1
|
Kuwahara T, Ohtsu H, Tsuge K. Synthesis and Photophysical Properties of Silver(I) Coordination Polymers Bridged by Dimethylpyrazine: Comparison of Emissive Excited States between Silver(I) and Copper(I) Congeners. Inorg Chem 2024; 63:8120-8130. [PMID: 38653757 DOI: 10.1021/acs.inorgchem.4c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Highly luminescent silver(I) coordination polymers [Ag2X2(PPh3)2(Me2pyz)]n (X = I, Br, Cl; Me2pyz: 2,5-dimethylpyrazine) were prepared together with copper congeners [Cu2X2(PPh3)2(Me2pyz)]n (X = I, Br). All the complexes showed thermally activated delayed fluorescence from the charge-transfer states in the visible region, from blue to red. The isomorphous relationship among the complexes allowed a detailed discussion of the effect of halogenido ligands and crystal packing on their luminescence energy. The relaxation in the emissive excited states (ESs) was determined to be more remarkable in silver complexes than in copper complexes despite their isomorphous structures, and the electronic effect of halogenido ligands was comparable to the effect of relaxation in emissive ESs.
Collapse
Affiliation(s)
- Taiki Kuwahara
- Graduate School of Science and Engineering, University of Toyama, Toyama, Toyama 930-8555, Japan
| | - Hideki Ohtsu
- Graduate School of Science and Engineering, University of Toyama, Toyama, Toyama 930-8555, Japan
| | - Kiyoshi Tsuge
- Graduate School of Science and Engineering, University of Toyama, Toyama, Toyama 930-8555, Japan
| |
Collapse
|
2
|
Ghanbari B, Asadi Mofarrah L, Clegg JK. Selective Supramolecular Recognition of Nitroaromatics by a Fluorescent Metal-Organic Cage Based on a Pyridine-Decorated Dibenzodiaza-Crown Macrocyclic Co(II) Complex. Inorg Chem 2023; 62:7434-7445. [PMID: 37134276 DOI: 10.1021/acs.inorgchem.3c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Two isomorphous fluorescent (FL) lantern-shaped metal-organic cages 1 and 2 were prepared by coordination-directed self-assembly of Co(II) centers with a new aza-crown macrocyclic ligand bearing pyridine pendant arms (Lpy). The cage structures were determined using single-crystal X-ray diffraction analysis, thermogravimetric, elemental microanalysis, FT-IR spectroscopy, and powder X-ray diffraction. The crystal structures of 1 and 2 show that anions (Cl- in 1 and Br- in 2) are encapsulated within the cage cavity. 1 and 2 bear two coordinated water molecules that are directed inside the cages, surrounded by the eight pyridine rings at the "bottom" and the "roof" of the cage. These hydrogen bond donors, π systems, and the cationic nature of the cages enable 1 and 2 to encapsulate the anions. FL experiments revealed that 1 could detect nitroaromatic compounds by exhibiting selective and sensitive fluorescence quenching toward p-nitroaniline (PNA), recommending a limit of detection of 4.24 ppm. Moreover, the addition of 50 μL of PNA and o-nitrophenol to the ethanolic suspension of 1 led to a significant large FL red shift, namely, 87 and 24 nm, respectively, which were significantly higher than the corresponding values observed in the presence of other nitroaromatic compounds. The titration of the ethanolic suspension of 1, with various concentrations of PNA (>12 μM) demonstrated a concentration-dependent emission red shift. Hence, the efficient FL quenching of 1 was capable of distinguishing the dinitrobenzene isomers. Meanwhile, the observed red shift (10 nm) and quenching of this emission band under the influence of a trace amount of o- and p-nitrophenol isomers also showed that 1 could discriminate between o- and p-nitrophenol. Replacement of the chlorido with a bromido ligand in 1 generated cage 2 which was a more electron-donating cage than 1. The FL experiments showed that 2 was partially more sensitive and less selective toward NACs than 1.
