1
|
Nguyen TD, Roh S, Nguyen MTN, Lee JS. Structural Control of Nanofibers According to Electrospinning Process Conditions and Their Applications. MICROMACHINES 2023; 14:2022. [PMID: 38004879 PMCID: PMC10673317 DOI: 10.3390/mi14112022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023]
Abstract
Nanofibers have gained much attention because of the large surface area they can provide. Thus, many fabrication methods that produce nanofiber materials have been proposed. Electrospinning is a spinning technique that can use an electric field to continuously and uniformly generate polymer and composite nanofibers. The structure of the electrospinning system can be modified, thus making changes to the structure, and also the alignment of nanofibers. Moreover, the nanofibers can also be treated, modifying the nanofiber structure. This paper thoroughly reviews the efforts to change the configuration of the electrospinning system and the effects of these configurations on the nanofibers. Excellent works in different fields of application that use electrospun nanofibers are also introduced. The studied materials functioned effectively in their application, thereby proving the potential for the future development of electrospinning nanofiber materials.
Collapse
Affiliation(s)
| | | | | | - Jun Seop Lee
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si 13120, Gyeonggi-Do, Republic of Korea; (T.D.N.); (S.R.); (M.T.N.N.)
| |
Collapse
|
2
|
Yang Y, Guo Z, Liu W. Special Superwetting Materials from Bioinspired to Intelligent Surface for On-Demand Oil/Water Separation: A Comprehensive Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204624. [PMID: 36192169 DOI: 10.1002/smll.202204624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/24/2022] [Indexed: 05/27/2023]
Abstract
Since superwetting surfaces have emerged, on-demand oil/water separation materials serve as a new direction for meeting practical needs. This new separation mode uses a single porous material to allow oil-removing and water-removing to be achieved alternately. In this review, the fundamentals of wettability are systematically summarized in oil/water separation. Most importantly, the two states, bioinspired surface and intelligent surface, are summarized for on-demand oil/water separation. Specifically, bioinspired surfaces include micro/nanostructures, bioinspired chemistry, Janus-featured surfaces, and dual-superlyophobic surfaces that these superwetting materials can possess asymmetric wettability in one structure system or opposite underliquid wettability by prewetting. Furthermore, an intelligent surface can be adopted by various triggers such as pH, thermal and photo stimuli, etc., to control wettability for switchable oil/water separation reversibly, expressing a thought beyond nature to realize innovative oil/water separation by external stimuli. Remarkably, this review also discusses the advantages of all the materials mentioned above, expanding the separation scope from the on-demand oil/water mixtures to the multiphase immiscible liquid-liquid mixtures. Finally, the prospects of on-demand oil/water separation materials are also concluded.
Collapse
Affiliation(s)
- Yong Yang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
3
|
Liu Y, Wu C, Zhang Y, Zhao Q, Zhang B. Smart Hierarchical Zeolitic Imidazolate Framework-Coated Stainless Steel Meshes with Switchable Wettability for Oil/Water Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8374-8381. [PMID: 35771126 DOI: 10.1021/acs.langmuir.2c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Selective filtration based on superwetting materials has brought about widespread attention in the field of oil/water separation. In this study, a ZIF-L@8-coated stainless steel mesh (ZIF-L@8-coated SSM) was prepared via in situ growth of two-dimensional leaf-shaped ZIF-L nanosheets on SSM, followed by heterogeneous epitaxial growth of ZIF-8 on a ZIF-L coating. The synthesized ZIF-L@8-coated SSM with a hierarchical micro/nanoscale structure exhibited outstanding switchable wettability between underwater superoleophobicity and underoil superhydrophobicity upon respective prewetting using water and oil without additional external stimuli. It possessed excellent separation performances and stabilities with respect to various types of oil/water mixtures. The switchable wettability mechanism was analyzed and elucidated in detail. The synthesized ZIF-L@8-coated SSM with switchable wettability in this study would have great potential in on-demand oil/water separation.
Collapse
Affiliation(s)
- Yong Liu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 135 Ya Guan Road, Jinnan District, Tianjin 300350, China
| | - Chao Wu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 135 Ya Guan Road, Jinnan District, Tianjin 300350, China
| | - Yao Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 135 Ya Guan Road, Jinnan District, Tianjin 300350, China
| | - Qi Zhao
- School of Science and Engineering, University of Dundee, Nethergate, Dundee DD1 4HN, UK
| | - Baoquan Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 135 Ya Guan Road, Jinnan District, Tianjin 300350, China
| |
Collapse
|
4
|
Shape-Memory Materials via Electrospinning: A Review. Polymers (Basel) 2022; 14:polym14050995. [PMID: 35267818 PMCID: PMC8914658 DOI: 10.3390/polym14050995] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/16/2022] [Accepted: 02/26/2022] [Indexed: 01/27/2023] Open
Abstract
This review aims to point out the importance of the synergic effects of two relevant and appealing polymeric issues: electrospun fibers and shape-memory properties. The attention is focused specifically on the design and processing of electrospun polymeric fibers with shape-memory capabilities and their potential application fields. It is shown that this field needs to be explored more from both scientific and industrial points of view; however, very promising results have been obtained up to now in the biomedical field and also as sensors and actuators and in electronics.
