1
|
Kong GD, Jang J, Choi S, Lim G, Kim IS, Ohto T, Maeda S, Tada H, Yoon HJ. Dynamic Variation of Rectification Observed in Supramolecular Mixed Mercaptoalkanoic Acid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305997. [PMID: 37726226 DOI: 10.1002/smll.202305997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/29/2023] [Indexed: 09/21/2023]
Abstract
Functionality in molecular electronics relies on inclusion of molecular orbital energy level within a transmission window. This can be achieved by designing the active molecule with accessible energy levels or by widening the window. While many studies have adopted the first approach, the latter is challenging because defects in the active molecular component cause low breakdown voltages. Here, it is shown that control over the packing structure of monolayer via supramolecular mixing transforms an inert molecule into a highly tunable rectifier. Binary mixed monolayer composed of alkanethiolates with and without carboxylic acid head group as a proof of concept is formed via a surface-exchange reaction. The monolayer withstands high voltages up to |4.5 V| and shows a dynamic rectification-external bias relationship in magnitude and polarity. Sub-highest occupied molecular orbital (HOMO) levels activated by the widened transmission window account for these observations. This work demonstrates that simple supramolecular mixing can imbue new electrical properties in electro-inactive organic molecules.
Collapse
Affiliation(s)
- Gyu Don Kong
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Jiung Jang
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Suin Choi
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Gayoung Lim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - In Soo Kim
- Nanophotonics Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| | - Tatsuhiko Ohto
- Department of Materials Design Innovation Engineering, Nagoya University, Furo-cho, Chikusa-ku, Aichi, 464-8603, Japan
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Seiya Maeda
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Hirokazu Tada
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Hyo Jae Yoon
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
2
|
Sette-Ducati J, Donnelly R, Molski AJ, Robinson ER, Canning EK, Williams DJ, Landis EC, Avila-Bront LG. Understanding the Two-Dimensional Mixing Behavior of 1-Naphthalenethiol and Octanethiol. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:6531-6542. [PMID: 37057075 PMCID: PMC10084448 DOI: 10.1021/acs.jpcc.2c08822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/15/2023] [Indexed: 06/19/2023]
Abstract
A two-dimensional (2D) mixture in the form of a self-assembled monolayer composed of two distinct organothiol compounds was created by sequentially depositing 1-naphthalenethiol (1NT) and octanethiol (OT) on a gold surface. By varying the sequence of deposition, two mixed surface systems were created. The surface structure of the resulting mixed monolayer was characterized with Scanning Tunneling Microscopy (STM) and showed surface disorder across all investigated domains. Elemental analysis was carried out with X-ray Photoelectron Spectroscopy (XPS) and indicated that the 1NT monolayer was prone to significant oxidation. Reductive desorption (RD) was used to characterize the binding strength and electrochemical environments of the molecular components in the mixture, and confirmed disordered molecular layers. Due to the presence of oxidized species in the 1NT monolayer, 1NT was displaced by OT resulting in a novel surface structure composed of either OT or 1NT. Monolayers of OT that were exposed to a solution of 1NT resulted in disordered surface structures with a significant amount of gold vacancy islands. To date, there is no experimental phase diagram explaining the chemical behavior of two-dimensional mixtures. This study addresses the need for an experimental understanding of the phase behavior of mixed organothiol self-assembled monolayers (SAMs).
Collapse
|
3
|
Yu T, Marquez MD, Lee TR. SAMs on Gold Derived from Adsorbates Having Phenyl and Cyclohexyl Tail Groups Mixed with Their Phase-Incompatible Fluorinated Analogues. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13488-13496. [PMID: 36287137 DOI: 10.1021/acs.langmuir.2c01991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This article investigates two types of mixed self-assembled monolayers (SAMs) derived from adsorbates having cyclohexyl and phenyl tail groups mixed with their perfluorinated analogues. The mixed SAMs were characterized using ellipsometry, X-ray photoelectron spectroscopy (XPS), polarization-modulation infrared reflection absorption spectroscopy, and contact angle measurements. The XPS results show preferential adsorption of the nonfluorinated adsorbate in the perfluorocyclohexyl-terminated/cyclohexyl-terminated pair due to the steric bulk of the tail groups. On the other hand, mixed surfaces with a precisely controlled surface composition were achieved with the phenyl-terminated/perfluorophenyl-terminated mixed SAMs, exhibiting a linear relationship between the mole fraction on the surface and the mole fraction in solution. The results suggest that the relative solubility, steric bulk of the tail group moiety, and the interaction between two different adsorbates are the key factors driving the phase phenomena observed in the SAMs. More importantly, this study suggests that the interfacial properties can be controlled with a minimal loss of packing densities with the phenyl-terminated/perfluorophenyl-terminated mixed SAMs.
