |
Collapse
|
34
|
Khrapak SA, Kryuchkov NP, Yurchenko SO. Thermodynamics and dynamics of two-dimensional systems with dipolelike repulsive interactions. Phys Rev E 2018; 97:022616. [PMID: 29548185 DOI: 10.1103/physreve.97.022616] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Indexed: 06/08/2023]
Abstract
Thermodynamics and dynamics of a classical two-dimensional system with dipolelike isotropic repulsive interactions are studied systematically using extensive molecular dynamics (MD) simulations supplemented by appropriate theoretical approximations. This interaction potential, which decays as an inverse cube of the interparticle distance, belongs to the class of very soft long-ranged interactions. As a result, the investigated system exhibits certain universal properties that are also shared by other related soft-interacting particle systems (like, for instance, the one-component plasma and weakly screened Coulomb systems). These universalities are explored in this article to construct a simple and reliable description of the system thermodynamics. In particular, Helmholtz free energies of the fluid and solid phases are derived, from which the location of the fluid-solid coexistence is determined. The quasicrystalline approximation is applied to the description of collective modes in dipole fluids. Its simplification, previously validated on strongly coupled plasma fluids, is used to derive explicit analytic dispersion relations for the longitudinal and transverse wave modes, which compare satisfactory with those obtained from direct MD simulations in the long-wavelength regime. Sound velocities of the dipole fluids and solids are derived and analyzed.
Collapse
Affiliation(s)
- Sergey A Khrapak
- Aix Marseille University, CNRS, PIIM, 13397 Marseille, France
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 82234 Weßling, Germany
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| | - Nikita P Kryuchkov
- Bauman Moscow State Technical University, 2nd Baumanskaya street 5, 105005 Moscow, Russia
| | - Stanislav O Yurchenko
- Bauman Moscow State Technical University, 2nd Baumanskaya street 5, 105005 Moscow, Russia
| |
Collapse
|
35
|
Postnikov AV, Uvarov IV, Penkov NV, Svetovoy VB. Collective behavior of bulk nanobubbles produced by alternating polarity electrolysis. NANOSCALE 2017; 10:428-435. [PMID: 29226935 DOI: 10.1039/c7nr07126d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanobubbles in liquids are mysterious gaseous objects with exceptional stability. They promise a wide range of applications, but their production is not well controlled and localized. Alternating polarity electrolysis of water is a tool that can control the production of bulk nanobubbles in space and time without generating larger bubbles. Using the schlieren technique, the detailed three-dimensional structure of a dense cloud of nanobubbles above the electrodes is visualized. It is demonstrated that the thermal effects produce a different schlieren pattern and have different dynamics. A localized volume enriched with nanobubbles can be separated from the parent cloud and exists on its own. This volume demonstrates buoyancy, from which the concentration of nanobubbles is estimated as 2 × 1018 m-3. This concentration is smaller than that in the parent cloud. Dynamic light scattering shows that the average size of nanobubbles during the process is 60-80 nm. The bubbles are observed 15 minutes after switching off the electrical pulses but their size is shifted to larger values of about 250 nm. Thus, an efficient way to generate and control nanobubbles is proposed.
Collapse
Affiliation(s)
- Alexander V Postnikov
- Yaroslavl Branch of the Institute of Physics and Technology RAS, 150007 Universitetskaya 21, Yaroslavl, Russia
| | | | | | | |
Collapse
|
36
|
Tunable two-dimensional assembly of colloidal particles in rotating electric fields. Sci Rep 2017; 7:13727. [PMID: 29062107 PMCID: PMC5653874 DOI: 10.1038/s41598-017-14001-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/03/2017] [Indexed: 11/18/2022] Open
Abstract
Tunable interparticle interactions in colloidal suspensions are of great interest because of their fundamental and practical significance. In this paper we present a new experimental setup for self-assembly of colloidal particles in two-dimensional systems, where the interactions are controlled by external rotating electric fields. The maximal magnitude of the field in a suspension is 25 V/mm, the field homogeneity is better than 1% over the horizontal distance of 250 μm, and the rotation frequency is in the range of 40 Hz to 30 kHz. Based on numerical electrostatic calculations for the developed setup with eight planar electrodes, we found optimal experimental conditions and performed demonstration experiments with a suspension of 2.12 μm silica particles in water. Thanks to its technological flexibility, the setup is well suited for particle-resolved studies of fundamental generic phenomena occurring in classical liquids and solids, and therefore it should be of interest for a broad community of soft matter, photonics, and material science.
Collapse
|
37
|
Postnikov AV, Uvarov IV, Lokhanin MV, Svetovoy VB. Electrically controlled cloud of bulk nanobubbles in water solutions. PLoS One 2017; 12:e0181727. [PMID: 28727812 PMCID: PMC5519201 DOI: 10.1371/journal.pone.0181727] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 07/06/2017] [Indexed: 12/03/2022] Open
Abstract
Using different experimental techniques we visualize a cloud of gas in water that is produced electrochemically by the alternating polarity process. Liquid enriched with gas does not contain bubbles strongly scattering visible light but its refractive index changes significantly near the electrodes. The change of the refractive index is a collective effect of bulk nanobubbles with a diameter smaller than 200 nm. Any alternative explanation fails to explain the magnitude of the effect. Spatial structure of the cloud is investigated with the optical lever method. Its dynamics is visualised observing optical distortion of the electrode images or using differential interference contrast method. The cloud covers concentric electrodes, in a steady state it is roughly hemispherical with a size two times larger than the size of the electrode structure. When the electrical pulses are switched off the cloud disappears in less than one second. The total concentration of gases can reach very high value estimated as 3.5 × 1020 cm−3 that corresponds to an effective supersaturation of 500 and 150 for hydrogen and oxygen, respectively.