Collapse
|
5
|
Wang L, Liang X, Xu G, Hu J. Changeable wettability of electrospun membrane by adjusting self‐assembly micelles structure of amphiphilic block copolymer. NANO SELECT 2021. [DOI: 10.1002/nano.202100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Lingxiao Wang
- School of Light Industry and Engineering South China University of Technology Guangzhou China
- National Engineering Research Center of Paper making and Pollution Control Guangzhou China
| | - Xinyue Liang
- School of Light Industry and Engineering South China University of Technology Guangzhou China
- National Engineering Research Center of Paper making and Pollution Control Guangzhou China
| | - Guilong Xu
- School of Light Industry and Engineering South China University of Technology Guangzhou China
- National Engineering Research Center of Paper making and Pollution Control Guangzhou China
| | - Jian Hu
- School of Light Industry and Engineering South China University of Technology Guangzhou China
- National Engineering Research Center of Paper making and Pollution Control Guangzhou China
| |
Collapse
|
6
|
Zhang R, Guo Z. Facile preparation of a superamphiphilic nitrocellulose membrane enabling on-demand and energy-efficient separation of oil/water mixtures and emulsions by prewetting. Biomater Sci 2021; 9:5559-5568. [PMID: 34236061 DOI: 10.1039/d1bm00521a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A membrane with superamphiphilicity presents many advantages in various oil/water separation applications due to its switchable wettability by prewetting. However, it is still a great challenge to switch between two types of superwettability on a single cellulose surface by switching between different liquid media. Herein, in order to obtain in-air superamphiphilic and under-liquid dual superlyophobic membranes, dopamine-modified nitrocellulose membranes (with a pore size of 0.22 μm) were prepared via a facile immersion modification approach. Under 0.08 MPa, the as-prepared NC membrane switches wettability by prewetting to achieve on-demand oil/water separation, and the separation efficiency is more than 99.9%. Futhermore, the membrane prepared in this work can also be applied to high-efficiency on-demand separation of surfactant-stabilized emulsions with a separation efficiency greater than 99.0%. Hence, the PDA-modified NC membrane is a promising controllable oil/water separation material in terms of repeatable cycles, separation efficiency, flux, prominent long-term durability and anti-oil fouling.
Collapse
Affiliation(s)
- Rong Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China. and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China. and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
7
|
Chang J, Ong C, Shi Y, Yuan J, Ahmed Z, Wang P. Smart Sand by Surface Engineering: Toward Controllable Oil/Water Separation. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jian Chang
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Chisiang Ong
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Yusuf Shi
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Zeyad Ahmed
- Water Treatment & Conservation Division, Environmental Protection Department, Saudi Aramco, Dhahran 31311, Saudi Arabia
| | - Peng Wang
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| |
Collapse
|
8
|
Schoeller J, Itel F, Wuertz-Kozak K, Fortunato G, Rossi RM. pH-Responsive Electrospun Nanofibers and Their Applications. POLYM REV 2021. [DOI: 10.1080/15583724.2021.1939372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jean Schoeller
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St.Gallen, Switzerland
- Department of Health Science and Technology, ETH Zürich, Zürich, Switzerland
| | - Fabian Itel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St.Gallen, Switzerland
| | - Karin Wuertz-Kozak
- Department of Health Science and Technology, ETH Zürich, Zürich, Switzerland
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, New York, USA
| | - Giuseppino Fortunato
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St.Gallen, Switzerland
| | - René M. Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St.Gallen, Switzerland
- Department of Health Science and Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
9
|
Su R, Li S, Wu W, Song C, Liu G, Yu Y. Recent progress in electrospun nanofibrous membranes for oil/water separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117790] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Zheng W, Huang J, Li S, Ge M, Teng L, Chen Z, Lai Y. Advanced Materials with Special Wettability toward Intelligent Oily Wastewater Remediation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:67-87. [PMID: 33382588 DOI: 10.1021/acsami.0c18794] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Clean water resources are essential to our human society. Oil leakage has caused water contamination, which leads to serious shortage of clean water, environmental deterioration, and even increasing number of deaths. It is of great urgency to solve the oil-polluted water problems worldwide. Efficient oil/water separation, especially emulsified oil/water mixture separation, is widely used to mitigate water pollution issues. Recently, advanced materials with special wettability have been employed for oily wastewater remediation. Moreover, by endowing them with various intelligent functions, smart materials can effectively separate complex oil/water mixtures including extremely stable emulsions. In this review, oil/water separation mechanisms and various fabrication methods of special wettability separation materials are summarized. We highlight the special wettable materials with intelligent functions, including photocatalytic, self-healing, and switchable oil/water separation materials, which can achieve self-cleaning, self-healing, and efficient oily wastewater treatment. In each section, the acting mechanisms, fabricating technologies, representative studies, and separation efficiency are briefly introduced. Lastly, the challenges and outlook for oil/water separation based on the special wettability materials are discussed.