Collapse
Affiliation(s)
- Tianlang Yu
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204-5003, United States
- Department of Chemistry, University of Houston, 4800 Calhoun Road, Houston, Texas 77204-5003, United States
| | - Maria D Marquez
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204-5003, United States
- Department of Chemistry, University of Houston, 4800 Calhoun Road, Houston, Texas 77204-5003, United States
| | - T Randall Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204-5003, United States
- Department of Chemistry, University of Houston, 4800 Calhoun Road, Houston, Texas 77204-5003, United States
| |
Collapse
|
4
|
Shaver A, Arroyo-Currás N. The challenge of long-term stability for nucleic acid-based electrochemical sensors. CURRENT OPINION IN ELECTROCHEMISTRY 2022; 32:100902. [PMID: 36092288 PMCID: PMC9455832 DOI: 10.1016/j.coelec.2021.100902] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nucleic acid-based electrochemical sensors are a versatile technology enabling affinity-based detection of a great variety of molecular targets, regardless of inherent electrochemical activity or enzymatic reactivity. Additionally, their modular interface and ease of fabrication enable rapid prototyping and sensor development. However, the technology has inhibiting limitations in terms of long-term stability that have precluded translation into clinically valuable platforms like continuous molecular monitors. In this opinion, we discuss published methods to address various aspects of sensor stability, including thiol-based monolayers and anti-biofouling capabilities. We hope the highlighted works will motivate the field to develop innovative strategies for extending the long-term operational life of nucleic acid-based electrochemical sensors.
Collapse
Affiliation(s)
- Alexander Shaver
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Netzahualcóyotl Arroyo-Currás
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
5
|
Scherrer D, Vogel D, Drechsler U, Olziersky A, Sparr C, Mayor M, Lörtscher E. Reaktionsverfolgung von Festphasensynthesen in selbstassemblierenden Monolagen mit oberflächenverstärkter Raman‐Spektroskopie. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dominik Scherrer
- Science and Technology Department, IBM Research Europe Säumerstrasse 4 8803 Rüschlikon Schweiz
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Schweiz
| | - David Vogel
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Schweiz
| | - Ute Drechsler
- Science and Technology Department, IBM Research Europe Säumerstrasse 4 8803 Rüschlikon Schweiz
| | - Antonis Olziersky
- Science and Technology Department, IBM Research Europe Säumerstrasse 4 8803 Rüschlikon Schweiz
| | - Christof Sparr
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Schweiz
| | - Marcel Mayor
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Schweiz
- Institute for Nanotechnology (INT) Karlsruhe Institute of Technology (KIT) P. O. Box 3640 76021 Karlsruhe Deutschland
- Lehn Institute of Functional Materials (LIFM) School of Chemistry Sun Yat-Sen University (SYSU) Guangzhou 510275 VR China
| | - Emanuel Lörtscher
- Science and Technology Department, IBM Research Europe Säumerstrasse 4 8803 Rüschlikon Schweiz
| |
Collapse
|
6
|
Scherrer D, Vogel D, Drechsler U, Olziersky A, Sparr C, Mayor M, Lörtscher E. Monitoring Solid-Phase Reactions in Self-Assembled Monolayers by Surface-Enhanced Raman Spectroscopy. Angew Chem Int Ed Engl 2021; 60:17981-17988. [PMID: 34048139 PMCID: PMC8456949 DOI: 10.1002/anie.202102319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/18/2021] [Indexed: 12/27/2022]
Abstract
Nanopatterned surfaces enhance incident electromagnetic radiation and thereby enable the detection and characterization of self-assembled monolayers (SAMs), for instance in surface-enhanced Raman spectroscopy (SERS). Herein, Au nanohole arrays, developed and characterized as SERS substrates, are exemplarily used for monitoring a solid-phase deprotection and a subsequent copper(I)-catalyzed azide-alkyne cycloaddition "click" reaction, performed directly on the corresponding SAMs. The SERS substrate was found to be highly reliable in terms of signal reproducibility and chemical stability. Furthermore, the intermediates and the product of the solid-phase synthesis were identified by SERS. The spectra of the immobilized compounds showed minor differences compared to spectra of the microcrystalline solids. With its uniform SERS signals and the high chemical stability, the platform paves the way for monitoring molecular manipulations in surface functionalization applications.