Collapse
Affiliation(s)
- Bahram Ghanbari
- Department of Chemistry, Sharif University of Technology, P.O. Box 11155-3516, Tehran, Iran
| | - Leila Asadi Mofarrah
- Department of Chemistry, Sharif University of Technology, P.O. Box 11155-3516, Tehran, Iran
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
3
|
Liu J, Wang Z, Cheng P, Zaworotko MJ, Chen Y, Zhang Z. Post-synthetic modifications of metal–organic cages. Nat Rev Chem 2022; 6:339-356. [PMID: 37117929 DOI: 10.1038/s41570-022-00380-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 12/18/2022]
Abstract
Metal-organic cages (MOCs) are discrete, supramolecular entities that consist of metal nodes and organic linkers, which can offer solution processability and high porosity. Thereby, their predesigned structures can undergo post-synthetic modifications (PSMs) to introduce new functional groups and properties by modifying the linker, metal node, pore or surface environment. This Review explores current PSM strategies used for MOCs, including covalent, coordination and noncovalent methods. The effects of newly introduced functional groups or generated complexes upon the PSMs of MOCs are also detailed, such as improving structural stability or endowing desired functionalities. The development of the aforementioned design principles has enabled systematic approaches for the development and characterization of families of MOCs and, thereby, provides insight into structure-function relationships that will guide future developments.
Collapse
|
4
|
Zhao J, Zhou Z, Li G, Stang PJ, Yan X. Light-emitting self-assembled metallacages. Natl Sci Rev 2021; 8:nwab045. [PMID: 34691672 PMCID: PMC8288187 DOI: 10.1093/nsr/nwab045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/13/2021] [Accepted: 02/13/2021] [Indexed: 11/26/2022] Open
Abstract
Coordination-driven self-assembly of metallacages has garnered significant interest because of their 3D layout and cavity-cored nature. The well-defined, highly tunable metallacage structures render them particularly attractive for investigating the properties of luminophores, as well as for inducing novel photophysical characters that enable widespread applications. In this review, we summarize the recent advances in synthetic methodologies for light-emitting metallacages, and highlight some representative applications of these metallacages. In particular, we focus on the favorable photophysical properties—including high luminescence efficiency in various physical states, good modularity in photophysical properties and stimulus responsiveness—that have resulted from incorporating ligands displaying aggregation-induced emission (AIE) into metallacages. These features show that the synergy between carrying out coordination-driven self-assembly and using luminophores with novel photophysical characteristics like AIE could stimulate the development of supramolecular luminophores for applications in fields as diverse as sensing, biomedicine and catalysis.
Collapse
Affiliation(s)
- Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhixuan Zhou
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Guangfeng Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peter J Stang
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Yang Y, Rehak P, Xie TZ, Feng Y, Sun X, Chen J, Li H, Král P, Liu T. Nanosheets and Hydrogels Formed by 2 nm Metal-Organic Cages with Electrostatic Interaction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56310-56318. [PMID: 33269903 DOI: 10.1021/acsami.0c16366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We report the mechanism of hydrogel formation in dilute aqueous solutions (>15 mg/mL) by 2 nm metal-organic cages (MOCs). Experiments and all-atom simulations confirm that with the addition of small electrolytes, the MOCs self-assemble into 2D nanosheets via counterion-mediated attraction because of their unique molecular structure and charge distribution as well as σ-π interactions. The stiff nanosheets are difficult to bend into 3-D hollow, spherical blackberry type structures, as observed in many other macroion systems. Instead, they stay in solution and their very large excluded volumes lead to gelation at low (∼1.5 wt %) MOC concentrations, with additional help from hydrophobic and partial π-π interactions similar to the gelation of graphene oxides.
Collapse
Affiliation(s)
- Yuqing Yang
- The School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Pavel Rehak
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Ting-Zheng Xie
- Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Yi Feng
- The School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Xinyu Sun
- The School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Jiahui Chen
- The School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Hui Li
- Center for Nanophase Materials Sciences, Oak Ridge Nation Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Petr Král
- Department of Chemistry, Physics, Biopharmaceutical Sciences, and Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Tianbo Liu
- The School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| |
Collapse
|
6
|
Sutar P, Maji TK. Recent advances in coordination-driven polymeric gel materials: design and applications. Dalton Trans 2020; 49:7658-7672. [PMID: 32373858 DOI: 10.1039/d0dt00863j] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recently, research attention has been directed towards the coordination driven synthesis of gels, including coordination polymer gels (CPGs) and metal-organic cage based gels, which have shown applications in diverse fields, including optoelectronics, catalysis, sensing, gas-storage, and self-healing. A wide variety of CPGs and metal-organic cage based gels have been reported, to date, by choosing the right combination of metal ions and rationally designed organic linkers. In this article, we focused on recent developments in CPGs and metal-organic cage based gels and their applications.
