1
|
Miao J, Chai H, Niu L, Ouyang M, Wang R. A stable dual functional superhydrophobic coating to inhibit Proteus mirabilis colonization, migration, and encrustation formation for urinary catheter applications. J Mater Chem B 2025; 13:511-523. [PMID: 39569827 DOI: 10.1039/d4tb02218a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Catheter-associated urinary tract infections are some of the most common hospital-acquired infections. Proteus mirabilis, a common pathogen associated with urinary tract infections, has swarming motility and has pili on its surface for adhesion and flagella for upward movement. Migration of P. mirabilis along the catheter surface can lead to ascending urinary tract infection. However, there is currently a lack of effective strategies to inhibit or delay the colonization, migration, and encrustation formation of P. mirabilis in urinary catheters. This study developed a method for constructing a stable superhydrophobic coating on the surface of urinary catheters using a layer-by-layer approach. The adhesion and deposition of polydopamine were enhanced by pre-coating a liquid bandage film on the polydimethylsiloxane surface, resulting in a multilayer micro-nano composite structure on the catheter surface. This structure was combined with copper ions and superhydrophobic modifiers, ultimately resulting in a highly stable superhydrophobic coating. The coating retains its superhydrophobic properties after prolonged incubation, friction tests, and tape peeling tests. Importantly, the coating demonstrates excellent efficacy in inhibiting P. mirabilis colonization, migration, and encrustation formation. This study offers novel insights into developing biomedical superhydrophobic coatings with enhanced stability and efficacy in inhibiting urinary tract bacterial infections.
Collapse
Affiliation(s)
- Jiru Miao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, P. R. China
| | - Haiyang Chai
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, P. R. China
| | - Longxing Niu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, P. R. China
| | - Mi Ouyang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Rong Wang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, P. R. China
| |
Collapse
|
2
|
Ao Y, Jiang D. Polydopamine-Induced BMP7-Poly (Lactic-Co-Glycolic Acid)-Nanoparticle Coating Facilitates Osteogenesis in Porous Tantalum Scaffolds. J Biomed Mater Res A 2025; 113:e37835. [PMID: 39835772 DOI: 10.1002/jbm.a.37835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 01/22/2025]
Abstract
Bone defects are difficult to treat clinically and most often require bone grafting for repair. However, the source of autograft bone is limited, and allograft bone carries the risk of disease transmission and immune rejection. As tissue engineering technology advances, bone replacement materials are playing an increasingly important role in the treatment of bone defects. Porous tantalum (PT) scaffolds have shown beneficial clinical effects in the repair of bone defects, surface modification of PT to induce osteogenic differentiation of mesenchymal stem cells (MSC) is the key to optimizing this material. Poly (lactic-co-glycolic acid) nanoparticle (PLGA NPs) encapsulating bone morphogenetic protein 7 (BMP7) (BPNPs) was prepared by a double emulsion (water/oil/water [W/O/W]) method and adhered on polydopamine (PDA)-coated PT (PPT) that was prepared by biomimetic method to prepare BPNPs-coated PPT (BPPT). The successful preparation of BPPT was monitored by scanning electron microscopy (SEM) and energy spectrum. Murine calvarial preosteoblasts (MC3T3-E1) cells were co-cultured with BPPT, vitro experiments showed that BPPT promoted cell proliferation and osteogenic differentiation. BPPT was further implanted into the bone defect of the distal femoral epiphysis of the rabbit. At 4 weeks postoperatively, in the BPPT group, high-resolution CT reconstruction indicated that bone volume/total volume (BV/TV) was near 50%, and the hard tissue section indicated that the depth of new bone ingrowth into the scaffolds was nearly 2 mm. The immunofluorescence staining of bone tissue around the bone defects indicated that the expression of osteogenic-related proteins was higher in the BPPT group than the other groups. Taken together, our results suggest that BPPT promoted early osteointegration, which may provide a novel approach for the clinical treatment of bone defects.
Collapse
Affiliation(s)
- Yu Ao
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Dianming Jiang
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
3
|
Houser BJ, Camacho AN, Bryner CA, Ziegler M, Wood JB, Spencer AJ, Gautam RP, Okonkwo TP, Wagner V, Smith SJ, Chesnel K, Harrison RG, Pitt WG. Bacterial Binding to Polydopamine-Coated Magnetic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58226-58240. [PMID: 39420634 DOI: 10.1021/acsami.4c11169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In medical infections such as blood sepsis and in food quality control, fast and accurate bacteria analysis is required. Using magnetic nanoparticles (MNPs) for bacterial capture and concentration is very promising for rapid analysis. When MNPs are functionalized with the proper surface chemistry, they have the ability to bind to bacteria and aid in the removal and concentration of bacteria from a sample for further analysis. This study introduces a novel approach for bacterial concentration using polydopamine (pDA), a highly adhesive polymer often purported to create antibacterial and antibiofouling coatings on medical devices. Although pDA has been generally studied for its ability to coat surfaces and reduce biofilm growth, we have found that when coated on magnetic nanoclusters (MNCs), more specifically iron oxide nanoclusters, it effectively binds to and can remove from suspension some types of bacteria. This study investigated the binding of pDA-coated MNCs (pDA-MNCs) to various Gram-negative and Gram-positive bacteria, including Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and several E. coli strains. MNCs were successfully coated with pDA, and these functionalized MNCs bound a wide variety of bacterial strains. The efficiency of removing bacteria from a suspension can range from 0.99 for S. aureus to 0.01 for an E. coli strain. Such strong capture and differential capture have important applications in collecting bacteria from dilute samples found in medical diagnostics, food and water quality monitoring, and other industries.