Collapse
Affiliation(s)
- Dominik Scherrer
- Science and Technology Department, IBM Research EuropeSäumerstrasse 48803RüschlikonSwitzerland
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
| | - David Vogel
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
| | - Ute Drechsler
- Science and Technology Department, IBM Research EuropeSäumerstrasse 48803RüschlikonSwitzerland
| | - Antonis Olziersky
- Science and Technology Department, IBM Research EuropeSäumerstrasse 48803RüschlikonSwitzerland
| | - Christof Sparr
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
| | - Marcel Mayor
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
- Institute for Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)P. O. Box 364076021KarlsruheGermany
- Lehn Institute of Functional Materials (LIFM)School of ChemistrySun Yat-Sen University (SYSU)Guangzhou510275P.R. China
| | - Emanuel Lörtscher
- Science and Technology Department, IBM Research EuropeSäumerstrasse 48803RüschlikonSwitzerland
| |
Collapse
|
7
|
Das S, Nascimbeni G, de la Morena RO, Ishiwari F, Shoji Y, Fukushima T, Buck M, Zojer E, Zharnikov M. Porous Honeycomb Self-Assembled Monolayers: Tripodal Adsorption and Hidden Chirality of Carboxylate Anchored Triptycenes on Ag. ACS NANO 2021; 15:11168-11179. [PMID: 34125529 PMCID: PMC8320238 DOI: 10.1021/acsnano.1c03626] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Molecules with tripodal anchoring to substrates represent a versatile platform for the fabrication of robust self-assembled monolayers (SAMs), complementing the conventional monopodal approach. In this context, we studied the adsorption of 1,8,13-tricarboxytriptycene (Trip-CA) on Ag(111), mimicked by a bilayer of silver atoms underpotentially deposited on Au. While tripodal SAMs frequently suffer from poor structural quality and inhomogeneous bonding configurations, the triptycene scaffold featuring three carboxylic acid anchoring groups yields highly crystalline SAM structures. A pronounced polymorphism is observed, with the formation of distinctly different structures depending on preparation conditions. Besides hexagonal molecular arrangements, the occurrence of a honeycomb structure is particularly intriguing as such an open structure is unusual for SAMs consisting of upright-standing molecules. Advanced spectroscopic tools reveal an equivalent bonding of all carboxylic acid anchoring groups. Notably, density functional theory calculations predict a chiral arrangement of the molecules in the honeycomb network, which, surprisingly, is not apparent in experimental scanning tunneling microscopy (STM) images. This seeming discrepancy between theory and experiment can be resolved by considering the details of the actual electronic structure of the adsorbate layer. The presented results represent an exemplary showcase for the intricacy of interpreting STM images of complex molecular films. They are also further evidence for the potential of triptycenes as basic building blocks for generating well-defined layers with unusual structural motifs.