Collapse
Affiliation(s)
- Papri Sutar
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India.
| | | |
Collapse
|
7
|
Zeng L, Xiao Y, Jiang J, Fang H, Ke Z, Chen L, Zhang J. Hierarchical Gelation of a Pd12L24 Metal–Organic Cage Regulated by Cholesteryl Groups. Inorg Chem 2019; 58:10019-10027. [DOI: 10.1021/acs.inorgchem.9b01171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lihua Zeng
- Sun Yat-Sen University, MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Guangzhou 510275, China
| | - Yali Xiao
- Sun Yat-Sen University, MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Guangzhou 510275, China
| | - Jingxing Jiang
- Sun Yat-Sen University, MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Guangzhou 510275, China
| | - Haobin Fang
- Sun Yat-Sen University, MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Guangzhou 510275, China
| | - Zhuofeng Ke
- Sun Yat-Sen University, MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Guangzhou 510275, China
| | - Liuping Chen
- Sun Yat-Sen University, MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Guangzhou 510275, China
| | - Jianyong Zhang
- Sun Yat-Sen University, MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Guangzhou 510275, China
| |
Collapse
|
8
|
Kieffer M, Garcia AM, Haynes CJE, Kralj S, Iglesias D, Nitschke JR, Marchesan S. Embedding and Positioning of Two Fe II4 L 4 Cages in Supramolecular Tripeptide Gels for Selective Chemical Segregation. Angew Chem Int Ed Engl 2019; 58:7982-7986. [PMID: 30921499 PMCID: PMC6563161 DOI: 10.1002/anie.201900429] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Indexed: 12/27/2022]
Abstract
An unreported d,l-tripeptide self-assembled into gels that embedded FeII4 L4 metal-organic cages to form materials that were characterized by TEM, EDX, Raman spectroscopy, rheometry, UV/Vis and NMR spectroscopy, and circular dichroism. The cage type and concentration modulated gel viscoelasticity, and thus the diffusion rate of molecular guests through the nanostructured matrix, as gauged by 19 F and 1 H NMR spectroscopy. When two different cages were added to spatially separated gel layers, the gel-cage composite material enabled the spatial segregation of a mixture of guests that diffused into the gel. Each cage selectively encapsulated its preferred guest during diffusion. We thus present a new strategy for using nested supramolecular interactions to enable the separation of small molecules.
Collapse
Affiliation(s)
- Marion Kieffer
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Ana M. Garcia
- Department of Chemical and Pharmaceutical SciencesUniversity of TriesteVia L. Giorgieri 134127TriesteItaly
| | - Cally J. E. Haynes
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Slavko Kralj
- Department of Chemical and Pharmaceutical SciencesUniversity of TriesteVia L. Giorgieri 134127TriesteItaly
- Materials Synthesis DepartmentJožef Stefan InstituteJamova 391000LjubljanaSlovenia
| | - Daniel Iglesias
- Department of Chemical and Pharmaceutical SciencesUniversity of TriesteVia L. Giorgieri 134127TriesteItaly
| | | | - Silvia Marchesan
- Department of Chemical and Pharmaceutical SciencesUniversity of TriesteVia L. Giorgieri 134127TriesteItaly
| |
Collapse
|
9
|
Kieffer M, Garcia AM, Haynes CJE, Kralj S, Iglesias D, Nitschke JR, Marchesan S. Embedding and Positioning of Two Fe
II
4
L
4
Cages in Supramolecular Tripeptide Gels for Selective Chemical Segregation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Marion Kieffer
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Ana M. Garcia
- Department of Chemical and Pharmaceutical Sciences University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| | - Cally J. E. Haynes
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Slavko Kralj
- Department of Chemical and Pharmaceutical Sciences University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
- Materials Synthesis Department Jožef Stefan Institute Jamova 39 1000 Ljubljana Slovenia
| | - Daniel Iglesias
- Department of Chemical and Pharmaceutical Sciences University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| | - Jonathan R. Nitschke
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| |
Collapse
|
10
|
Tang Q, Sun Y, Li HY, Wu JQ, Liang YN, Zhang Z. Hexanuclear 3d − 4f metal-organic cages assembled from a carboxylic acid-functionalized tris-triazamacrocycle for highly selective fluorescent sensing of picric acid. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Qi Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources; School of Chemistry and Pharmacy of Guangxi Normal University; Guilin 541004 People's Republic of China
| | - Yao Sun
