1
|
Li Y, Cai Z, Gu J, Chen J, Zhang Y. Naphthalimide-based Functional Glycopolymeric Nanoparticles as Fluorescent Probes for Selective Imaging of Tumor Cells. Chemistry 2024; 30:e202304165. [PMID: 38246871 DOI: 10.1002/chem.202304165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/23/2024]
Abstract
A series of functional glycopolymer nanoparticles with 1,8-naphthalimide motif was designed, synthesized and applied for tumor cell imaging. With the pH-sensitive and aggregation-induced emission (AIE) effect of the 1,8-naphthalimide fluorescent probe, the presence of glucose-based glycopolymers enhanced its water-solubility and biocompatibility. Owing to the dual tumor-targeting effects of the dense glucose part and the boronic ester modification, the obtained glycopolymers showed high affinity to tumor cells, with a much faster staining rate than normal cells, indicating a great potential for diagnosis and treatments of cancers.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| | - Zhi Cai
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P.R. China
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, P.R. China
| | - Jieyu Gu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| |
Collapse
|
2
|
Carrière M, Henrique M Buzzetti P, Gorgy K, Giroud F, Li H, Borsali R, Cosnier S. Nanostructured electrodes based on multiwalled carbon nanotube/glyconanoparticles for the specific immobilization of bilirubin oxidase: Application to the electrocatalytic O 2 reduction. Bioelectrochemistry 2023; 150:108328. [PMID: 36493673 DOI: 10.1016/j.bioelechem.2022.108328] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/28/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Here we describe the design and the characterization of novel electrode materials consisting of multi-walled carbon nanotubes coated with glyconanoparticles (GNPs) functionalized with anthraquinone sulfonate. The resulting modified electrodes were characterized by scanning electron microscopy and cyclic voltammetry. Their electrochemical behavior reveals a stable pH-dependent redox signal characteristic of anthraquinone sulfonate. Immobilization of bilirubin oxidase on these three-dimensional electrodes leads to the electroenzymatic reduction of O2 to water with an onset potential of 0.5 V/SCE (saturated calomel electrode). A catalytic cathodic current of 174 µA (0.88 mA cm-2) at 0.1 V/SCE, demonstrates that glyconanoparticles modified by anthraquinone sulfonate were able to interact and orientate bilirubin oxidase by electrostatic interactions.
Collapse
Affiliation(s)
- Marie Carrière
- Univ Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France; Univ Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France
| | | | - Karine Gorgy
- Univ Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | - Fabien Giroud
- Univ Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | - Hong Li
- Univ Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France
| | | | - Serge Cosnier
- Univ Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| |
Collapse
|
3
|
Biodegradable Nanoparticles Loaded with Levodopa and Curcumin for Treatment of Parkinson's Disease. Molecules 2022; 27:molecules27092811. [PMID: 35566173 PMCID: PMC9101601 DOI: 10.3390/molecules27092811] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/16/2022] [Accepted: 04/23/2022] [Indexed: 02/06/2023] Open
Abstract
Background: Parkinson’s disease (PD) is the second most common age-related neurodegenerative disorder. Levodopa (L-DOPA) remains the gold-standard drug available for treating PD. Curcumin has many pharmacological activities, including antioxidant, anti-inflammatory, antimicrobial, anti-amyloid, and antitumor properties. Copolymers composed of Poly (ethylene oxide) (PEO) and biodegradable polyesters such as Poly (ε-caprolactone) (PCL) can self-assemble into nanoparticles (NPs). This study describes the development of NH2–PEO–PCL diblock copolymer positively charged and modified by adding glutathione (GSH) on the outer surface, resulting in a synergistic delivery of L-DOPA curcumin that would be able to pass the blood–brain barrier. Methods: The NH2–PEO–PCL NPs suspensions were prepared by using a nanoprecipitation and solvent displacement method and coated with GSH. NPs were submitted to characterization assays. In order to ensure the bioavailability, Vero and PC12 cells were treated with various concentrations of the loaded and unloaded NPs to observe cytotoxicity. Results: NPs have successfully loaded L-DOPA and curcumin and were stable after freeze-drying, indicating advancing into in vitro toxicity testing. Vero and PC12 cells that were treated up to 72 h with various concentrations of L-DOPA and curcumin-loaded NP maintained high viability percentage, indicating that the NPs are biocompatible. Conclusions: NPs consisting of NH2–PEO–PCL were characterized as potential formulations for brain delivery of L-DOPA and curcumin. The results also indicate that the developed biodegradable nanomicelles that were blood compatible presented low cytotoxicity.