Collapse
Affiliation(s)
- Saunak Das
- Angewandte
Physikalische Chemie, Universität
Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany
| | - Giulia Nascimbeni
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, Petersgasse 16, 8010 Graz, Austria
| | | | - Fumitaka Ishiwari
- Laboratory
for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta,
Midori-ku, Yokohama 226-8503, Japan
| | - Yoshiaki Shoji
- Laboratory
for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta,
Midori-ku, Yokohama 226-8503, Japan
| | - Takanori Fukushima
- Laboratory
for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta,
Midori-ku, Yokohama 226-8503, Japan
| | - Manfred Buck
- EaStCHEM
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Egbert Zojer
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, Petersgasse 16, 8010 Graz, Austria
| | - Michael Zharnikov
- Angewandte
Physikalische Chemie, Universität
Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany
| |
Collapse
|
8
|
Liu X, Xiao L, Weng J, Xu Q, Li W, Zhao C, Xu J, Zhao Y. Regulating the reactivity of black phosphorus via protective chemistry. SCIENCE ADVANCES 2020; 6:6/46/eabb4359. [PMID: 33177081 PMCID: PMC7673725 DOI: 10.1126/sciadv.abb4359] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/22/2020] [Indexed: 05/05/2023]
Abstract
Rationally regulating the reactivity of molecules or functional groups is common in organic chemistry, both in laboratory and industry synthesis. This concept can be applied to inorganic nanomaterials, particularly two-dimensional black phosphorus (BP) nanosheets. The high reactivity of few-layer (even monolayer) BP is expected to be "shut down" when not required and to be resumed upon application. Here, we demonstrate a protective chemistry-based methodology for regulating BP reactivity. The protective step initiates from binding Al3+ with lone pair electrons from P to decrease the electron density on the BP surface, and ends with an oxygen/water-resistant layer through the self-assembly of hydrophobic 1,2-benzenedithiol (BDT) on BP/Al3+ This protective step yields a stabilized BP with low reactivity. Deprotection of the obtained BP/Al3+/BDT is achieved by chelator treatment, which removes Al3+ and BDT from the BP surface. The deprotective process recovers the electron density of BP and thus restores the reactivity of BP.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Liangping Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jian Weng
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Qingchi Xu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| | - Wanli Li
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Chunhui Zhao
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Jun Xu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen 361005, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 21 Nanyang Link, 637371, Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 21 Nanyang Link, 637371, Singapore.
| |
Collapse
|
9
|
Nanofabrication Techniques in Large-Area Molecular Electronic Devices. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10176064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The societal impact of the electronics industry is enormous—not to mention how this industry impinges on the global economy. The foreseen limits of the current technology—technical, economic, and sustainability issues—open the door to the search for successor technologies. In this context, molecular electronics has emerged as a promising candidate that, at least in the short-term, will not likely replace our silicon-based electronics, but improve its performance through a nascent hybrid technology. Such technology will take advantage of both the small dimensions of the molecules and new functionalities resulting from the quantum effects that govern the properties at the molecular scale. An optimization of interface engineering and integration of molecules to form densely integrated individually addressable arrays of molecules are two crucial aspects in the molecular electronics field. These challenges should be met to establish the bridge between organic functional materials and hard electronics required for the incorporation of such hybrid technology in the market. In this review, the most advanced methods for fabricating large-area molecular electronic devices are presented, highlighting their advantages and limitations. Special emphasis is focused on bottom-up methodologies for the fabrication of well-ordered and tightly-packed monolayers onto the bottom electrode, followed by a description of the top-contact deposition methods so far used.
Collapse
|
10
|
O'Driscoll LJ, Wang X, Jay M, Batsanov AS, Sadeghi H, Lambert CJ, Robinson BJ, Bryce MR. Carbazole-Based Tetrapodal Anchor Groups for Gold Surfaces: Synthesis and Conductance Properties. Angew Chem Int Ed Engl 2020; 59:882-889. [PMID: 31714641 PMCID: PMC7027450 DOI: 10.1002/anie.201911652] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Indexed: 12/17/2022]
Abstract
As the field of molecular-scale electronics matures and the prospect of devices incorporating molecular wires becomes more feasible, it is necessary to progress from the simple anchor groups used in fundamental conductance studies to more elaborate anchors designed with device stability in mind. This study presents a series of oligo(phenylene-ethynylene) wires with one tetrapodal anchor and a phenyl or pyridyl head group. The new anchors are designed to bind strongly to gold surfaces without disrupting the conductance pathway of the wires. Conductive probe atomic force microscopy (cAFM) was used to determine the conductance of self-assembled monolayers (SAMs) of the wires in Au-SAM-Pt and Au-SAM-graphene junctions, from which the conductance per molecule was derived. For tolane-type wires, mean conductances per molecule of up to 10-4.37 G0 (Pt) and 10-3.78 G0 (graphene) were measured, despite limited electronic coupling to the Au electrode, demonstrating the potential of this approach. Computational studies of the surface binding geometry and transport properties rationalise and support the experimental results.