Collapse
Affiliation(s)
- Weiwei Zheng
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jianying Huang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Shuhui Li
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China
| | - Mingzheng Ge
- School of Textile & Clothing, National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, P. R. China
| | - Lin Teng
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
11
|
Zhang X, Chen Q, Wei R, Jin L, He C, Zhao W, Zhao C. Design of poly ionic liquids modified cotton fabric with ion species-triggered bidirectional oil-water separation performance. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123163. [PMID: 32569985 DOI: 10.1016/j.jhazmat.2020.123163] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 05/16/2023]
Abstract
A novel ion species-responsive oil-water separation material was designed: poly ionic liquid (PIL) was carried on the graphene oxide (GO) by free radical polymerization, then the PIL modified GO sheets (GO-PIL) were coated on cotton fabric (CF). The wettability of the obtained GO-PIL coated CF (GO-PIL@CF) could be switched between hydrophilic and hydrophobic state with the exchange of different types of counteranions. Water contact angle of the GO-PIL@CF could be switched between 0 to about 145°; and correspondingly the underwater oil contact angle would change between about 148 to 0°. Because of the switchable wettability, the GO-PIL@CF could selectively separate water or oil from the oil-water mixtures. Meanwhile, due to the loose fibrous structure, the GO-PIL@CF showed relatively high permeate fluxes; in the hydrophilic state the water flux was about 36000 L/m2h, while in the hydrophobic state the fluxes for the low-density oils (n-hexane and toluene) were about 59,000 and 65000 L/m2h, respectively. Consequently, the separation processes could be completed simply by gravity. In addition, because of the soft and flexible mechanical property, the GO-PIL@CF could serve as wrappage of traditional absorbents and be applied directly as absorbent to remove water or oil selectively from their mixtures.
Collapse
Affiliation(s)
- Xiang Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China; Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesser Str. 18, Karlsruhe, 76131, Germany
| | - Qin Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Ran Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Lunqiang Jin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, People's Republic of China.
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.
| |
Collapse
|
12
|
A review of smart electrospun fibers toward textiles. COMPOSITES COMMUNICATIONS 2020; 22:100506. [PMCID: PMC7497400 DOI: 10.1016/j.coco.2020.100506] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 05/24/2023]
Abstract
Electrospinning as a versatile technology has attracted a large amount of attention in the past few decades due to the facile way to produce micro- and nano-scale fibers featuring flexibility, large specific surface area and high porosity. Stimuli-responsive polymers are a class of smart materials that are capable of sensing surround environment and interacting with them. Therefore, the combination of electrospinning and smart materials could have a great deal of benefits over the development of smart fibers. In this review, it offers a comprehensive understanding of smart electrospun fibers toward textile applications. Firstly, the definition of smart fibers and the differences between interactive fibers and passive interactive fibers are briefly introduced. Then some interactive fibers made from temperature-, pH-, light-, electric field/electricity-, magnetic field-, multi-responsive polymers, as well as some polymers featuring piezoelectric and triboelectric effect which are suitable flexible electrics, are emphasized with their applications in the form of electrospun fibers. Afterwards, some passive and hybrid smart electrospun fibers are introduced. Finally, associated challenges and perspectives are summarized and discussed. Understanding of passive smart electrospun fibers and interactive smart electrospun fibers. The recent progress in flexible electronics from electrospun fibers. The recent progress in stimuli-responsive polymers applied in interactive smart electrospun fibers.
Collapse
|
13
|
Wang Y, Zhou G, Yan Y, Shao B, Hou J. Construction of Natural Loofah/Poly(vinylidene fluoride) Core-Shell Electrospun Nanofibers via a Controllable Janus Nozzle for Switchable Oil-Water Separation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51917-51926. [PMID: 33147949 DOI: 10.1021/acsami.0c12912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing microstructure and multifunctional membranes toward switchable oil-water separation has been highly desired in oily wastewater treatment. Herein, a controllable Janus nozzle was employed to innovatively electrospin natural loofah/poly(vinylidene fluoride) (PVDF) nanofibers with a core-shell structure for gravity-driven water purification. By adjusting flow rates of the PVDF component, a core-shell structure of the composite fibers was obtained caused by the lower viscosity and surface tension of PVDF. In addition, a steady laminar motion of fluids was constructed based on the Reynolds number of flow fields being less than 2300. In order to investigate the formation mechanism of the microstructure, a series of Janus nozzles with different lengths were controlled to study the blending of the two immiscible components. The gravity difference between the two components might cause disturbance of the jet motion, and the PVDF component unidirectionally encapsulated the loofah to form the shell layer. Most importantly, the dry loofah/PVDF membranes could separate oil from an oil-water mixture, while the water-wetted membrane exhibited switchable separation that could separate water from the mixtures because of the hydroxyl groups of the hydrophilic loofah hydrogen-bonding with water molecules and forming a hydration layer. The composite fibers can be applied in water remediation in practice, and the method to produce core-shell structures seems attractive for technological applications involving macroscopic core-shell nano- or microfibers.
