1
|
Maxey AP, Travis JM, McCain ML. Regulation of oxytocin-induced calcium transients and gene expression in engineered myometrial tissues by tissue architecture and matrix rigidity. Curr Res Physiol 2023; 6:100108. [PMID: 38107790 PMCID: PMC10724203 DOI: 10.1016/j.crphys.2023.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/21/2023] [Accepted: 09/20/2023] [Indexed: 12/19/2023] Open
Abstract
The uterus is susceptible to benign tumors known as fibroids, which have been associated with many pregnancy complications, including preterm labor. However, the impact of fibrotic tissue remodeling on the physiology of the myometrium, the smooth muscle layer of the uterus, is poorly understood, in large part due to a lack of model systems. In this study, we engineered healthy-like and fibrotic-like myometrium by culturing human myometrial smooth muscle cells on polyacrylamide hydrogels micropatterned with fibronectin to independently tune matrix rigidity and tissue alignment, respectively. We then evaluated calcium transients in response to oxytocin stimulation. Isotropic myometrial tissues on stiff substrates (representing fibrotic myometrium) had shorter calcium transients due to shorter decay time compared to aligned myometrial tissues on soft substrates (representing healthy myometrium). Calcium transients in aligned tissues had longer response times and longer decay times than isotropic tissues, irrespective of substrate stiffness. The amplitude of calcium transients was also higher on soft substrates compared to stiff substrates, irrespective of tissue alignment. We also performed RNA sequencing to detect differentially expressed genes between healthy- and fibrotic-like tissues, which revealed that a bitter taste receptor shown to induce smooth muscle relaxation, TAS2R31, was down-regulated in fibrotic-like tissues. Finally, we measured oxytocin-induced calcium transients in response to pre-treatment with progesterone, caffeine, thrombin, and nifedipine to demonstrate applications for our model system in drug screening. Both progesterone and caffeine caused a decrease in calcium transient duration, as expected, while thrombin and nifedipine had less impact. Collectively, our engineered model of the myometrium enables new insights into myometrial mechanobiology and can be extended to identify or screen novel drug targets.
Collapse
Affiliation(s)
- Antonina P. Maxey
- Laboratory for Living Systems Engineering, Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Jaya M. Travis
- Laboratory for Living Systems Engineering, Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Megan L. McCain
- Laboratory for Living Systems Engineering, Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Ahamadzadeh E, Jaferzadeh K, Park S, Son S, Moon I. Automated analysis of human cardiomyocytes dynamics with holographic image-based tracking for cardiotoxicity screening. Biosens Bioelectron 2022; 195:113570. [PMID: 34455143 DOI: 10.1016/j.bios.2021.113570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 07/19/2021] [Accepted: 08/14/2021] [Indexed: 11/02/2022]
Abstract
This paper proposes a new non-invasive, low-cost, and fully automated platform to quantitatively analyze dynamics of human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) at the single-cell level by holographic image-based tracking for cardiotoxicity screening. A dense Farneback optical flow method and holographic imaging informatics were combined to characterize the contractile motion of a single CM, which obviates the need for costly equipment to monitor a CM's mechanical beat activity. The reliability of the proposed platform was tested by single-cell motion characterization, synchronization analysis, motion speed measurement of fixed CMs versus live CMs, and noise sensitivity. The applicability of the motion characterization method was tested to determine the pharmacological effects of two cardiovascular drugs, isoprenaline (166 nM) and E-4031 (500 μM). The experiments were done using single CMs and multiple cells, and the results were compared to control conditions. Cardiomyocytes responded to isoprenaline by increasing the action potential (AP) speed and shortening the resting period, thus increasing the beat frequency. In the presence of E-4031, the AP speed was decreased, and the resting period was prolonged, thus decreasing the beat frequency. The findings offer insights into single hiPS-CMs' contractile motion and a deep understanding of their kinetics at the single-cell level for cardiotoxicity screening.