Collapse
Affiliation(s)
- Luke J. O'Driscoll
- Department of ChemistryDurham University, Lower MountjoyStockton RoadDurhamDH1 3LEUK
| | - Xintai Wang
- Physics DepartmentLancaster UniversityLancasterLA1 4YBUK
| | - Michael Jay
- Physics DepartmentLancaster UniversityLancasterLA1 4YBUK
| | - Andrei S. Batsanov
- Department of ChemistryDurham University, Lower MountjoyStockton RoadDurhamDH1 3LEUK
| | - Hatef Sadeghi
- Physics DepartmentLancaster UniversityLancasterLA1 4YBUK
- School of EngineeringUniversity of WarwickCoventryCV4 7ALUK
| | | | | | - Martin R. Bryce
- Department of ChemistryDurham University, Lower MountjoyStockton RoadDurhamDH1 3LEUK
| |
Collapse
|
11
|
O'Driscoll LJ, Wang X, Jay M, Batsanov AS, Sadeghi H, Lambert CJ, Robinson BJ, Bryce MR. Carbazole‐Based Tetrapodal Anchor Groups for Gold Surfaces: Synthesis and Conductance Properties. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Luke J. O'Driscoll
- Department of ChemistryDurham University, Lower Mountjoy Stockton Road Durham DH1 3LE UK
| | - Xintai Wang
- Physics DepartmentLancaster University Lancaster LA1 4YB UK
| | - Michael Jay
- Physics DepartmentLancaster University Lancaster LA1 4YB UK
| | - Andrei S. Batsanov
- Department of ChemistryDurham University, Lower Mountjoy Stockton Road Durham DH1 3LE UK
| | - Hatef Sadeghi
- Physics DepartmentLancaster University Lancaster LA1 4YB UK
- School of EngineeringUniversity of Warwick Coventry CV4 7AL UK
| | | | | | - Martin R. Bryce
- Department of ChemistryDurham University, Lower Mountjoy Stockton Road Durham DH1 3LE UK
| |
Collapse
|
12
|
Sy Piecco KWE, Vicente JR, Pyle JR, Ingram DC, Kordesch ME, Chen J. Reusable Chemically-Micropatterned Substrates via Sequential Photoinitiated Thiol-Ene Reactions as Template for Perovskite Thin-Film Microarrays. ACS APPLIED ELECTRONIC MATERIALS 2019; 1:2279-2286. [PMID: 32832905 PMCID: PMC7442211 DOI: 10.1021/acsaelm.9b00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Patterning semiconducting materials are important for many applications such as microelectronics, displays, and photodetectors. Lead halide perovskites are an emerging class of semiconducting materials that can be patterned via solution-based methods. Here we report an all-benchtop patterning strategy by first generating a patterned surface with contrasting wettabilities to organic solvents that have been used in the perovskite precursor solution then spin-coating the solution onto the patterned surface. The precursor solution only stays in the area with higher affinity (wettability). We applied sequential sunlight-initiated thiol-ene reactions to functionalize (and pattern) both glass and conductive fluorine-doped tin oxide (FTO) transparent glass surfaces. The functionalized surfaces were measured with the solvent contact angles of water and different organic solvents and were further characterized by XPS, selective fluorescence staining, and selective DNA adsorption. By simply spin-coating and baking the perovskite precursor solution on the patterned substrates, we obtained perovskite thin-film microarrays. The spin-coated perovskite arrays were characterized by XRD, AFM, and SEM. We concluded that patterned substrate prepared via sequential sunlight-initiated thiol-ene click reactions is suitable to fabricate perovskite arrays via the benchtop process. In addition, the same patterned substrates can be reused several times until a favorable perovskite microarray is acquired. Among a few conditions we have tested, DMSO solvent and modified FTO surfaces with alternatively carboxylic acid and alkane is the best combination to obtain high-quality perovskite microarrays. The solvent contact angle of DMSO on carboxylic acid-modified FTO surface is nearly zero and 65±3° on octadecane modified FTO surface.