Collapse
Affiliation(s)
- Yihuan Wang
- Key laboratory of Automobile Materials of Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Guibin Zhou
- Key laboratory of Automobile Materials of Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Yifan Yan
- Key laboratory of Automobile Materials of Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Bohui Shao
- Key laboratory of Automobile Materials of Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Jiazi Hou
- Key laboratory of Automobile Materials of Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130025, China
| |
Collapse
|
14
|
Huang X, Zhang S, Xiao W, Luo J, Li B, Wang L, Xue H, Gao J. Flexible PDA@ACNTs decorated polymer nanofiber composite with superhydrophilicity and underwater superoleophobicity for efficient separation of oil-in-water emulsion. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118500] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
The change from hydrophilicity to hydrophobicity of HEC/PAA complex membrane for water-in-oil emulsion separation: Thermal versus chemical treatment. Carbohydr Polym 2020; 241:116343. [PMID: 32507169 DOI: 10.1016/j.carbpol.2020.116343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 11/20/2022]
Abstract
Recently, the growing environmental concerns and economic demands drive the need to develop effective solutions for the treatment of oily wastewater, especially for oil/water emulsions. In this work, hydroxyethyl cellulose (HEC) and poly(acrylic acid) (PAA) are selected to form a complex membrane on the surface of poly(ethylene terephthalate) (PET) nonwoven via layer-by-layer assembly for separation of water-in-oil emulsions. In order to obtain a hydrophobic surface, two post-treatment methods, thermally and chemically induced cross-linking, are applied to modify the hydrogen-bonded HEC/PAA complex membrane. The properties of the two treated HEC/PAA-PET membranes, including surface morphology, chemical structure, chemical composition, thermal stability, mechanical property, and membrane wettability are systematically studied and compared to each other. When the membranes are applied as oil filters to treat water-in-oil emulsions with different concentrations, both of the modified membranes show excellent separation efficiencies with a more than 99.4% rejection for all tested water-in-oil emulsions.
Collapse
|
16
|
Zhang N, Qi Y, Zhang Y, Luo J, Cui P, Jiang W. A Review on Oil/Water Mixture Separation Material. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02524] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ning Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China
| | - Yunfei Qi
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China
| | - Yana Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210014, P. R. China
| | - Jialiang Luo
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210014, P. R. China
| | - Ping Cui
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China
| | - Wei Jiang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210014, P. R. China
| |
Collapse
|
17
|
Liang Y, Kim S, Yang E, Choi H. Omni-Directional Protected Nanofiber Membranes by Surface Segregation of PDMS-Terminated Triblock Copolymer for High-Efficiency Oil/Water Emulsion Separation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25324-25333. [PMID: 32379960 DOI: 10.1021/acsami.0c05559] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An excellent antifouling membrane with high permeate flux is required for oil/water emulsion separation due to ever-increasing oily industrial wastewater. Thus, an intriguing integration of the Omni-directional protected porous membrane that combines a high porosity nanofiber membrane with a surface segregation mechanism is established for the first time. By applying polydimethylsiloxane(PDMS)-terminated triblock copolymer, the enrichment of the hydrophilic poly(ethylene oxide) (PEO) segment and the nonpolar PDMS segment on the surface of the nanofiber endowed the nanofiber membrane with underwater oleophobicity and low oil adhesion force, exhibiting oil resistance as well as oil release property. An ultrahigh permeate flux of ∼7115 L m-2 h-1 with a separation efficiency of ∼97.88% is achieved under the driving force of gravity (∼0.9 kPa), which is the highest permeate flux ever reported under similar conditions. Moreover, the surface segregation nanofiber membrane shows excellent reusability and ultrahigh permeate flux with the assistance of stirring in a long-term test, revealing the promising performances for the further particular application of oily wastewater.