Collapse
Affiliation(s)
- Alexander V. Postnikov
- Yaroslavl Branch of the Institute of Physics and Technology, Russian Academy of Sciencies, Yaroslavl, Russia
| | - Ilia V. Uvarov
- Yaroslavl Branch of the Institute of Physics and Technology, Russian Academy of Sciencies, Yaroslavl, Russia
| | - Mikhail V. Lokhanin
- Department of Physics, P. G. Demidov Yaroslavl State University, Yaroslavl, Russia
| | - Vitaly B. Svetovoy
- Yaroslavl Branch of the Institute of Physics and Technology, Russian Academy of Sciencies, Yaroslavl, Russia
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
38
|
Effects of NaCl, NaOH, and HCl concentration on the cloud point of poly(vinyl methyl ether) in water—electrostatic interactions are inevitably involved in the hydrophobic interaction. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4130-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Oh SH, Kim JM. Generation and Stability of Bulk Nanobubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3818-3823. [PMID: 28368115 DOI: 10.1021/acs.langmuir.7b00510] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Recently, extremely small bubbles, referred to as nanobubbles, have drawn increased attention due to their novel properties and great potential for various applications. In this study, a novel method for the generation of bulk nanobubbles (BNBs) was introduced, and stability of fabricated BNBs was investigated. BNBs were created from CO2 gas with a mixing method; the chemical identity and phase state of these bubbles can be determined via infrared spectroscopy. The presence of BNBs was observed with a nanoparticle tracking analysis (NTA). The ATR-FTIR spectra of BNBs indicate that the BNBs were filled with CO2 gas. Furthermore, the BNB concentration and its ζ-potential were about 2.94 × 108 particles/mL and -20 mV, respectively (24 h after BNB generation with a mixing time of 120 min). This indicates the continued existence and stability of BNBs in water for an extended period of time.
Collapse
Affiliation(s)
- Seung Hoon Oh
- School of Mechanical Engineering, Chung-Ang University , Seoul 156-756, Korea
| | - Jong-Min Kim
- School of Mechanical Engineering, Chung-Ang University , Seoul 156-756, Korea
| |
Collapse
|
40
|
Bunkin NF, Shkirin AV, Lyakhov GA, Kobelev AV, Penkov NV, Ugraitskaya SV, Fesenko EE. Droplet-like heterogeneity of aqueous tetrahydrofuran solutions at the submicrometer scale. J Chem Phys 2017; 145:184501. [PMID: 27846700 DOI: 10.1063/1.4966187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A droplet formation in aqueous solutions of tetrahydrofuran (THF) has been experimentally detected at the submicrometer scale using two independent laser diagnostic techniques (dynamic light scattering and laser phase microscopy) and described in terms of THF-water intermolecular hydrogen bonding. It is shown that the nanodroplets have a mean size of 300 nm, their refractive index is higher than that of the ambient liquid, and they are highly enriched with THF molecules. The maximum of light scattering intensity falls within the THF concentration range 2-8 mol. %, which corresponds to the volume number density of the nanodroplets ∼1010-1011 cm-3. A theoretical explanation of forming the nanodroplets with a high content of THF, which is based on a model of dichotomous noise being applied to the so-termed "twinkling" hydrogen bonds and involves spinodal decomposition in the unstable region enclosed within the dichotomous binodal, is proposed. The parameters of hydrogen bonds in the molecular system "water-THF" were found, and the phase diagram of the solution with allowance for cross-linking hydrogen bonds was constructed.
Collapse
Affiliation(s)
- N F Bunkin
- Bauman State Technical University, 2nd Baumanskaya ul. 5, Moscow 105005, Russia
| | - A V Shkirin
- Prokhorov General Physics Institute, Russian Academy of Sciences, ul. Vavilova 38, Moscow 119991, Russia
| | - G A Lyakhov
- Prokhorov General Physics Institute, Russian Academy of Sciences, ul. Vavilova 38, Moscow 119991, Russia
| | - A V Kobelev
- Institute of Cell Biophysics, Russian Academy of Sciences, ul. Institutskaya 3, Pushchino, Moscow Region 142290, Russia
| | - N V Penkov
- Institute of Cell Biophysics, Russian Academy of Sciences, ul. Institutskaya 3, Pushchino, Moscow Region 142290, Russia
| | - S V Ugraitskaya
- Institute of Cell Biophysics, Russian Academy of Sciences, ul. Institutskaya 3, Pushchino, Moscow Region 142290, Russia
| | - E E Fesenko
- Institute of Cell Biophysics, Russian Academy of Sciences, ul. Institutskaya 3, Pushchino, Moscow Region 142290, Russia
| |
Collapse
|