Collapse
Affiliation(s)
- Bowen J Houser
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Alyson N Camacho
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Camille A Bryner
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Masa Ziegler
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Justin B Wood
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Ashley J Spencer
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Rajendra P Gautam
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, United States
| | - Tochukwu P Okonkwo
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Victoria Wagner
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, United States
| | - Stacey J Smith
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Karine Chesnel
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, United States
| | - Roger G Harrison
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - William G Pitt
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
4
|
Nair A, Chandrashekhar H R, Day CM, Garg S, Nayak Y, Shenoy PA, Nayak UY. Polymeric functionalization of mesoporous silica nanoparticles: Biomedical insights. Int J Pharm 2024; 660:124314. [PMID: 38862066 DOI: 10.1016/j.ijpharm.2024.124314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
Mesoporous silica nanoparticles (MSNs) endowed with polymer coatings present a versatile platform, offering notable advantages such as targeted, pH-controlled, and stimuli-responsive drug delivery. Surface functionalization, particularly through amine and carboxyl modification, enhances their suitability for polymerization, thereby augmenting their versatility and applicability. This review delves into the diverse therapeutic realms benefiting from polymer-coated MSNs, including photodynamic therapy (PDT), photothermal therapy (PTT), chemotherapy, RNA delivery, wound healing, tissue engineering, food packaging, and neurodegenerative disorder treatment. The multifaceted potential of polymer-coated MSNs underscores their significance as a focal point for future research endeavors and clinical applications. A comprehensive analysis of various polymers and biopolymers, such as polydopamine, chitosan, polyethylene glycol, polycaprolactone, alginate, gelatin, albumin, and others, is conducted to elucidate their advantages, benefits, and utilization across biomedical disciplines. Furthermore, this review extends its scope beyond polymerization and biomedical applications to encompass topics such as surface functionalization, chemical modification of MSNs, recent patents in the MSN domain, and the toxicity associated with MSN polymerization. Additionally, a brief discourse on green polymers is also included in review, highlighting their potential for fostering a sustainable future.
Collapse
Affiliation(s)
- Akhil Nair
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Raghu Chandrashekhar H
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Candace M Day
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Sanjay Garg
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Padmaja A Shenoy
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
5
|
Yang W, Feng L. Mg 2+-promoted high-efficiency DNA conjugation on polydopamine surfaces for aptamer-based ochratoxin A detection. Anal Chim Acta 2024; 1298:342382. [PMID: 38462338 DOI: 10.1016/j.aca.2024.342382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/15/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Surface immobilization of DNA is the foundation of a broad range of applications in biosensing and specific DNA extraction. Polydopamine (PDA) coatings can serve as intermediate layers to immobilize amino- or thiol-labelled molecules, including DNA, onto various materials through Michael addition and/or Schiff base reactions. However, the conjugation efficiency is limited by electrostatic repulsion between negatively charged DNA and PDA. Recently, it has been reported that polyvalent metal ions (such as Mg2+ and Ca2+) can mediate the adsorption of DNA on PDA surfaces. Inspired by this, in this work we aimed to exploit polyvalent metal ions to facilitate the conjugation of DNA on PDA. RESULTS Mg2+ was used to promote the conjugation of amino-terminated DNA complementary to ochratoxin A (OTA) aptamer (cDNA-NH2) on PDA-coated magnetic nanoparticles (Fe3O4@PDA). After the reaction, the unlinked cDNA-NH2 adsorbed on Fe3O4@PDA mediated by Mg2+ was removed with EDTA. In the presence of 20 mM Mg2+, the amount of covalently linked cDNA-NH2 increased approximately 11-fold compared to that in the absence of Mg2+. The resulting Fe3O4@PDA@cDNA conjugates exhibited superior hybridization capacity towards OTA aptamers, minimal nonspecific adsorption, and excellent chemical stability. The conjugates combined with fluorophore-labelled aptamers were employed for OTA detection, achieving a limit of detection (LOD) of 2.77 ng mL-1. To demonstrate versatility, this conjugation method was extended to Ca2+-promoted conjugation of cDNA-NH2 on Fe3O4@PDA nanoparticles and Mg2+-promoted conjugation of cDNA-NH2 on PDA-coated 96-well plates. SIGNIFICANCE The conjugation efficiency of DNA on PDA was significantly improved with the assistance of polyvalent metal ions (Mg2+ and Ca2+), providing a facile and efficient method for DNA immobilization. Due to the substrate-independent adhesion property of PDA, this method demonstrates versatility in DNA surface modification and holds great potential for applications in target extraction, biosensing, and other fields.