Collapse
Affiliation(s)
- Yejin Liang
- School of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea
| | - Soyoung Kim
- School of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea
| | - Eunmok Yang
- School of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea
| | - Heechul Choi
- School of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea
| |
Collapse
|
18
|
Wang X, Liu Y, Zhang M, Luo Z, Yang D. Beadlike Porous Fibrous Membrane with Switchable Wettability for Efficient Oil/Water Separation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Xiaotong Wang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yaxin Liu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Zhang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhuo Luo
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongzhi Yang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
19
|
|
20
|
Facile fabrication of superhydrophobic and superoleophilic green ceramic hollow fiber membrane derived from waste sugarcane bagasse ash for oil/water separation. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
21
|
Ma L, He J, Wang J, Zhou Y, Zhao Y, Li Y, Liu X, Peng L, Qu M. Functionalized Superwettable Fabric with Switchable Wettability for Efficient Oily Wastewater Purification, in Situ Chemical Reaction System Separation, and Photocatalysis Degradation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43751-43765. [PMID: 31659888 DOI: 10.1021/acsami.9b15952] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In view of the increasing serious water environmental and human health issues caused by oily wastewater, functional superwetting materials with controllable wettability, high durability, and scale preparation methods are highly desired for efficient oil/water separation. In this respect, a pH-responsive multifunctional fabric with switchable surface wettability, favorable mechanical durability, and self-repairing property has been developed via decorating the modified TiO2 nanoparticles of special surface compositions onto the fabric surface. By virtue of the intelligent surface wettability, the resulted superwettable fabric can be used for controllable separation of multiple oil/water mixtures, particularly the complicated oil/water/oil ternary mixtures, showing excellent separation efficiency and high filtration flux even under extreme pH conditions, which is comparable to most of the commercial and currently reported functionalized membranes. Simultaneously, the negative pressure-driven, continuous, high-speed, and highly efficient in situ purification of large volumes of oily wastewater is successfully achieved based on the resulted superwettable fabric. More importantly, with the as-prepared superwettable fabric as the filtration membrane, the continuous in situ separation of the synthetic oily product from the corresponding chemical reaction systems is well performed without interruption of the reaction, demonstrating outstanding merits of simplifying procedures, saving operation time, and increasing product yield. In addition, it is worth noting that the alkali-treated superhydrophilic fabric presents superior photocatalysis self-cleaning performance for various water-soluble organic pollutants. These unique advantages of the functionalized smart superwettable fabric ensure that it can be competent in multifarious relevant challenging settings, indicating a broad prospect for diverse practical applications, especially the oily wastewater treatment and multiple industrial operation optimizations.
Collapse
Affiliation(s)
- Lili Ma
- College of Chemistry and Chemical Engineering , Xi'an University of Science and Technology , Xi'an 710054 , Shaanxi , China
| | - Jinmei He
- College of Chemistry and Chemical Engineering , Xi'an University of Science and Technology , Xi'an 710054 , Shaanxi , China
| | - Jiaxin Wang
- College of Chemistry and Chemical Engineering , Xi'an University of Science and Technology , Xi'an 710054 , Shaanxi , China
| | - Yichen Zhou
- College of Chemistry and Chemical Engineering , Xi'an University of Science and Technology , Xi'an 710054 , Shaanxi , China
| | - Yu Zhao
- College of Chemistry and Chemical Engineering , Xi'an University of Science and Technology , Xi'an 710054 , Shaanxi , China
| | - Yuangang Li
- College of Chemistry and Chemical Engineering , Xi'an University of Science and Technology , Xi'an 710054 , Shaanxi , China
| | - Xiangrong Liu
- College of Chemistry and Chemical Engineering , Xi'an University of Science and Technology , Xi'an 710054 , Shaanxi , China
| | - Lei Peng
- College of Chemistry and Chemical Engineering , Xi'an University of Science and Technology , Xi'an 710054 , Shaanxi , China
| | - Mengnan Qu
- College of Chemistry and Chemical Engineering , Xi'an University of Science and Technology , Xi'an 710054 , Shaanxi , China
| |
Collapse
|
22
|
Gangemi CMA, Iudici M, Spitaleri L, Randazzo R, Gaeta M, D’Urso A, Gulino A, Purrello R, Fragalà ME. Polyethersulfone Mats Functionalized with Porphyrin for Removal of Para-nitroaniline from Aqueous Solution. Molecules 2019; 24:molecules24183344. [PMID: 31540076 PMCID: PMC6766941 DOI: 10.3390/molecules24183344] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023] Open
Abstract
The dispersion of para-nitroaniline (p-NA) in water poses a threat to the environment and human health. Therefore, the development of functional adsorbents to remove this harmful compound is crucial to the implementation of wastewater purification strategies, and electrospun mats represent a versatile and cost-effective class of materials that are useful for this application. In the present study, we tested the ability of some polyethersulfone (PES) nanofibers containing adsorbed porphyrin molecules to remove p-NA from water. The functional mats in this study were obtained by two different approaches based on fiber impregnation or doping. In particular, meso-tetraphenyl porphyrin (H2TPP) or zinc(II) meso-tetraphenyl porphyrin (ZnTPP) were immobilized on the surface of PES fiber mats by dip-coating or added to the PES electrospun solution to obtain porphyrin-doped PES mats. The presence of porphyrins on the fiber surfaces was confirmed by UV–Vis spectroscopy, fluorescence measurements, and XPS analysis. p-NA removal from water solutions was spectrophotometrically detected and evaluated.
Collapse
Affiliation(s)
- Chiara Maria Antonietta Gangemi
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria, 6-95100 Catania, Italy; (C.M.A.G.); (M.I.); (L.S.); (R.R.); (M.G.); (A.G.); (R.P.)
| | - Mario Iudici
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria, 6-95100 Catania, Italy; (C.M.A.G.); (M.I.); (L.S.); (R.R.); (M.G.); (A.G.); (R.P.)
| | - Luca Spitaleri
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria, 6-95100 Catania, Italy; (C.M.A.G.); (M.I.); (L.S.); (R.R.); (M.G.); (A.G.); (R.P.)