Collapse
Affiliation(s)
- Ezat Ahamadzadeh
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Hyeonpung-eup, Dalseong-gun, Daegu, 42988, South Korea
| | - Keyvan Jaferzadeh
- Department of Electronics Design, Mid Sweden University, 85170, Sundsvall, Sweden
| | - Seonghwan Park
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Hyeonpung-eup, Dalseong-gun, Daegu, 42988, South Korea
| | - Seungwoo Son
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Hyeonpung-eup, Dalseong-gun, Daegu, 42988, South Korea
| | - Inkyu Moon
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Hyeonpung-eup, Dalseong-gun, Daegu, 42988, South Korea.
| |
Collapse
|
3
|
Roumpos K, Fontaine S, Pfohl T, Prucker O, Rühe J, Reiter G. Measurements of periodically perturbed dewetting force fields and their consequences on the symmetry of the resulting patterns. Sci Rep 2021; 11:13149. [PMID: 34162940 PMCID: PMC8222397 DOI: 10.1038/s41598-021-92544-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/11/2021] [Indexed: 12/02/2022] Open
Abstract
We studied the origin of breaking the symmetry for moving circular contact lines of dewetting polymer films suspended on a periodic array of pillars. There, dewetting force fields driving polymer flow were perturbed by elastic micro-pillars arranged in a regular square pattern. Elastic restoring forces of deformed pillars locally balance driving capillary forces and broke the circular symmetry of expanding dewetting holes. The observed envelope of the dewetting holes reflected the symmetry of the underlying pattern, even at sizes much larger than the characteristic period of the pillar array, demonstrating that periodic perturbations in a driving force field can establish a well-defined pattern of lower symmetry. For the presented system, we succeeded in squaring the circle.
Collapse
Affiliation(s)
- Konstantinos Roumpos
- Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3a, 79104, Freiburg, Germany
- Freiburg Materials Research Center, Stefan-Meier-Straße 21, 79104, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Sarah Fontaine
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
| | - Thomas Pfohl
- Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3a, 79104, Freiburg, Germany
| | - Oswald Prucker
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
| | - Jürgen Rühe
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
| | - Günter Reiter
- Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3a, 79104, Freiburg, Germany.
- Freiburg Materials Research Center, Stefan-Meier-Straße 21, 79104, Freiburg, Germany.
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany.
| |
Collapse
|
4
|
Izadifar M, Berecz T, Apáti Á, Nagy A. An Optical-Flow-Based Method to Quantify Dynamic Behavior of Human Pluripotent Stem Cell-Derived Cardiomyocytes in Disease Modeling Platforms. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2454:213-230. [PMID: 33982275 DOI: 10.1007/7651_2021_382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) hold great promise for cardiovascular disease modeling, drug screening and personalized medicine. A crucial requirement to establish an hPSC-CM-based disease model is the availability of a reliable differentiation protocol and a functional assessment of phenotypic properties of CMs in a disease context. Characterization of relative changes in contractile behavior of CMs can provide insight not only about drug effects but into the pathogenesis of cardiovascular diseases. Image-based optical-flow analysis, which applies a speckle tracking algorithm to videomicroscopy of hPSC-CMs, is a noninvasive method to quantitatively assess the dynamics of mechanical contraction of the CMs. This method offers an efficient characterization of contractile cycles. It quantifies contraction velocity field, beat rate, contractile strain and contraction-relaxation strain rate profile, which are important phenotypic characteristics of CMs.
Collapse
Affiliation(s)
- Mohammad Izadifar
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
| | - Tünde Berecz
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Ágota Apáti
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Wei X, Zhuang L, Li H, He C, Wan H, Hu N, Wang P. Advances in Multidimensional Cardiac Biosensing Technologies: From Electrophysiology to Mechanical Motion and Contractile Force. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2005828. [PMID: 33230867 DOI: 10.1002/smll.202005828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Cardiovascular disease is currently a leading killer to human, while drug-induced cardiotoxicity remains the main cause of the withdrawal and attrition of drugs. Taking clinical correlation and throughput into account, cardiomyocyte is perfect as in vitro cardiac model for heart disease modeling, drug discovery, and cardiotoxicity assessment by accurately measuring the physiological multiparameters of cardiomyocytes. Remarkably, cardiomyocytes present both electrophysiological and biomechanical characteristics due to the unique excitation-contraction coupling, which plays a significant role in studying the cardiomyocytes. This review mainly focuses on the recent advances of biosensing technologies for the 2D and 3D cardiac models with three special properties: electrophysiology, mechanical motion, and contractile force. These high-performance multidimensional cardiac models are popular and effective to rebuild and mimic the heart in vitro. To help understand the high-quality and accurate physiologies, related detection techniques are highly demanded, from microtechnology to nanotechnology, from extracellular to intracellular recording, from multiple cells to single cell, and from planar to 3D models. Furthermore, the characteristics, advantages, limitations, and applications of these cardiac biosensing technologies, as well as the future development prospects should contribute to the systematization and expansion of knowledge.