Collapse
Affiliation(s)
- Wei Yang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Liang Feng
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.
| |
Collapse
|
6
|
Kim M, Schöbel L, Geske M, Boccaccini AR, Ghorbani F. Bovine serum albumin-modified 3D printed alginate dialdehyde-gelatin scaffolds incorporating polydopamine/SiO 2-CaO nanoparticles for bone regeneration. Int J Biol Macromol 2024; 264:130666. [PMID: 38453119 DOI: 10.1016/j.ijbiomac.2024.130666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Three-dimensional (3D) printing allows precise manufacturing of bone scaffolds for patient-specific applications and is one of the most recently developed and implemented technologies. In this study, bilayer and multimaterial alginate dialdehyde-gelatin (ADA-GEL) scaffolds incorporating polydopamine (PDA)/SiO2-CaO nanoparticle complexes were 3D printed using a pneumatic extrusion-based 3D printing technology and further modified on the surface with bovine serum albumin (BSA) for application in bone regeneration. The morphology, chemistry, and in vitro bioactivity of PDA/SiO2-CaO nanoparticle complexes were characterized (n = 3) and compared with those of mesoporous SiO2-CaO nanoparticles. Successful deposition of the PDA layer on the surface of the SiO2-CaO nanoparticles allowed better dispersion in a liquid medium and showed enhanced bioactivity. Rheological studies (n = 3) of ADA-GEL inks consisting of PDA/SiO2-CaO nanoparticle complexes showed results that may indicate better injectability and printability behavior compared to ADA-GEL inks incorporating unmodified nanoparticles. Microscopic observations of 3D printed scaffolds revealed that PDA/SiO2-CaO nanoparticle complexes introduced additional topography onto the surface of 3D printed scaffolds. Additionally, the modified scaffolds were mechanically stable and elastic, closely mimicking the properties of natural bone. Furthermore, protein-coated bilayer scaffolds displayed controllable absorption and biodegradation, enhanced bioactivity, MC3T3-E1 cell adhesion, proliferation, and higher alkaline phosphatase (ALP) activity (n = 3) compared to unmodified scaffolds. Consequently, the present results confirm that ADA-GEL scaffolds incorporating PDA/SiO2-CaO nanoparticle complexes modified with BSA offer a promising approach for bone regeneration applications.
Collapse
Affiliation(s)
- MinJoo Kim
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany; Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Lisa Schöbel
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
| | - Michael Geske
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany; Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Martensstraße 7, 91058 Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany.
| | - Farnaz Ghorbani
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany; Department of Translational Health Sciences, University of Bristol, Bristol BS1 3NY, UK.
| |
Collapse
|
7
|
Wang S, Cui Y, Dalani T, Sit KY, Zhuo X, Choi CK. Polydopamine-based plasmonic nanocomposites: rational designs and applications. Chem Commun (Camb) 2024; 60:2982-2993. [PMID: 38384206 DOI: 10.1039/d3cc05883b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Taking advantage of its adhesive nature and chemical reactivity, polydopamine (PDA) has recently been integrated with plasmonic nanoparticles to yield unprecedented hybrid nanostructures. With advanced architectures and optical properties, PDA-based plasmonic nanocomposites have showcased their potential in a wide spectrum of plasmon-driven applications, ranging from catalysis and chemical sensing, to drug delivery and photothermal therapy. The rational design of PDA-based plasmonic nanocomposites entails different material features of PDA and necessitates a thorough understanding of the sophisticated PDA chemistry; yet, there is still a lack of a systematic review on their fabrication strategies, plasmonic properties, and applications. In this Highlight review, five representative types of PDA-based plasmonic nanocomposites will be featured. Specifically, their design principles, synthetic strategies, and optical behaviors will be elucidated with an emphasis on the irreplaceable roles of PDA in the synthetic mechanisms. Together, their essential functions in diverse applications will be outlined. Lastly, existing challenges and outlooks on the rational design and assembly of next-generation PDA-based plasmonic nanocomposites will be presented. This Highlight review aims to provide synthetic insights and hints to inspire and aid researchers to innovate PDA-based plasmonic nanocomposites.