- INSTM UdR of Catania, Viale A. Doria, 6-95125 Catania, Italy
| | - Rosalba Randazzo
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria, 6-95100 Catania, Italy; (C.M.A.G.); (M.I.); (L.S.); (R.R.); (M.G.); (A.G.); (R.P.)
| | - Massimiliano Gaeta
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria, 6-95100 Catania, Italy; (C.M.A.G.); (M.I.); (L.S.); (R.R.); (M.G.); (A.G.); (R.P.)
| | - Alessandro D’Urso
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria, 6-95100 Catania, Italy; (C.M.A.G.); (M.I.); (L.S.); (R.R.); (M.G.); (A.G.); (R.P.)
| | - Antonino Gulino
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria, 6-95100 Catania, Italy; (C.M.A.G.); (M.I.); (L.S.); (R.R.); (M.G.); (A.G.); (R.P.)
- INSTM UdR of Catania, Viale A. Doria, 6-95125 Catania, Italy
| | - Roberto Purrello
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria, 6-95100 Catania, Italy; (C.M.A.G.); (M.I.); (L.S.); (R.R.); (M.G.); (A.G.); (R.P.)
| | - Maria Elena Fragalà
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria, 6-95100 Catania, Italy; (C.M.A.G.); (M.I.); (L.S.); (R.R.); (M.G.); (A.G.); (R.P.)
- INSTM UdR of Catania, Viale A. Doria, 6-95125 Catania, Italy
- Correspondence: ; Tel.: +390957385149
| |
Collapse
|
23
|
Yan T, Zhang T, Zhao G, Zhang C, Li C, Jiao F. Magnetic textile with pH-responsive wettability for controllable oil/water separation. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Al-Husaini IS, Yusoff ARM, Lau WJ, Ismail AF, Al-Abri MZ, Wirzal MDH. Iron oxide nanoparticles incorporated polyethersulfone electrospun nanofibrous membranes for effective oil removal. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.06.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
25
|
Tehrani-Bagha AR. Waterproof breathable layers - A review. Adv Colloid Interface Sci 2019; 268:114-135. [PMID: 31022590 DOI: 10.1016/j.cis.2019.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/25/2019] [Accepted: 03/08/2019] [Indexed: 12/31/2022]
Abstract
Waterproof breathable layers (WPBLs) can be classified into two large groups of hydrophilic nonporous and hydrophobic porous layers. These layers (e.g., fabrics, films, membranes, and meshes) can be produced by various continuous and non-continuous processes such as coating, laminating, film stretching, casting, etc. The most common methods for production, characterization, and testing of WPBLs are presented and discussed in light of recent publications. The materials with high level of waterproofness and breathability are often used in outerwear for winter sports, sailing apparel, raincoats, military/police jackets, backpacks, tents, cargo raps, footwear and etc. WPBLs can also be used for other specialized applications such as membrane distillation, oil-water filtration, and wound dressing. These applications are discussed by presenting several good examples. The main challenge in the production of these layers is to compromise between waterproofness and breathability with opposing nature. The related research gaps, challenges, and future outlook are highlighted to shed more light on the topic.
Collapse
|
26
|
Superhydrophobic sponge containing silicone oil-modified layered double hydroxide sheets for rapid oil-water separations. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.03.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
PP/TiO 2 Melt-Blown Membranes for Oil/Water Separation and Photocatalysis: Manufacturing Techniques and Property Evaluations. Polymers (Basel) 2019; 11:polym11050775. [PMID: 31052432 PMCID: PMC6572468 DOI: 10.3390/polym11050775] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 11/22/2022] Open
Abstract
This study aims to produce polypropylene (PP)/titanium dioxide (TiO2) melt-blown membranes for oil/water separation and photocatalysis. PP and different contents of TiO2 are melt-blended to prepare master batches using a single screw extruder. The master batches are then fabricated into PP/TiO2 melt-blown membranes. The thermal properties of the master batches are analyzed using differential scanning calorimetry and thermogravimetric analysis, and their particle dispersion and melt-blown membrane morphology are evaluated by scanning electron microscopy. TiO2 loaded on melt-blown membranes is confirmed by X-ray diffraction (XRD). The oil/water separation ability of the melt-blown membranes is evaluated to examine the influence of TiO2 content. Results show that the thermal stability and photocatalytic effect of the membranes increase with TiO2 content. TiO2 shows a good dispersion in the PP membranes. After 3 wt.% TiO2 addition, crystallinity increases by 6.4%, thermal decomposition temperature increases by 25 °C compared with pure PP membranes. The resultant PP/TiO2 melt-blown membrane has a good morphology, and better hydrophobicity even in acetone solution or 6 h ultraviolet irradiation, and a high oil flux of about 15,000 L·m−2·h−1. Moreover, the membranes have stabilized oil/water separation efficiency after being repeatedly used. The proposed melt-blown membranes are suitable for mass production for separating oil from water in massively industrial dyeing wastewater.