Collapse
Affiliation(s)
- Xinwei Wei
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Liujing Zhuang
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Hongbo Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chuanjiang He
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, 310027, China
| | - Hao Wan
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Ning Hu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ping Wang
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
6
|
Ahmadzadeh E, Jaferzadeh K, Shin S, Moon I. Automated single cardiomyocyte characterization by nucleus extraction from dynamic holographic images using a fully convolutional neural network. BIOMEDICAL OPTICS EXPRESS 2020; 11:1501-1516. [PMID: 32206425 PMCID: PMC7075611 DOI: 10.1364/boe.385218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 05/06/2023]
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) beating can be efficiently characterized by time-lapse quantitative phase imaging (QPIs) obtained by digital holographic microscopy. Particularly, the CM's nucleus section can precisely reflect the associated rhythmic beating pattern of the CM suitable for subsequent beating pattern characterization. In this paper, we describe an automated method to characterize single CMs by nucleus extraction from QPIs and subsequent beating pattern reconstruction and quantification. However, accurate CM's nucleus extraction from the QPIs is a challenging task due to the variations in shape, size, orientation, and lack of special geometry. To this end, we propose a novel fully convolutional neural network (FCN)-based network architecture for accurate CM's nucleus extraction using pixel classification technique and subsequent beating pattern characterization. Our experimental results show that the beating profile of multiple extracted single CMs is less noisy and more informative compared to the whole image slide. Applying this method allows CM characterization at the single-cell level. Consequently, several single CMs are extracted from the whole slide QPIs and multiple parameters regarding their beating profile of each isolated CM are efficiently measured.
Collapse
Affiliation(s)
- Ezat Ahmadzadeh
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science & Technology, Dalseong-gun, Daegu, 42988, South Korea
- Department of Computer Engineering, Chosun University, Dong-gu, Gwangju 61452, South Korea
| | - Keyvan Jaferzadeh
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science & Technology, Dalseong-gun, Daegu, 42988, South Korea
| | - Seokjoo Shin
- Department of Computer Engineering, Chosun University, Dong-gu, Gwangju 61452, South Korea
| | - Inkyu Moon
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science & Technology, Dalseong-gun, Daegu, 42988, South Korea
| |
Collapse
|
7
|
Moon I, Ahmadzadeh E, Jaferzadeh K, Kim N. Automated quantification study of human cardiomyocyte synchronization using holographic imaging. BIOMEDICAL OPTICS EXPRESS 2019; 10:610-621. [PMID: 30800503 PMCID: PMC6377906 DOI: 10.1364/boe.10.000610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/21/2018] [Accepted: 12/25/2018] [Indexed: 05/05/2023]
Abstract
This paper investigates the rhythm strip and parameters of synchronization of human induced pluripotent stem cell (iPS) derived cardiomyocytes. The synchronization is evaluated from quantitative phase images of beating cardiomyocytes which are obtained using the time-lapse digital holographic imaging method. By quantitatively monitoring the dry mass redistribution, digital holography provides the physical contraction-relaxation signal caused by autonomous cardiac action potential. In order to analyze the synchronicity at the cell-to-cell level, we extracted single cardiac muscle cells, which contain the nuclei, from the phase images of cardiomyocytes containing multiple cells resulting from the fusion of k-means clustering and watershed segmentation algorithms. We demonstrate that mature cardiomyocyte cell synchronization can be automatically evaluated by time-lapse microscopic holographic imaging. Our proposed method can be applied for studies on cardiomyocyte disorders and drug safety testing systems.