Collapse
Affiliation(s)
- Shengyan Wang
- School of Science Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Yiou Cui
- School of Science Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Tarun Dalani
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - King Yin Sit
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - Xiaolu Zhuo
- School of Science Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Chun Kit Choi
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
8
|
Sui B, Xu Z, Xue Z, Xiang Y, Zhou T, Beltrán AM, Zheng K, Liu X, Boccaccini AR. Mussel-Inspired Polydopamine Composite Mesoporous Bioactive Glass Nanoparticles: An Exploration of Potential Metal-Ion Loading Platform and In Vitro Bioactivity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:29550-29560. [PMID: 37278380 DOI: 10.1021/acsami.3c03680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Exploring new approaches to realize the possibility of incorporating biologically active elements into mesoporous silicate bioactive glass nanoparticles (MBG NPs) and guaranteeing their meso- structural integrity and dimensional stability has become an attractive and interesting challenge in biomaterials science. We present a postgrafting strategy for introducing different metal elements into MBG NPs. This strategy is mediated by polydopamine (PDA) coating, achieving uniform loading of copper or copper-cobalt on the particles efficiently and ensuring the stability of MBG NPs in terms of particle size, mesoporous structure, and chemical structure. However, the PDA coating reduced the ion-binding free energy of the MBG NPs for calcium and phosphate ions, resulting in the deposition of minimal CaP clusters on the PDA@MBG NP surface when immersed for 7 days in simulated body fluid, indicating the absence of hydroxyapatite mineralization.
Collapse
Affiliation(s)
- Baiyan Sui
- Department of Dental Materials, Shanghai Biomaterials Research and Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, 200011 Shanghai, China
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Zhiyan Xu
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Zhiyu Xue
- School of Materials and Energy, Advanced Energy Research Institute, Sichuan Provincial Engineering Research Center of Flexible Display Material Genome, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, 610054 Chengdu, China
| | - Yong Xiang
- School of Materials and Energy, Advanced Energy Research Institute, Sichuan Provincial Engineering Research Center of Flexible Display Material Genome, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, 610054 Chengdu, China
| | - Tian Zhou
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, No. 639 Zhizaoju Road, 200011 Shanghai, China
| | - Ana M Beltrán
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, Virgen de África 7, 41011 Sevilla, Spain
| | - Kai Zheng
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine and Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Hanzhong Rd.136, 210029 Nanjing, China
| | - Xin Liu
- Department of Dental Materials, Shanghai Biomaterials Research and Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, 200011 Shanghai, China
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| |
Collapse
|
9
|
Ashraf I, Singh NB, Agarwal A. Iron-rich coal fly ash-polydopamine-silver nanocomposite (IRCFA-PDA-Ag NPs): tailored material for remediation of methylene blue dye from aqueous solution. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:322. [PMID: 36690821 DOI: 10.1007/s10661-023-10931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Water pollution has become one of the most acute environmental problems. One of the pollutants coming to water bodies from industries are dyes, which are harmful to human health, living organisms, and the esthetic appearance of water. Most dyes are toxic, carcinogenic, rarely biodegradable, and highly soluble in water. Therefore, industrial wastewater treatment has become important. Adsorption technique of removal of dyes from water is simple, efficient, and inexpensive as compared to other techniques. Adsorption efficiency depends on the type and surface area of adsorbents. Iron-rich coal fly ash (IRCFA)-Polydopamine (PDA)@ Silver (Ag) nanocomposite was prepared by separating the iron-rich part (IRCFA) from coal fly ash and coated with polydopamine. IRCFA was mixed with 10 mM tris buffer solution containing 1 g dopamine. The prepared IRCFA-PDA was added to an aqueous solution of silver nitrate, heated at 60 °C, and then 30 mL of flower waste extract was added to this solution. Solid IRCFA-PDA@Ag was obtained, and the prepared nanocomposite was used for the removal of methylene blue (MB) dye from water. The nanocomposite used was prepared by a cost-effective method and has high reusability, separability, and fast regeneration ability. The mechanism of removal of MB dye has been discussed in detail.
Collapse
Affiliation(s)
- Iqra Ashraf
- Department of Chemistry & Biochemistry, Sharda School of Basic Sciences and Research, Sharda University, UP, Greater Noida, 201310, India
| | - Nakshatra B Singh
- Department of Chemistry & Biochemistry, Sharda School of Basic Sciences and Research, Sharda University, UP, Greater Noida, 201310, India
| | - Anupam Agarwal
- Department of Chemistry & Biochemistry, Sharda School of Basic Sciences and Research, Sharda University, UP, Greater Noida, 201310, India.