Collapse
Affiliation(s)
- Kurt Waldo E. Sy Piecco
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701, USA
- University of the Philippines Visayas, Miagao, Iloilo 5023, Philippines
| | - Juvinch R. Vicente
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701, USA
- University of the Philippines Visayas, Miagao, Iloilo 5023, Philippines
| | - Joseph R. Pyle
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701, USA
| | - David C. Ingram
- Department of Physics and Astronomy, Ohio University, Athens, OH 45701, USA
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701, USA
| | - Martin E. Kordesch
- Department of Physics and Astronomy, Ohio University, Athens, OH 45701, USA
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701, USA
| | - Jixin Chen
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
13
|
Chinwangso P, St Hill LR, Marquez MD, Lee TR. Unsymmetrical Spiroalkanedithiols Having Mixed Fluorinated and Alkyl Tailgroups of Varying Length: Film Structure and Interfacial Properties. Molecules 2018; 23:E2632. [PMID: 30322175 PMCID: PMC6222720 DOI: 10.3390/molecules23102632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 02/01/2023] Open
Abstract
A custom-designed series of unsymmetrical spiroalkanedithiols having tailgroups comprised of a terminally fluorinated chain and a hydrocarbon chain of varying lengths were synthesized and used to prepare self-assembled monolayers (SAMs) on gold substrates. The specific structure of the adsorbates was of the form [CH₃(CH₂)n][CF₃(CF₂)₇(CH₂)₈]C[CH₂SH]₂, where n = 7, 9, and 15 (designated as F8H10-C10, F8H10-C12, and F8H10-C18, respectively). The influence of the length of the hydrocarbon chain in the bidentate dithiol on the structure and interfacial properties of the monolayer was explored. A structurally analogous partially fluorinated monodentate alkanethiol and the corresponding normal alkanethiols were used to generate appropriate SAMs as reference systems. Measurements of ellipsometric thickness showed an unexpectedly low film thickness for the SAMs derived from the bidentate adsorbates, possibly due to disruptions in interchain packing caused by the fluorocarbon chains (i.e., phase-incompatible fluorocarbon-hydrocarbon interactions), ultimately giving rise to loosely packed and disordered films. Analysis by X-ray photoelectron spectroscopy (XPS) were also consistent with a model in which the films were loosely packed; additionally, the XPS spectra confirmed the attachment of the sulfur headgroups of the bidentate adsorbates onto the gold substrates. Studies of the SAMs by polarization modulation-infrared reflection-adsorption spectroscopy (PM-IRRAS) suggested that as the length of the hydrocarbon chain in the adsorbates was extended, a more ordered surface was achieved by reducing the tilt of the fluorocarbon segment. The wettability data indicated that the adsorbates with longer alkyl chains were less wettable than those with shorter alkyl chains, likely due to an increase in interchain van der Waals forces in the former.
Collapse
Affiliation(s)
- Pawilai Chinwangso
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA.
| | - Lydia R St Hill
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA.
| | - Maria D Marquez
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA.
| | - T Randall Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA.
| |
Collapse
|
14
|
Herrer IL, Ismael AK, Milán DC, Vezzoli A, Martín S, González-Orive A, Grace I, Lambert C, Serrano JL, Nichols RJ, Cea P. Unconventional Single-Molecule Conductance Behavior for a New Heterocyclic Anchoring Group: Pyrazolyl. J Phys Chem Lett 2018; 9:5364-5372. [PMID: 30160491 DOI: 10.1021/acs.jpclett.8b02051] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Electrical conductance across a molecular junction is strongly determined by the anchoring group of the molecule. Here we highlight the unusual behavior of 1,4-bis(1H-pyrazol-4-ylethynyl)benzene that exhibits unconventional junction current versus junction-stretching distance curves, which are peak-shaped and feature two conducting states of 2.3 × 10-4 G0 and 3.4 × 10-4 G0. A combination of theory and experiments is used to understand the conductance of single-molecule junctions featuring this new anchoring group, i.e., pyrazolyl. These results demonstrate that the pyrazolyl moiety changes its protonation state and contact binding during junction evolution and that it also binds in either end-on or facial geometries with gold contacts. The pyrazolyl moiety holds general interest as a contacting group, because this linkage leads to a strong double anchoring of the molecule to the gold electrode, resulting in enhanced conductance values.