Collapse
Affiliation(s)
- InKyu Moon
- Department of Robotics Engineering, DGIST, 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu 42988, South Korea
| | - Ezat Ahmadzadeh
- Department of Robotics Engineering, DGIST, 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu 42988, South Korea
- Department of Computer Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, South Korea
| | - Keyvan Jaferzadeh
- Department of Robotics Engineering, DGIST, 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu 42988, South Korea
| | - Namgon Kim
- Department of Robotics Engineering, DGIST, 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu 42988, South Korea
| |
Collapse
|
8
|
Jiang Y, Zhou Y, Bao X, Chen C, Randolph LN, Du J, Lian XL. An Ultrasensitive Calcium Reporter System via CRISPR-Cas9-Mediated Genome Editing in Human Pluripotent Stem Cells. iScience 2018; 9:27-35. [PMID: 30368079 PMCID: PMC6203247 DOI: 10.1016/j.isci.2018.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 08/26/2018] [Accepted: 10/08/2018] [Indexed: 12/21/2022] Open
Abstract
Genetically encoded calcium indicator (GCaMP) proteins have been reported for imaging cardiac cell activity based on intracellular calcium transients. To bring human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs) to the clinic, it is critical to evaluate the functionality of CMs. Here, we show that GCaMP6s-expressing hPSCs can be generated and used for CM characterization. By leveraging CRISPR-Cas9 genome editing tools, we generated a knockin cell line that constitutively expresses GCaMP6s, an ultrasensitive calcium sensor protein. We further showed that this clone maintained pluripotency and cardiac differentiation potential. These knockin hPSC-derived CMs exhibited sensitive fluorescence fluctuation with spontaneous contraction. We then compared the fluorescence signal with mechanical contraction signal. The knockin hPSC-derived CMs also showed sensitive response to isoprenaline treatment in a concentration-dependent manner. Therefore, the GCaMP6s knockin hPSC line provides a non-invasive, sensitive, and economic approach to characterize the functionality of hPSC-derived CMs.
Collapse
Affiliation(s)
- Yuqian Jiang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yuxiao Zhou
- Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaoping Bao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Chuanxin Chen
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Lauren N Randolph
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jing Du
- Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
9
|
Ariyasinghe NR, Lyra-Leite DM, McCain ML. Engineering cardiac microphysiological systems to model pathological extracellular matrix remodeling. Am J Physiol Heart Circ Physiol 2018; 315:H771-H789. [PMID: 29906229 PMCID: PMC6230901 DOI: 10.1152/ajpheart.00110.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/27/2018] [Accepted: 06/08/2018] [Indexed: 12/11/2022]
Abstract
Many cardiovascular diseases are associated with pathological remodeling of the extracellular matrix (ECM) in the myocardium. ECM remodeling is a complex, multifactorial process that often contributes to declines in myocardial function and progression toward heart failure. However, the direct effects of the many forms of ECM remodeling on myocardial cell and tissue function remain elusive, in part because conventional model systems used to investigate these relationships lack robust experimental control over the ECM. To address these shortcomings, microphysiological systems are now being developed and implemented to establish direct relationships between distinct features in the ECM and myocardial function with unprecedented control and resolution in vitro. In this review, we will first highlight the most prominent characteristics of ECM remodeling in cardiovascular disease and describe how these features can be mimicked with synthetic and natural biomaterials that offer independent control over multiple ECM-related parameters, such as rigidity and composition. We will then detail innovative microfabrication techniques that enable precise regulation of cellular architecture in two and three dimensions. We will also describe new approaches for quantifying multiple aspects of myocardial function in vitro, such as contractility, action potential propagation, and metabolism. Together, these collective technologies implemented as cardiac microphysiological systems will continue to uncover important relationships between pathological ECM remodeling and myocardial cell and tissue function, leading to new fundamental insights into cardiovascular disease, improved human disease models, and novel therapeutic approaches.