| |
Collapse
|
10
|
Guo LY, Xia QS, Qin JL, Yang M, Yang TY, You FT, Chen ZH, Liu B, Peng HS. Skin-safe nanophotosensitizers with highly-controlled synthesized polydopamine shell for synergetic chemo-photodynamic therapy. J Colloid Interface Sci 2022; 616:81-92. [DOI: 10.1016/j.jcis.2022.02.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023]
|
11
|
Zheng Z, Li X, Dai X, Ge J, Chen Y, Du C. Surface functionalization of anticoagulation and anti-nonspecific adsorption with recombinant hirudin modification. BIOMATERIALS ADVANCES 2022; 135:212741. [PMID: 35929214 DOI: 10.1016/j.bioadv.2022.212741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/14/2022] [Accepted: 02/26/2022] [Indexed: 06/15/2023]
Abstract
Surface functionalization to improve the blood compatibility is pivotal for the application of biomaterials. In this article, the surface of silicon was first functionalized with chemical groups, such as amino, quinone and phenol groups by the self-polymerization of dopamine, which were used to immobilize anticoagulant drugs hirudin. The detailed analysis and discussion about the grafting groups, morphology, wettability, the dynamic adsorption of proteins, the cytological property and the blood compatibility on the surfaces were carried on by the technology of contact angle, X-ray photoelectron spectroscopy, quartz crystal microbalance, endothelial cells culture and anticoagulant blood test in vivo. The surface with hirudin modification exhibited hydrophilic property and significantly inhibited the nonspecific adsorption of albumin, while it was more approachable to fibronectin. In vitro study displayed that the surface loaded with hirudin could promote the proliferation of endothelial cells. The evaluation of anticoagulant showed good anti-adhesion effect on platelets and the hemolysis rate decreased significantly to less than 0.4%. Activated partial thromboplastin time (APTT) of the silicon wafer loaded with hirudin can exceed 38 s, and the APTT prolongs as the hirudin concentration rises. This study suggested that such simple but effective surface functionalization technique, combining excellent anticoagulant activity together with reendothelialization potential due to the preferable fibronectin adsorption, provide great practical significance to the application of cardiovascular materials.
Collapse
Affiliation(s)
- Zhiwen Zheng
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials Science and Engineering, Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Xueyang Li
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials Science and Engineering, Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Xin Dai
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials Science and Engineering, Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Jianhui Ge
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials Science and Engineering, Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Yunhua Chen
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials Science and Engineering, Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Chang Du
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials Science and Engineering, Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
12
|
Chen S, Xu H, He X, Su Y, Liu Q, Zhang B. One-pot synthesis of polydopamine/Ag microspheres through microemulsion environment and its methylene blue removal application. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02896-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Gamonchuang J, Burakham R. Amino-based magneto-polymeric-modified mixed iron hydroxides for magnetic solid phase extraction of phenol residues in environmental samples. J Chromatogr A 2021; 1643:462071. [PMID: 33761435 DOI: 10.1016/j.chroma.2021.462071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 12/24/2022]
Abstract
Mixed iron hydroxides (MIHs) modified with different amino-based polymeric materials, including aminopropyltriethoxysilane, polydopamine, diaminobenzoic acid, polyaniline, and polyphenylenediamine, were comparatively investigated as sorbents for the extraction of phenol compounds. Polyphenylenediamine-modified mixed iron hydroxides (MIH@PPDA) showed high adsorption capability for most target analytes. Its ferromagnetic behavior, with a magnetization of 17.38 emu g-1, was sufficient for subsequent use in magnetic solid-phase extraction (MSPE). The functional groups, morphology, and magnetic properties of this magnetic nanomaterial were investigated using Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry, X-ray diffraction, and CHN analysis. High-performance liquid chromatography with a photodiode array detector was used to quantify phenol compounds. The experimental parameters affecting the efficiency of the entire MSPE process were optimized. Good linearity in the range of 0.5-1000 µg L-1 was obtained (depended on the compound). The detection and quantitation limits varied from 0.01 to 0.3 µg L-1 and 0.03 to 0.9 µg L-1, respectively. The enrichment factors for all phenol compounds were in the range of 80-285. The precision in terms of intra- and inter-day relative standard deviations were below 5.8% and 6.2%, respectively. The developed MSPE method was applied to analyze phenol compounds in diverse samples, including soil, drinking water, and fruit. Relative recoveries of 76.7-130.1% were obtained. The MIH@PPDA magneto-polymeric sorbent exhibits good stability and is reliable for a variety of phenol compounds.