Collapse
|
28
|
Al-Husaini I, Yusoff A, Lau W, Ismail A, Al-Abri M, Al-Ghafri B, Wirzal M. Fabrication of polyethersulfone electrospun nanofibrous membranes incorporated with hydrous manganese dioxide for enhanced ultrafiltration of oily solution. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.10.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
29
|
Chen L, Wang S, Yu Q, Topham PD, Chen C, Wang L. A comprehensive review of electrospinning block copolymers. SOFT MATTER 2019; 15:2490-2510. [PMID: 30860535 DOI: 10.1039/c8sm02484g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electrospinning provides a versatile and cost-effective route for the generation of continuous nanofibres with high surface area-to-volume ratio from various polymers. In parallel, block copolymers (BCPs) are promising candidates for many diverse applications, where nanoscale operation is exploited, owing to their intrinsic self-assembling behaviour at these length scales. Judicious combination of BCPs (with their ability to make nanosized domains at equilibrium) and electrospinning (with its ability to create nano- and microsized fibres and particles) allows one to create BCPs with high surface area-to-volume ratio to deliver higher efficiency or efficacy in their given application. Here, we give a comprehensive overview of the wide range of reports on BCP electrospinning with focus placed on the use of molecular design alongside control over specific electrospinning type and post-treatment methodologies to control the properties of the resultant fibrous materials. Particular attention is paid to the applications of these materials, most notably, their use as biomaterials, separation membranes, sensors, and electronic materials.
Collapse
Affiliation(s)
- Lei Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | | | | | | | | | | |
Collapse
|
30
|
Yu L, Kang Y, Tang H, Zhou J. Functionalization of Commercial Sand Core Funnels as Hydrophobic Materials with Novel Physicochemical Properties. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7510-7521. [PMID: 30676717 DOI: 10.1021/acsami.8b18396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A solid surface morphology is of great importance for the fundamental research in the field of hydrophobic materials. Commercial sand core funnels (SCs) are embedded with multilevel pore size and surface roughness, which are excellent models to study the mechanism of surface wettability. This article described a simple, green, and facile method to fabricate hydrophobic surfaces on SCs via reacting with perfluorooctyltriethoxysilane (PFTS) vapor. Systematic analyses on the reaction, properties, and applications of the PFTS-modified SCs were conducted, which involved the reaction time and temperature, water resistance, mechanical durability, self-cleaning test, surface adhesion, and underoil superhydrophobicity. The water contact angle of the modified SCs increased with a decrease of the pore size and an increase of the surface roughness of the sand core particles. The wettability of the modified SCs agrees well with the intermediate states between Wenzel and Cassie-Baxter. The PFTS-modified SCs retained excellent chemical stability in rigid conditions and good mechanical properties. The hydrophobic SCs showed oil/water separation performance with excellent efficiency, reusability, and high flux. Especially for the PFTS-modified SCs with small pore sizes, water-in-oil emulsion separation was successfully realized. The easily accessible, relatively cheap raw materials and facile process in this work are very desirable to obtain a specific wetting surface, which will offer promising applications in various fields.
Collapse
|
31
|
Chen S, Lv C, Hao K, Jin L, Xie Y, Zhao W, Sun S, Zhang X, Zhao C. Multifunctional negatively-charged poly (ether sulfone) nanofibrous membrane for water remediation. J Colloid Interface Sci 2018; 538:648-659. [PMID: 30572229 DOI: 10.1016/j.jcis.2018.12.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 01/09/2023]
Abstract
Multifunctional materials, which can effectively and simultaneously remove various water-soluble contaminants like dyes and heavy metal ions, and separate oil from water, are urgent to meet increasing challenges on wastewater remediation. Herein, a cross-linked poly (acrylic acid) (PAA) modified poly (ether sulfone) nanofibrous membrane (NFM) was fabricated by a facile in-situ pre-reaction followed by electrospinning. The as-prepared NFM showed excellent hydrophilicity and underwater lipophobicity, therefore expressed excellent water permeability with high water flux (about 5142 L m2 h-1). As a result, under solely driven by gravity, the NFM was capable to separate emulsified oil/water emulsion and a wide range of oil/water mixtures. Moreover, repeating separation tests indicated that the NFM had great long-term sustainability even after ten separation cycles. In addition, due to the introduction of PAA and the large surface-to-volume ratio, the NFM also expressed rapid adsorption capacity for cationic dyes as well as heavy metal ions; thus could simultaneously remove these contaminants during the oil/water separation process. Furthermore, the NFM could be also decorated by Ag NPs to endow the membranes with remarkable antibacterial ability against both E. coli and S. aureus. Our findings strongly suggested that the multifunctional NFM may have great potential in treating complicated wastewater.