Collapse
Affiliation(s)
- Nethika R Ariyasinghe
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California , Los Angeles, California
| | - Davi M Lyra-Leite
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California , Los Angeles, California
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California , Los Angeles, California
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California , Los Angeles, California
| |
Collapse
|
10
|
Surface-attached hydrogel coatings via C,H-insertion crosslinking for biomedical and bioanalytical applications (Review). Biointerphases 2018; 13:010801. [DOI: 10.1116/1.4999786] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
11
|
Grespan E, Giobbe GG, Badique F, Anselme K, Rühe J, Elvassore N. Effect of geometrical constraints on human pluripotent stem cell nuclei in pluripotency and differentiation. Integr Biol (Camb) 2018; 10:278-289. [DOI: 10.1039/c7ib00194k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pluripotent stem cells are differentiated on microstructured substrates to investigate the nuclear deformability during differentiation and the role of mechanoregulating proteins.
Collapse
Affiliation(s)
- Eleonora Grespan
- Department of Industrial Engineering
- University of Padova
- Padova
- Italy
- Department for Microsystems Engineering
| | - Giovanni G. Giobbe
- Department of Industrial Engineering
- University of Padova
- Padova
- Italy
- Venetian Institute of Molecular Medicine
| | - Florent Badique
- University of Haute–Alsace
- CNRS
- IS2M UMR 7361
- F-68100 Mulhouse
- France
| | - Karine Anselme
- University of Haute–Alsace
- CNRS
- IS2M UMR 7361
- F-68100 Mulhouse
- France
| | - Jürgen Rühe
- Department for Microsystems Engineering
- University of Freiburg
- Freiburg
- Germany
| | - Nicola Elvassore
- Department of Industrial Engineering
- University of Padova
- Padova
- Italy
- Venetian Institute of Molecular Medicine
| |
Collapse
|
12
|
Wang W, Zhong D, Lin Y, Fan R, Hou Z, Cao X, Ren Y. Responsiveness of voltage-gated calcium channels in SH-SY5Y human neuroblastoma cells on micropillar substrates. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:125-144. [PMID: 29125390 DOI: 10.1080/09205063.2017.1403714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, poly-L-lactic acid micropillar substrates were fabricated to evaluate the influence of topographic substrates on cell morphological and functional characteristics, such as spreading area, voltage-gated calcium channels (VGCCs) and membrane potential. The proliferation, spreading area, perimeter and circularity of SH-SY5Y cells interfaced with different substrates were first investigated. In addition, the cytoskeleton and focal adhesion of a cell as important manifestations of cell morphology were analyzed by immunofluorescence. VGCC responsiveness was evaluated by measuring the dynamic changes in intracellular Ca2+ evoked by 50 mM extracellular K+. To determine study whether the differences in VGCC responsiveness were caused by the differences in VGCC gene expression, the expression of N/L- type VGCCs was determined by qPCR and fluorescence staining. Notably, improved measurement of the membrane potential with potentiometric fluorescent dye TMRM was applied to determine the membrane potential of SH-SY5Y cells. Results indicated that the SH-SY5Y cells were deformed significantly to adapt to the substrates; however, no distinct effect on the proliferative ability of SH-SY5Y cells was observed. The micropillar substrates markedly influenced VGCC responsiveness, which correlated strongly with cell spreading but not with VGCC expression. The resting membrane potential of SH-SY5Y cells cultured on different substrates also changed, but no effect on responsiveness of VGCC was observed. These results suggest that the effect of the micropillar substrates on cell VGCC responsiveness may be attributed to changes in the functionality of the ion channel itself. Thus, topographic substrates can be used to engineer cell functionality in cell-based drug screening.