Collapse
Affiliation(s)
- I Lucia Herrer
- Departamento de Química Física, Facultad de Ciencias , Universidad de Zaragoza , 50009 Zaragoza , Spain
- Instituto de Nanociencia de Aragón (INA) and Laboratorio de Microscopias Avanzadas (LMA), edificio i+d Campus Río Ebro , Universidad de Zaragoza , C/Mariano Esquillor, s/n , 50018 Zaragoza , Spain
| | - Ali K Ismael
- Department of Physics , University of Lancaster , Lancaster LA1 4YB , United Kingdom
- Department of Physics, College of Education for Pure Science , Tikrit University , Tikrit , Iraq
| | - David C Milán
- Department of Chemistry , University of Liverpool , Crown Street , Liverpool L69 7ZD , United Kingdom
| | - Andrea Vezzoli
- Department of Chemistry , University of Liverpool , Crown Street , Liverpool L69 7ZD , United Kingdom
| | - Santiago Martín
- Departamento de Química Física, Facultad de Ciencias , Universidad de Zaragoza , 50009 Zaragoza , Spain
- Instituto de Ciencias de Materiales de Aragón (ICMA) , Universidad de Zaragoza-CSIC , 50009 Zaragoza , Spain
| | - Alejandro González-Orive
- Technical and Macromolecular Chemistry , University of Paderborn , Warburger Straße 100 , 33098 Paderborn , Germany
| | - Iain Grace
- Department of Physics , University of Lancaster , Lancaster LA1 4YB , United Kingdom
| | - Colin Lambert
- Department of Physics , University of Lancaster , Lancaster LA1 4YB , United Kingdom
| | - José L Serrano
- Departamento de Química Física, Facultad de Ciencias , Universidad de Zaragoza , 50009 Zaragoza , Spain
- Instituto de Nanociencia de Aragón (INA) and Laboratorio de Microscopias Avanzadas (LMA), edificio i+d Campus Río Ebro , Universidad de Zaragoza , C/Mariano Esquillor, s/n , 50018 Zaragoza , Spain
| | - Richard J Nichols
- Department of Chemistry , University of Liverpool , Crown Street , Liverpool L69 7ZD , United Kingdom
| | - Pilar Cea
- Departamento de Química Física, Facultad de Ciencias , Universidad de Zaragoza , 50009 Zaragoza , Spain
- Instituto de Nanociencia de Aragón (INA) and Laboratorio de Microscopias Avanzadas (LMA), edificio i+d Campus Río Ebro , Universidad de Zaragoza , C/Mariano Esquillor, s/n , 50018 Zaragoza , Spain
| |
Collapse
|
15
|
Rittikulsittichai S, Park CS, Marquez MD, Jamison AC, Frank T, Wu CH, Wu JI, Lee TR. Inhibiting Reductive Elimination as an Intramolecular Disulfide Dramatically Enhances the Thermal Stability of SAMs on Gold Derived from Bidentate Adsorbents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6645-6652. [PMID: 29739193 DOI: 10.1021/acs.langmuir.7b03973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The bidentate aromatic adsorbate, 5-(octadecyloxy)-1,3-benzenedimethanethiol (R1ArmDT), with a specific design of extended S-S distance and a geometric constraint to resist cyclic disulfide formation was synthesized. The film formation and thermal stability of self-assembled monolayers (SAMs) derived from R1ArmDT were investigated and compared to those of SAMs derived from an analogous bidentate dithiol 2-(4-(octadecyloxy)-phenyl)propane-1,3-dithiol (R1ArDT), in which the two sulfur atoms can readily form a cyclic disulfide upon reductive elimination from the surface. Although the SAMs derived from R1ArmDT were less densely packed than those derived from R1ArDT, as judged by the data obtained by X-ray photoelectron spectroscopy and polarization modulation infrared reflection absorption spectroscopy, the SAMs derived from R1ArmDT were markedly more thermally stable than those derived from R1ArDT. The greater thermal stability of the R1ArmDT SAMs can be rationalized on the basis of the structure of the bidentate R1ArmDT headgroup, in which the two pendant sulfur atoms cannot access each other intramolecularly to form a cyclic disulfide upon reductive elimination from the surface.