Collapse
Affiliation(s)
- Jirasak Gamonchuang
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Rodjana Burakham
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
14
|
Ashuri M, He Q, Shaw LL. Improving cycle stability of Si anode through partially carbonized polydopamine coating. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Niyonshuti II, Krishnamurthi VR, Okyere D, Song L, Benamara M, Tong X, Wang Y, Chen J. Polydopamine Surface Coating Synergizes the Antimicrobial Activity of Silver Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40067-40077. [PMID: 32794690 DOI: 10.1021/acsami.0c10517] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal nanoparticles, especially silver nanoparticles (AgNPs), have drawn increasing attention for antimicrobial applications. Most studies have emphasized on the correlations between the antibacterial potency of AgNPs and the kinetics of metallic to ionic Ag conversion, while other antimicrobial mechanisms have been underestimated. In this work, we focused on the surface effects of polydopamine (PDA) coating on the antimicrobial activity of AgNPs. A method of fast deposition of PDA was used to synthesize the PDA-AgNPs with controllable coating thickness ranging from 3 to 25 nm. The antimicrobial activities of the PDA-AgNPs were analyzed by fluorescence-based growth curve assays on Escherichia coli. The results indicated that the PDA-AgNPs exhibited significantly higher antibacterial activities than poly(vinylpyrrolidone)-passivated AgNPs (PVP-AgNPs) and PDA themselves. It was found that the PDA coating synergized with the AgNPs to prominently enhance the potency of the PDA-AgNPs against bacteria. The analysis of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy elucidated that the synergistic effects could be originated from the interaction/coordination between Ag and catechol group on the PDA coating. The synergistic effects led to increased generation of reactive oxygen species and the consequent bacterial damage. These findings demonstrated the importance of the surface effects on the antimicrobial properties of AgNPs. The underlying molecular mechanisms have shined light on the future development of more potent metal nanoparticle-based antimicrobial agents.
Collapse
Affiliation(s)
- Isabelle I Niyonshuti
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | | | - Deborah Okyere
- Materials Science and Engineering Graduate Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Liang Song
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Mourad Benamara
- Institute of Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Xiao Tong
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Yong Wang
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Materials Science and Engineering Graduate Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Jingyi Chen
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Materials Science and Engineering Graduate Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
16
|
Gold nanorods/polydopamine-capped hollow hydroxyapatite microcapsules as remotely controllable multifunctional drug delivery platform. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Polydopamine assisted synthesis of ultrafine silver nanoparticles for heterogeneous catalysis and water remediation. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.nanoso.2020.100489] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
18
|
Dong Z, Ye Z, Zhang Z, Xia K, Zhang P. Chiral Nematic Liquid Crystal Behavior of Core-Shell Hybrid Rods Consisting of Chiral Cellulose Nanocrystals Dressed with Non-chiral Conformal Polymeric Skins. Biomacromolecules 2020; 21:2376-2390. [PMID: 32364722 DOI: 10.1021/acs.biomac.0c00320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The current work investigates how the nanoscale conformal coating layers of non-chiral polymeric materials can influence the chiral nematic liquid crystal (CLC) behaviors of the rodlike cellulose nanocrystals (CNCs), the bio-derived nanomaterials that have attracted significant attention. For this, we developed strategies to coat the CNC rods on the single-particle level with a homogeneous bioinspired polydopamine (PDA) layer, leading to well-defined core-shell CNC@PDA rods with various PDA coating thicknesses and excellent colloidal stability. Comprehensive investigation revealed that the CNC@PDA hybrid nanorods in concentrated suspensions form well-defined nematic liquid crystal phases with clear phase separation behavior that depend on the rod concentrations and ionic strengths, typical of charged rods. Most intriguingly, the nematic LC phases formed by the CNC@PDA rods with the PDA coating thickness achieved herein are indeed the perfect CLC phases, which form following the classic pathway of nucleation and coalesce of chiral tactoids and have colorful chiral fingerprints standing out from the dark suspensions. The pitches of the CLC phase increase sharply with increasing PDA coating thicknesses and are significantly larger than those of the pristine CNCs. Such observations can be attributed to the blurring effects of the PDA coating on the intrinsic surface chiral features of CNC of whatever origins that drive the formation of the CLC phases, resulting in weakening chiral interactions between CNC@PDA rods. Besides benefiting the understanding of the long-sought origin of the CLC phases of the pristine CNC, the current work demonstrates the possibility of controlling the CLC phase behaviors of CNC by tuning the thickness of the coating materials and also serves as the first example of directly transferring the unique chirality of CNC to other non-chiral materials.
Collapse
Affiliation(s)
- Ziyue Dong
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China
| | - Zihan Ye
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China
| | - Zhenkun Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China
| | - Ke Xia
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China
| | - Pengjiao Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China
| |
Collapse
|
19
|
Zhang ZJ, Deng GL, Huang X, Wang X, Xue JM, Chen XY. Highly boosting the supercapacitor performance by polydopamine-induced surface modification of carbon materials and use of hydroquinone as an electrolyte additive. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135940] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Sánchez-García J, Benito AM, Maser WK, García-Bordejé E. Ru supported on N-doped reduced graphene oxide aerogels with different N-type for alcohol selective oxidation. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Sridharan M, Kamaraj P, Vennila R, Huh YS, Arthanareeswari M. Bio-inspired construction of melanin-like polydopamine-coated CeO2 as a high-performance visible-light-driven photocatalyst for hydrogen production. NEW J CHEM 2020. [DOI: 10.1039/d0nj02234a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In recent years, cerium oxide has been the most widely studied photocatalyst due to its unique properties.