Collapse
|
4
|
Fritea L, Tertiș M, Cristea C, Sandulescu R. Exploring the research progress about the applications of cyclodextrins and nanomaterials in electroanalysis. ELECTROANAL 2022. [DOI: 10.1002/elan.202200014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Cecilia Cristea
- University of Medicine and Pharmacy Iuliu Hatieganu, Faculty of Pharmacy ROMANIA
| | - Robert Sandulescu
- University of Medicine and Pharmacy Iuliu Hatieganu, Faculty of Pharmacy ROMANIA
| |
Collapse
|
5
|
Buzzetti PHM, Carrière M, Brachi M, Gorgy K, Mumtaz M, Borsali R, Cosnier S. Organic β-cyclodextrin Nanoparticle: An Efficient Building Block Between Functionalized Poly(pyrrole) Electrodes and Enzymes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105880. [PMID: 34989480 DOI: 10.1002/smll.202105880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Glyconanoparticles (GNPs) made by self-assembly of carbohydrate-based polystyrene-block-β-cyclodextrin copolymer are used as a building block for the design of nanostructured biomaterials of electrode. The firm immobilization of GNPs is carried out on electrochemically generated polymer, poly(pyrrole-adamantane), and copolymer, poly(pyrrole-adamantane)/poly(pyrrole-lactobionamide) via host-guest interactions between adamantane and β-cyclodextrin. The ability of GNPs for the specific anchoring of biological macromolecules is investigated using glucose oxidase enzyme modified by adamantane groups as a protein model (GOx-Ad). The immobilization of GOx-Ad is carried out by incubation of an aqueous enzyme solution on a coating of GNPs adsorbed on a platinum electrode. The presence of immobilized GOx-Ad is evaluated in aqueous glucose solution by potentiostating the underlying platinum electrode at 0.7 V/SCE for the electro-oxidation of H2 O2 generated by the enzyme. The analytical performance of the bioelectrodes for the detection of glucose is compared to control electrodes prepared without GNPs or without electropolymerized films. The better permeability of copolymer compared to polymer and the possibility to elaborate two alternating layers of GNPs and GOx-Ad are clearly observed. The best amperometric response is recorded with a multilayered bioelectrode displaying a wide linear range linear range of the calibration curve: 68 µmol L-1 to 0.1 mol L-1 .
Collapse
Affiliation(s)
| | - Marie Carrière
- Univ. Grenoble Alpes, CNRS, DCM, Grenoble, 38000, France
- Univ. Grenoble Alpes, CNRS, CERMAV, Grenoble, F-38000, France
| | - Monica Brachi
- Univ. Grenoble Alpes, CNRS, DCM, Grenoble, 38000, France
| | - Karine Gorgy
- Univ. Grenoble Alpes, CNRS, DCM, Grenoble, 38000, France
| | - Muhammad Mumtaz
- Univ. Grenoble Alpes, CNRS, CERMAV, Grenoble, F-38000, France
| | | | - Serge Cosnier
- Univ. Grenoble Alpes, CNRS, DCM, Grenoble, 38000, France
| |
Collapse
|
6
|
Brachi M, Buzzetti PHM, Gorgy K, Shan D, Audebert P, le Goff A, Li H, Borsali R, Cosnier S. Trialkoxyheptazine-Based Glyconanoparticles for Fluorescence in Aqueous Solutions and on Surfaces via Controlled Binding in Space. ACS Macro Lett 2022; 11:135-139. [PMID: 35574794 DOI: 10.1021/acsmacrolett.1c00693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The fluorescent organic 2,5,8-tris((adamantan-1-yl)-methoxy)-heptazine (HTZ-Ad) was solubilized in water by inclusion of adamantane groups into free β-cyclodextrins or a cyclodextrin shell of glyconanoparticles. These glyconanoparticles with average diameters between 40 and 60 nm result from the self-assembly of polystyrene-block-β-cyclodextrin copolymers. Under UV irradiation at 365 nm, the modified nanoparticles exhibit fluorescence emission in aqueous media as well as in their adsorbed state. This constitutes the first spectroscopic characterization of a trialkoxyheptazine in aqueous medium. The specific binding of the glyconanoparticles to a surface was achieved via host-guest interactions with an electrochemically generated poly(pyrrole-adamantane) film. An interdigitated microelectrode modified with poly(pyrrole-adamantane) film and glyconanoparticles was incubated in HTZ-Ad, resulting in a substrate with spatially controlled fluorescence. The same modified electrode was incubated with an aqueous suspension of glyconanoparticles previously functionalized by HTZ-Ad, resulting in a fluorescent 3D assembly.