Collapse
|
16
|
Investigation of the geometrical arrangement and single molecule charge transport in self-assembled monolayers of molecular towers based on tetraphenylmethane tripod. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.11.174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Marquez MD, Zenasni O, Jamison AC, Lee TR. Homogeneously Mixed Monolayers: Emergence of Compositionally Conflicted Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8839-8855. [PMID: 28562051 DOI: 10.1021/acs.langmuir.7b00755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ability to manipulate interfaces at the nanoscale via a variety of thin-film technologies offers a plethora of avenues for advancing surface applications. These include surfaces with remarkable antibiofouling properties as well as those with tunable physical and electronic properties. Molecular self-assembly is one notably attractive method used to decorate and modify surfaces. Of particular interest to surface scientists has been the thiolate-gold system, which serves as a reliable method for generating model thin-film monolayers that transform the interfacial properties of gold surfaces. Despite widespread interest, efforts to tune the interfacial properties using mixed adsorbate systems have frequently led to phase-separated domains of molecules on the surface with random sizes and shapes depending on the structure and chemical composition of the adsorbates. This feature article highlights newly emerging methods for generating mixed thin-film interfaces, not only to enhance the aforementioned properties of organic thin films, but also to give rise to interfacial compositions never before observed in nature. An example would be the development of monolayers formed from bidentate adsorbates and other unique headgroup architectures that provide the surface bonding stability necessary to allow the assembly of interfaces that expose mixtures of chains that are fundamentally different in character (i.e., either phase-incompatible or structurally dissimilar), producing compositionally "conflicted" interfaces. By also exploring the prior efforts to produce such homogeneously blended interfaces, this feature article seeks to convey the relationships between the methods of film formation and the overall properties of the resulting interfaces.
Collapse
Affiliation(s)
- Maria D Marquez
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston , Houston, Texas 77204-5003, United States
| | - Oussama Zenasni
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston , Houston, Texas 77204-5003, United States
| | - Andrew C Jamison
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston , Houston, Texas 77204-5003, United States
| | - T Randall Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston , Houston, Texas 77204-5003, United States
| |
Collapse
|
18
|
Valášek M, Mayor M. Spatial and Lateral Control of Functionality by Rigid Molecular Platforms. Chemistry 2017; 23:13538-13548. [PMID: 28766790 DOI: 10.1002/chem.201703349] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Indexed: 11/11/2022]
Abstract
Surface mounted molecular devices have received significant attention in the scientific community because of their unique ability to construct functional materials. The key involves the platform on which the molecular device works on solid substrates, such as in solid-liquid or solid-vacuum interfaces. Here, we outline the concept of rigid molecular platforms to immobilize active functionality atop flat surfaces in a controllable manner. Most of these (multipodal) platforms have at least three anchoring groups to control the spatial arrangement of the protruding functional moieties and form mechanically stable and electronically tuned contacts to the underlying substrate. Another approach is based on employing of flat aromatic scaffolds bearing perpendicular functionalities that form stable lateral assemblies on various surfaces. Emphasis is placed on the need for controllable assembly and separation of these tailor-made molecules that expose functionalities at the molecular scale. The discussions are focused on the different molecular designs realizing functional 3D architectures on surfaces, the role of various anchoring strategies to control the spatial arrangement, and structural considerations controlling physical features like the coupling to the surface or the available space for sterically demanding molecular operations.
Collapse
Affiliation(s)
- Michal Valášek
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Marcel Mayor
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Lehn Institute of Functional Materials (LIFM), Sun Yat-Sen University (SYSU), Xingang Rd. W., Guangzhou, P. R. China.,Department of Chemistry, University of Basel, St. Johannsring 19, 4056, Basel, Switzerland
| |
Collapse
|