Collapse
Affiliation(s)
- M. Sridharan
- Department of Chemistry
- SRM Institute of Science and Technology
- Chennai
- India
| | - P. Kamaraj
- Department of Chemistry
- Bharath Institute of Higher Education and Research
- Chennai
- India
| | - R. Vennila
- Department of Chemistry
- Adhiyaman Arts & Science College for Women
- Krishnagiri
- India
| | - Yun Suk Huh
- Department of Biological Engineering
- College of Engineering
- Inha University
- Incheon
- Korea
| | - M. Arthanareeswari
- Department of Chemistry
- SRM Institute of Science and Technology
- Chennai
- India
| |
Collapse
|
22
|
Zhang ZJ, Song QZ, He WX, Liu P, Xiao YH, Liang JY, Chen XY. Dual surface modification of carbon materials by polydopamine and phosphomolybdic acid for supercapacitor application. Dalton Trans 2019; 48:17321-17330. [PMID: 31723948 DOI: 10.1039/c9dt03831k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Surface modification of carbon materials is an important issue for its potential application. In this work, this purpose has been successfully achieved by the incorporation of polydopamine (PDA) and phosphomolybdic acid (PMA), forming carbon/PDA/PMA hybrid electrode materials, in which PDA acts both as a linker molecule and as a pseudo-capacitance provider, and PMA contributes to pseudo-capacitive performance. It is revealed that adding PDA and/or PMA results in a decrease of porosity but in an increase of electrical conductivity and thus a suitable combination of porosity, conductivity, and pseudo-capacitance is vital for achieving the optimization of capacitive performance. By using the Trasatti method, we found out that increasing PDA or PMA results in the improvement of pseudo-capacitance proportion and the C-PDA/PMA-1 : 1 sample exhibits a pseudo-capacitance proportion of 32%. In a two-electrode configuration, the C-PDA/PMA-1 : 1 sample delivers a specific capacitance of 101 F g-1 at 1 A g-1, a cycling performance of 108% within 10 000 cycles, and an energy density of 3.5 W h kg-1 (nearly 3.2 times that of the C-blank sample) at 500 W kg-1. Moreover, the dual surface modification of PDA and PMA could be extended to other energy storage systems, highly improving capacitive performance by the synergic effect.
Collapse
Affiliation(s)
- Zhong Jie Zhang
- School of Chemistry & Chemical Engineering, Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University, Hefei 230601, Anhui, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Investigation of the Oxidation Mechanism of Dopamine Functionalization in an AZ31 Magnesium Alloy for Biomedical Applications. COATINGS 2019. [DOI: 10.3390/coatings9090584] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Implant design and functionalization are under significant investigation for their ability to enhance bone-implant grafting and, thus, to provide mechanical stability for the device during the healing process. In this area, biomimetic functionalizing polymers like dopamine have been proven to be able to improve the biocompatibility of the material. In this work, the dip coating of dopamine on the surface of the magnesium alloy AZ31 is investigated to determine the effects of oxygen on the functionalization of the material. Two different conditions are applied during the dip coating process: (1) The absence of oxygen in the solution and (2) continuous oxygenation of the solution. Energy dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) are used to analyze the composition of the formed layers, and the deposition rate on the substrate is determined by molecular dynamic simulation. Electrochemical analysis and cell cultivation are performed to determine the corrosion resistance and cell’s behavior, respectively. The high oxygen concentration in the dopamine solution promotes a homogeneous and smooth coating with a drastic increase of the deposition rate. Also, the addition of oxygen into the dip coating process increases the corrosion resistance of the material.
Collapse
|
24
|
Affiliation(s)
- Jürgen Liebscher
- Institute of Chemistry; Humboldt-University Berlin; Brook-Taylor-Str. 2 12489 Berlin Germany
| |
Collapse
|
25
|
Colorimetric determination of total protein content in serum based on the polydopamine/protein adsorption competition on microplates. Talanta 2019; 198:15-22. [DOI: 10.1016/j.talanta.2019.01.095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 11/23/2022]
|
26
|
Zeng Y, Liu W, Wang Z, Singamaneni S, Wang R. Multifunctional Surface Modification of Nanodiamonds Based on Dopamine Polymerization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:4036-4042. [PMID: 29528233 DOI: 10.1021/acs.langmuir.8b00509] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Surface functionalization of nanodiamonds (NDs), which is of great interest in advanced material and therapeutic applications, requires the immobilization of functional species, such as nucleic acids, bioprobes, drugs, and metal nanoparticles, onto NDs' surfaces to form stable nanoconjugates. However, it is still challenging to modify the surface of NDs due to the complexity of their surface chemistry and the low density of each functional group on the surfaces of NDs. In this work, we demonstrate a general applicable surface functionalization approach for the preparation of ND-based core-shell nanoconjugates using dopamine polymerization. By taking advantage of the universal adhesion and versatile reactivity of polydopamine, we have effectively conjugated DNA and silver nanoparticles onto NDs. Moreover, the catalytic activity of ND-supported silver nanoparticle was characterized by the reduction of 4-nitrophenol, and the addressability of NDs was tested through DNA hybridization that formed satellite ND-gold nanorod conjugation. This simple and robust method we have presented may significantly improve the capability for attaching various functionalities onto NDs and open up new platforms for applications of NDs.