Collapse
Affiliation(s)
- Shengqiu Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chunyan Lv
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Kai Hao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Lunqiang Jin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; School of Chemistry and Chemical Engineering, State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yi Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shudong Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xiang Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
32
|
Li JJ, Zhou YN, Luo ZH. Polymeric materials with switchable superwettability for controllable oil/water separation: A comprehensive review. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.06.009] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Liu J, Shi G, Liu Y, Chen S, Shang C. Creating a smart textile via the self-assembly of responsive polymer particles on poly(ethylene terephthalate) fibers. J Appl Polym Sci 2018. [DOI: 10.1002/app.46834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jiguang Liu
- Department of Materials Science and Engineering; Beijing Institute of Fashion Technology; Beijing 100029 China
| | - Gaoli Shi
- Department of Materials Science and Engineering; Beijing Institute of Fashion Technology; Beijing 100029 China
| | - Yue Liu
- Department of Materials Science and Engineering; Beijing Institute of Fashion Technology; Beijing 100029 China
| | - Siyan Chen
- Department of Materials Science and Engineering; Beijing Institute of Fashion Technology; Beijing 100029 China
| | - Cong Shang
- Department of Materials Science and Engineering; Beijing Institute of Fashion Technology; Beijing 100029 China
| |
Collapse
|
34
|
Lei L, Zhang Q, Shi S, Zhu S. Highly Porous Poly(high internal phase emulsion) Membranes with "Open-Cell" Structure and CO 2-Switchable Wettability Used for Controlled Oil/Water Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:11936-11944. [PMID: 28968129 DOI: 10.1021/acs.langmuir.7b02539] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polymer membranes with switchable wettability have promising applications in smart separation. Hereby, we report highly porous poly(styrene-co-N,N-(diethylamino)ethyl methacrylate) (i.e., poly(St-co-DEA)) membranes with "open-cell" structure and CO2-switchable wettability prepared from water-in-oil (W/O) high internal phase emulsion (HIPE) templates. The open-cell porous structure facilitates fluid penetration through the membranes. The combination of CO2-switchable functionality and porous microstructure enable the membrane with CO2-switchable wettability from hydrophobic or superoleophilic to hydrophilic or superoleophobic through CO2 treatment in an aqueous system. This type of membrane can be used for gravity-driven CO2-controlled oil/water separation, in which oil selectively penetrates through the membrane and separates from water. After being treated with CO2 switching wettability of the membrane, a reversed separation of water and oil can be achieved. Such a wettability switch is fully reversible, and the membrane could be regenerated through simple removal of CO2 and oil residual through drying. This facile and cost-effective approach represents the development of the first CO2-switchable polyHIPE system, which is promising for smart separation in a large volume.
Collapse
Affiliation(s)
- Lei Lei
- Department of Chemical Engineering, McMaster University , Hamilton, Canada L8S 4L7
| | - Qi Zhang
- College of Chemical Engineering, Zhejiang University of Technology , Hangzhou 310014, China
| | - Shuxian Shi
- Key Laboratory of Carbon Fiber and Functional Polymers (Ministry of Education), Beijing University of Chemical Technology (BUCT) , Beijing 100029, China
| | - Shiping Zhu
- Department of Chemical Engineering, McMaster University , Hamilton, Canada L8S 4L7
| |
Collapse
|
35
|
Liu N, Zhang Q, Qu R, Zhang W, Li H, Wei Y, Feng L. Nanocomposite Deposited Membrane for Oil-in-Water Emulsion Separation with in Situ Removal of Anionic Dyes and Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7380-7388. [PMID: 28485972 DOI: 10.1021/acs.langmuir.7b01281] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The decontamination of various pollutants including oils, organic dyes, and surfactants from water is an unprecedented issue throughout the world. A facile filtration process for in situ multifunctional water purification by employing a low-cost and easy-made catechol-polyethylenimine (PEI) nanocomposite deposited membrane has been designed. In combination with the intrinsic hydrophilicity of amino-rich groups, the resultant membrane possesses superhydrophilicity and underwater superoleophobicity, which is simultaneously advantageous for capturing anionic pollutants due to the electrostatic interaction. Such membrane can be successfully used for sundry surfactant-stabilized oil-in-water emulsions separation and pH-controllable removal of water-soluble dyes and the remaining surfactants at the same time. The excellent characteristics, i.e., fabrication protocol that is easy to scale up, better alkaline resistance, selectively controllable removal ability of anionic dyes, and surfactants with unaltered adsorption performance over 30 consecutive adsorption-desorption-washing cycles, will facilitate its versatility and practicability in environmental remediation and wastewater purification.
Collapse
Affiliation(s)
- Na Liu
- Institute of Materials for Energy and Environment, School of Materials Science and Engineering, Qingdao University , Qingdao 266071, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
36
|
Zhang S, Guo J, Ma X, Peng X, Qiu Z, Ying J, Wang J. Smart PDMS sponge with switchable pH-responsive wetting surface for oil/water separation. NEW J CHEM 2017. [DOI: 10.1039/c7nj01067b] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A smart pH-responsive wetting sponge with controllable absorption or release of water or oil for oil spill clean-up is prepared.
Collapse
Affiliation(s)
- Sai Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Jiahong Guo
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Xiangyan Ma
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Xing Peng
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Zhoutong Qiu
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Jie Ying
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Jikui Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| |
Collapse
|