Collapse
Affiliation(s)
- Wenxu Wang
- a Key Laboratory of Biorheological Science and Technology of the State Ministry of Education, College of Bioengineering , Chongqing University , Chongqing , People's Republic of China
| | - Donghuo Zhong
- a Key Laboratory of Biorheological Science and Technology of the State Ministry of Education, College of Bioengineering , Chongqing University , Chongqing , People's Republic of China
| | - Yu Lin
- a Key Laboratory of Biorheological Science and Technology of the State Ministry of Education, College of Bioengineering , Chongqing University , Chongqing , People's Republic of China
| | - Rong Fan
- a Key Laboratory of Biorheological Science and Technology of the State Ministry of Education, College of Bioengineering , Chongqing University , Chongqing , People's Republic of China
| | - Zhengjun Hou
- a Key Laboratory of Biorheological Science and Technology of the State Ministry of Education, College of Bioengineering , Chongqing University , Chongqing , People's Republic of China
| | - Xiumei Cao
- a Key Laboratory of Biorheological Science and Technology of the State Ministry of Education, College of Bioengineering , Chongqing University , Chongqing , People's Republic of China
| | - Yubin Ren
- a Key Laboratory of Biorheological Science and Technology of the State Ministry of Education, College of Bioengineering , Chongqing University , Chongqing , People's Republic of China
| |
Collapse
|
13
|
Simultaneous Measurement of Contraction and Calcium Transients in Stem Cell Derived Cardiomyocytes. Ann Biomed Eng 2017; 46:148-158. [PMID: 28975460 PMCID: PMC5754453 DOI: 10.1007/s10439-017-1933-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/19/2017] [Indexed: 02/01/2023]
Abstract
Induced pluripotent stem cell derived cardiomyocytes (iPSC-CM) provide a powerful platform for disease modeling and drug development in vitro. Traditionally, electrophysiological methods or fluorescent dyes (e.g. calcium) have been used in their functional characterization. Recently, video microscopy has enabled non-invasive analysis of CM contractile motion. Simultaneous assessments of motion and calcium transients have not been generally conducted, as motion detection methods are affected by changing pixel intensities in calcium imaging. Here, we present for the first time a protocol for simultaneous video-based measurement of contraction and calcium with fluorescent dye Fluo-4 videos without corrections, providing data on both ionic and mechanic activity. The method and its accuracy are assessed by measuring the effect of fluorescence and background light on transient widths and contraction velocity amplitudes. We demonstrate the method by showing the contraction-calcium relation and measuring the transient time intervals in catecholaminergic polymorphic ventricular tachycardia patient specific iPSC-CMs and healthy controls. Our validation shows that the simultaneous method provides comparable data to combined individual measurements, providing a new tool for measuring CM biomechanics and calcium simultaneously. Our results with calcium sensitive dyes suggest the method could be expanded to use with other fluorescent reporters as well.
Collapse
|
14
|
Hansen KJ, Favreau JT, Gershlak JR, Laflamme MA, Albrecht DR, Gaudette GR. Optical Method to Quantify Mechanical Contraction and Calcium Transients of Human Pluripotent Stem Cell-Derived Cardiomyocytes. Tissue Eng Part C Methods 2017; 23:445-454. [PMID: 28562232 DOI: 10.1089/ten.tec.2017.0190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Differentiation of human pluripotent stem cells into cardiomyocytes (hPS-CMs) holds promise for myocardial regeneration therapies, drug discovery, and models of cardiac disease. Potential cardiotoxicities may affect hPS-CM mechanical contraction independent of calcium signaling. Herein, a method using an image capture system is described to measure hPS-CM contractility and intracellular calcium concurrently, with high spatial and temporal resolution. The image capture system rapidly alternates between brightfield and epifluorescent illumination of contracting cells. Mechanical contraction is quantified by a speckle tracking algorithm applied to brightfield image pairs, whereas calcium transients are measured by a fluorescent calcium reporter. This technique captured changes in contractile strain, calcium transients, and beat frequency of hPS-CMs over 21 days in culture, as well as acute responses to isoproterenol and Cytochalasin D. The technique described above can be applied without the need to alter the culture platform, allowing for determination of hPS-CM behavior over weeks in culture for drug discovery and myocardial regeneration applications.
Collapse
Affiliation(s)
- Katrina J Hansen
- 1 Department of Biomedical Engineering, Worcester Polytechnic Institute , Worcester, Massachusetts
| | - John T Favreau
- 1 Department of Biomedical Engineering, Worcester Polytechnic Institute , Worcester, Massachusetts
| | - Joshua R Gershlak
- 1 Department of Biomedical Engineering, Worcester Polytechnic Institute , Worcester, Massachusetts
| | - Michael A Laflamme
- 2 Toronto General Research Institute, McEwen Centre for Regenerative Medicine, University Health Network , Toronto, Canada
| | - Dirk R Albrecht
- 1 Department of Biomedical Engineering, Worcester Polytechnic Institute , Worcester, Massachusetts
| | - Glenn R Gaudette
- 1 Department of Biomedical Engineering, Worcester Polytechnic Institute , Worcester, Massachusetts
| |
Collapse
|