Collapse
Affiliation(s)
| | | | - Zheyu Wang
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering , Washington University in St. Louis , St Louis , Missouri 63130 , United States
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering , Washington University in St. Louis , St Louis , Missouri 63130 , United States
| | | |
Collapse
|
27
|
Meeker DG, Wang T, Harrington WN, Zharov VP, Johnson SA, Jenkins SV, Oyibo SE, Walker CM, Mills WB, Shirtliff ME, Beenken KE, Chen J, Smeltzer MS. Versatility of targeted antibiotic-loaded gold nanoconstructs for the treatment of biofilm-associated bacterial infections. Int J Hyperthermia 2018; 34:209-219. [PMID: 29025325 PMCID: PMC6095133 DOI: 10.1080/02656736.2017.1392047] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND We previously demonstrated that a photoactivatable therapeutic approach employing antibiotic-loaded, antibody-conjugated, polydopamine (PDA)-coated gold nanocages (AuNCs) could be used for the synergistic killing of bacterial cells within a biofilm. The approach was validated with a focus on Staphylococcus aureus using an antibody specific for staphylococcal protein A (Spa) and an antibiotic (daptomycin) active against Gram-positive cocci including methicillin-resistant S. aureus (MRSA). However, an important aspect of this approach is its potential therapeutic versatility. METHODS In this report, we evaluated this versatility by examining the efficacy of AuNC formulations generated with alternative antibodies and antibiotics targeting S. aureus and alternative combinations targeting the Gram-negative pathogen Pseudomonas aeruginosa. RESULTS The results confirmed that daptomycin-loaded AuNCs conjugated to antibodies targeting two different S. aureus lipoproteins (SACOL0486 and SACOL0688) also effectively kill MRSA in the context of a biofilm. However, our results also demonstrate that antibiotic choice is critical. Specifically, ceftaroline and vancomycin-loaded AuNCs conjugated to anti-Spa antibodies were found to exhibit reduced efficacy relative to daptomycin-loaded AuNCs conjugated to the same antibody. In contrast, gentamicin-loaded AuNCs conjugated to an antibody targeting a conserved outer membrane protein were highly effective against P. aeruginosa biofilms. CONCLUSIONS These results confirm the therapeutic versatility of our approach. However, to the extent that its synergistic efficacy is dependent on the ability to achieve both a lethal photothermal effect and the thermally controlled release of a sufficient amount of antibiotic, they also demonstrate the importance of carefully designing appropriate antibody and antibiotic combinations to achieve the desired therapeutic synergy.
Collapse
Affiliation(s)
- Daniel G. Meeker
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Tengjiao Wang
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas
| | - Walter N. Harrington
- Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Vladimir P. Zharov
- Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sarah A. Johnson
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Samir V. Jenkins
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Stephanie E. Oyibo
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas
| | - Christopher M. Walker
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Weston B. Mills
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Mark E. Shirtliff
- Department of Microbial Pathogenesis, Dental School, University of Maryland-Baltimore, Baltimore, Maryland
- Department of Microbiology and Immunology, School of Medicine, University of Maryland-Baltimore, Baltimore, Maryland
| | - Karen E. Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jingyi Chen
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas
| | - Mark S. Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
28
|
Azab MM, Cherif R, Finnie AL, Abou El-Alamin MM, Sultan MA, Wark AW. Optimized polydopamine coating and DNA conjugation onto gold nanorods for single nanoparticle bioaffinity measurements. Analyst 2018. [DOI: 10.1039/c7an02019h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The formation of a stable polydopamine layer on a nanorod surface depends on the underlying chemistry and optimization enables the formation of packed ssDNA monolayers for bioaffinity applications.
Collapse
Affiliation(s)
- Marwa M. Azab
- Centre for Molecular Nanometrology
- Technology and Innovation Centre
- Dept. of Pure & Applied Chemistry
- University of Strathclyde
- Glasgow
| | - Rédha Cherif
- Faculté de Chimie
- Université Pierre et Marie Curie
- 75252 Cedex 05
- France
| | - Aryanne L. Finnie
- Centre for Molecular Nanometrology
- Technology and Innovation Centre
- Dept. of Pure & Applied Chemistry
- University of Strathclyde
- Glasgow
| | | | - Maha A. Sultan
- Analytical Chemistry Department
- Faculty of Pharmacy
- Helwan University
- Cairo
- Egypt
| | - Alastair W. Wark
- Centre for Molecular Nanometrology
- Technology and Innovation Centre
- Dept. of Pure & Applied Chemistry
- University of Strathclyde
- Glasgow
| |
Collapse
|