Collapse
Affiliation(s)
- Monica Brachi
- Université Grenoble Alpes, DCM UMR 5250, F-38000 Grenoble, France
| | | | - Karine Gorgy
- Université Grenoble Alpes, DCM UMR 5250, F-38000 Grenoble, France
| | - Dan Shan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Pierre Audebert
- PPSM, CNRS UMR 8531, ENS Cachan, 61 avenue du Président Wilson, 94235 Cachan, France
| | - Alan le Goff
- Université Grenoble Alpes, DCM UMR 5250, F-38000 Grenoble, France
| | - Hong Li
- Université Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France
| | - Redouane Borsali
- Université Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France
| | - Serge Cosnier
- Université Grenoble Alpes, DCM UMR 5250, F-38000 Grenoble, France
| |
Collapse
|
7
|
Self-assembly of carbohydrate-based block copolymer systems: glyconanoparticles and highly nanostructured thin films. Polym J 2022. [DOI: 10.1038/s41428-021-00604-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Graziotto ME, Adair LD, Kaur A, Vérité P, Ball SR, Sunde M, Jacquemin D, New EJ. Versatile naphthalimide tetrazines for fluorogenic bioorthogonal labelling. RSC Chem Biol 2021; 2:1491-1498. [PMID: 34704054 PMCID: PMC8496007 DOI: 10.1039/d1cb00128k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/24/2021] [Indexed: 12/21/2022] Open
Abstract
Fluorescent probes for biological imaging have revealed much about the functions of biomolecules in health and disease. Fluorogenic probes, which are fluorescent only upon a bioorthogonal reaction with a specific partner, are particularly advantageous as they ensure that fluorescent signals observed in biological imaging arise solely from the intended target. In this work, we report the first series of naphthalimide tetrazines for bioorthogonal fluorogenic labelling. We establish that all of these compounds can be used for imaging through photophysical, analytical and biological studies. The best candidate was Np6mTz, where the tetrazine ring is appended to the naphthalimide at its 6-position via a phenyl linker in a meta configuration. Taking our synthetic scaffold, we generated two targeted variants, LysoNpTz and MitoNpTz, which successfully localized within the lysosomes and mitochondria respectively, without the requirement of genetic modification. In addition, the naphthalimide tetrazine system was used for the no-wash imaging of insulin amyloid fibrils in vitro, providing a new method that can monitor their growth kinetics and morphology. Since our synthetic approach is simple and modular, these new naphthalimide tetrazines provide a novel scaffold for a range of bioorthogonal tetrazine-based imaging agents for selective staining and sensing of biomolecules.