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources; School of Chemistry and Pharmacy of Guangxi Normal University; Guilin 541004 People's Republic of China
| | - Hong-Yan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources; School of Chemistry and Pharmacy of Guangxi Normal University; Guilin 541004 People's Republic of China
| | - Ji-Qing Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources; School of Chemistry and Pharmacy of Guangxi Normal University; Guilin 541004 People's Republic of China
| | - Yu-Ning Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources; School of Chemistry and Pharmacy of Guangxi Normal University; Guilin 541004 People's Republic of China
| | - Zhong Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources; School of Chemistry and Pharmacy of Guangxi Normal University; Guilin 541004 People's Republic of China
| |
Collapse
|
11
|
Li B, He T, Fan Y, Yuan X, Qiu H, Yin S. Recent developments in the construction of metallacycle/metallacage-cored supramolecular polymers via hierarchical self-assembly. Chem Commun (Camb) 2019; 55:8036-8059. [PMID: 31206102 DOI: 10.1039/c9cc02472g] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Supramolecular polymers have received considerable attention during the last few decades due to their scientific value in polymer chemistry and profound implications for future developments of advanced materials. Discrete supramolecular coordination complexes (SCCs) with well-defined size, shape, and geometry have been widely employed to construct hierarchical systems by coordination-driven self-assembly with the spontaneous formation of metal-ligand bonds, which results in the formation of well-defined two-dimensional (2D) metallacycles or three-dimensional (3D) metallacages with high functionalities. The incorporation of discrete SCCs into supramolecular polymers by the orthogonal combination of metal-ligand coordination and other noncovalent interactions or covalent bonding could further facilitate the construction of novel supramolecular polymers with hierarchical architectures and multiple functions including controllable uptake and release of guest molecules, providing a flexible platform for the development of smart materials. In this review, the recent progress in metallacycle/metallacage-cored supramolecular polymers that were constructed by the combination of metal-ligand interactions and other orthogonal interactions (including hydrophobic or hydrophilic interactions, hydrogen bonding, van der Waals forces, π-π stacking, electrostatic interactions, host-guest interactions and covalent bonding) has been discussed. In addition, the potential applications of metallacycle/metallacage-cored supramolecular polymers in the areas of light emitting, sensing, bio-imaging, delivery and release, etc., are also presented.
Collapse
Affiliation(s)
- Bo Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, P. R. China.
| | | | | | | | | | | |
Collapse
|
12
|
Feng X, Zeng L, Zou D, Zhang Z, Zhong G, Peng S, Liu L, Chen L, Zhang J. Trace-doped metal–organic gels with remarkably enhanced luminescence. RSC Adv 2017. [DOI: 10.1039/c7ra05783k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel highly luminescent metal–organic gels with a trace amount of doping (as low as 0.01 mol%) have been fabricated.
Collapse
Affiliation(s)
- Xiying Feng
- Sun Yat-Sen University
- Lehn Institute of Functional Materials
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Guangzhou 510275
- China
| | - Lihua Zeng
- Sun Yat-Sen University
- Lehn Institute of Functional Materials
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Guangzhou 510275
- China
| | - Dianting Zou
- Sun Yat-Sen University
- Lehn Institute of Functional Materials
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Guangzhou 510275
- China
| | - Zizhe Zhang
- Sun Yat-Sen University
- Lehn Institute of Functional Materials
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Guangzhou 510275
- China
| | - Guihao Zhong
- Sun Yat-Sen University
- Lehn Institute of Functional Materials
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Guangzhou 510275
- China
| | - Shuyin Peng
- Sun Yat-Sen University
- Lehn Institute of Functional Materials
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Guangzhou 510275
- China
| | - Liping Liu
- Sun Yat-Sen University
- Lehn Institute of Functional Materials
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Guangzhou 510275
- China
| | - Liuping Chen
- Sun Yat-Sen University
- Lehn Institute of Functional Materials
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Guangzhou 510275
- China
| | - Jianyong Zhang
- Sun Yat-Sen University
- Lehn Institute of Functional Materials
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Guangzhou 510275
- China
| |
Collapse
|