Collapse
Affiliation(s)
- Marcus E Graziotto
- The University of Sydney, School of Chemistry NSW 2006 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney NSW 2006 Australia
| | - Liam D Adair
- The University of Sydney, School of Chemistry NSW 2006 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney NSW 2006 Australia
| | - Amandeep Kaur
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health NSW 2006 Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney NSW 2006 Australia
| | | | - Sarah R Ball
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health NSW 2006 Australia
| | - Margaret Sunde
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health NSW 2006 Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney NSW 2006 Australia
| | | | - Elizabeth J New
- The University of Sydney, School of Chemistry NSW 2006 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney NSW 2006 Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney NSW 2006 Australia
| |
Collapse
|
9
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
10
|
Functionalizable Glyconanoparticles for a Versatile Redox Platform. NANOMATERIALS 2021; 11:nano11051162. [PMID: 33946727 PMCID: PMC8146528 DOI: 10.3390/nano11051162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022]
Abstract
A series of new glyconanoparticles (GNPs) was obtained by self-assembly by direct nanoprecipitation of a mixture of two carbohydrate amphiphilic copolymers consisting of polystyrene-block-β-cyclodextrin and polystyrene-block-maltoheptaose with different mass ratios, respectively 0–100, 10–90, 50–50 and 0–100%. Characterizations for all these GNPs were achieved using dynamic light scattering, scanning and transmission electron microscopy techniques, highlighting their spherical morphology and their nanometric size (diameter range 20–40 nm). In addition, by using the inclusion properties of cyclodextrin, these glyconanoparticles were successfully post-functionalized using a water-soluble redox compound, such as anthraquinone sulfonate (AQS) and characterized by cyclic voltammetry. The resulting glyconanoparticles exhibit the classical electroactivity of free AQS in solution. The amount of AQS immobilized by host–guest interactions is proportional to the percentage of polystyrene-block-β-cyclodextrin entering into the composition of GNPs. The modulation of the surface density of the β-cyclodextrin at the shell of the GNPs may constitute an attractive way for the elaboration of different electroactive GNPs and even GNPs modified by biotinylated proteins.
Collapse
|
11
|
Thodikayil AT, Sharma S, Saha S. Engineering Carbohydrate-Based Particles for Biomedical Applications: Strategies to Construct and Modify. ACS APPLIED BIO MATERIALS 2021; 4:2907-2940. [PMID: 35014384 DOI: 10.1021/acsabm.0c01656] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Carbohydrate-based micro/nanoparticles have gained significant attention for various biomedical applications such as targeted/triggered/controlled drug delivery, bioimaging, biosensing, etc., because of their prominent characteristics like biocompatibility, biodegradability, hydrophilicity, and nontoxicity as well as nonimmunogenicity. Most importantly, the ability of the nanoparticles to recognize specific cell sites by targeting cell surface receptors makes them a promising candidate for designing a targeted drug delivery system. These particles may either comprise polysaccharides/glycopolymers or be integrated with various polymeric/inorganic nanoparticles such as gold, silver, silica, iron, etc., to reduce the toxicity of the inorganic nanoparticles and thus facilitate their cellular insertion. Various synthetic methods have been developed to fabricate carbohydrate-based or carbohydrate-conjugated inorganic/polymeric nanoparticles. In this review, we have highlighted the recently developed synthetic approaches to afford carbohydrate-based particles along with their significance in various biomedical applications.
Collapse
Affiliation(s)
| | - Shivangi Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
12
|
Miomandre F, Audebert P. 1,2,4,5-Tetrazines: An intriguing heterocycles family with outstanding characteristics in the field of luminescence and electrochemistry. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2020.100372] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Yao X, Huang P, Nie Z. Cyclodextrin-based polymer materials: From controlled synthesis to applications. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.03.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Gross AJ, Chen X, Giroud F, Travelet C, Borsali R, Cosnier S. Redox-Active Glyconanoparticles as Electron Shuttles for Mediated Electron Transfer with Bilirubin Oxidase in Solution. J Am Chem Soc 2017; 139:16076-16079. [DOI: 10.1021/jacs.7b09442] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrew J. Gross
- Department
of Molecular Chemistry, DCM, Univ. Grenoble Alpes, CNRS, 38000 Grenoble, France
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Xiaohong Chen
- Department
of Molecular Chemistry, DCM, Univ. Grenoble Alpes, CNRS, 38000 Grenoble, France
| | - Fabien Giroud
- Department
of Molecular Chemistry, DCM, Univ. Grenoble Alpes, CNRS, 38000 Grenoble, France
| | | | | | - Serge Cosnier
- Department
of Molecular Chemistry, DCM, Univ. Grenoble Alpes, CNRS, 38000 Grenoble, France
| |
Collapse
|