1
|
Wei P, Duan Y, Wang C, Sun P, Sun N. Co-Assembled Supramolecular Organohydrogels of Amphiphilic Zwitterion and Polyoxometalate with Controlled Microstructures. Molecules 2024; 29:2286. [PMID: 38792147 PMCID: PMC11124011 DOI: 10.3390/molecules29102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The organization of modifiable and functional building components into various superstructures is of great interest due to their broad applications. Supramolecular self-assembly, based on rationally designed building blocks and appropriately utilized driving forces, is a promising and widely used strategy for constructing superstructures with well-defined nanostructures and diverse morphologies across multiple length scales. In this study, two homogeneous organohydrogels with distinct appearances were constructed by simply mixing polyoxometalate (phosphomolybdic acid, HPMo) and a double-tailed zwitterionic quaternary ammonium amphiphile in a binary solvent of water and dimethyl sulfoxide (DMSO). The delicate balance between electrostatic attraction and repulsion of anionic HPMo clusters and zwitterionic structures drove them to co-assemble into homogeneous organohydrogels with diverse microstructures. Notably, the morphologies of the organohydrogels, including unilamellar vesicles, onion-like vesicles, and spherical aggregates, can be controlled by adjusting the ionic interactions between the zwitterionic amphiphiles and phosphomolybdic acid clusters. Furthermore, we observed an organohydrogel fabricated with densely stacked onion-like structures (multilamellar vesicles) consisting of more than a dozen layers at certain proportions. Additionally, the relationships between the self-assembled architectures and the intermolecular interactions among the polyoxometalate, zwitterionic amphiphile, and solvent molecules were elucidated. This study offers valuable insights into the mechanisms of polyoxometalate-zwitterionic amphiphile co-assembly, which are essential for the development of materials with specific structures and emerging functionalities.
Collapse
Affiliation(s)
- Peilin Wei
- College of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (P.W.); (Y.D.); (C.W.)
| | - Yu Duan
- College of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (P.W.); (Y.D.); (C.W.)
| | - Chen Wang
- College of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (P.W.); (Y.D.); (C.W.)
| | - Panpan Sun
- School of Bioscience and Technology, Shandong Second Medical University, Weifang 261053, China
| | - Na Sun
- College of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (P.W.); (Y.D.); (C.W.)
| |
Collapse
|
2
|
Gou X, Zhao HY, Huang Z, Yang Y, Jin LY. Donor-Acceptor Assembly of Amphiphilic Molecules Based on 9,10-Distyrylanthracene Derivatives with Terminal Naphthalene Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7106-7113. [PMID: 38498422 DOI: 10.1021/acs.langmuir.4c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Amphiphilic rod-coil compounds have excellent photophysical properties and can be assembled into supramolecular nanostructures of different sizes in water or polar solvents. Herein, we synthesized the amphiphilic compounds 2N-DSA, 4N-DSA, and 6N-DSA with 9,10-distyrylanthracene (DSA) as the core and a naphthalene unit as the terminal group that connected DSA through a tetraethylene glycol chain. These compounds have excellent aggregation-induced emission (AIE) properties in aqueous solution and are assembled into worm-like fragments or different sizes of spherical assemblies, defending the volume ratio of the rod to coil segments. Notably, the donor-acceptor interaction between DSA and electron- deficient compounds 2,4,6-trinitrophenol (TNP), 2,4,5,7-tetranitrofluorenone (TNF), and tetraethylene glycol dinitrobenzoate (TGDNB) forms a charge transfer complex, which can be used as a nanoreactor to improve the yield of the Suzuki coupling reaction about 8-10 times. The experimental results reveal that the synergy effect of the donor-acceptor, intermolecular π-π stacking, and hydrophobic-hydrophilic interactions significantly influences the morphology of aggregates and the efficiency of the nanoreactor.
Collapse
Affiliation(s)
- Xiaoliang Gou
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
| | - Hui-Yu Zhao
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhegang Huang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuntian Yang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
3
|
|
4
|
Liese S, Schlaich A, Netz RR. Dielectric Constant of Aqueous Solutions of Proteins and Organic Polymers from Molecular Dynamics Simulations. J Chem Phys 2022; 156:224902. [DOI: 10.1063/5.0089397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The dielectric constant of water/oligomer mixtures, spanning the range from pure water to pure oligomeric melts, is investigated using molecular dynamics (MD) simulations. As prototypical water-soluble organic substances we consider neutral poly-glycine, poly-ethylene glycol and charged monomeric propanic acid. As the water content is reduced, the dielectric constant decreases but does not follow an ideal mixing behavior. The deviations from ideal mixing originate primarily in the non-linear relation between the oligomer mass fraction and collective polarization effects. We find that the dielectric constant is dominated by water polarization, even if the oligomer mass fraction exceeds 50%. By a double extrapolation of the MD simulation results to the limit of vanishing water fraction and to the limit of infinite oligomeric chain length, we estimate the orientational contribution to the dielectric constant of the pure polymeric melts. By this procedure, we obtain ε = 17 {plus minus} 2 for polyglycine and ε = 1 {plus minus} 0.3 for polyethylene glycol. The large difference is rationalized by polarization correlations of glycine units. Interestingly, we find constant temperature simulations to outperform replica exchange simulations in terms of equilibration speed.
Collapse
Affiliation(s)
- Susanne Liese
- University of Augsburg Institute of Physics, Germany
| | | | - Roland R. Netz
- Physics, Freie Universitat Berlin Fachbereich Physik, Germany
| |
Collapse
|
5
|
Li B, Xuan L, Wu L. Polyoxometalate-Containing Supramolecular Gels. Macromol Rapid Commun 2022; 43:e2200019. [PMID: 35102624 DOI: 10.1002/marc.202200019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/27/2022] [Indexed: 11/08/2022]
Abstract
Supramolecular gels are important soft materials with various applications, which are fabricated through hydrogen bonding, π-π stacking, electrostatic or host-guest interactions. Introducing functional groups, especially inorganic components, is an efficient strategy to obtain gels with robust architecture and high performance. Polyoxometalates (POMs), as a class of negatively-charged clusters, have defined structures and multiple interaction sites, resulting in their potential as building blocks for constructing POM-containing supramolecular gels. The introduction of POMs into gels not only provides strong driving forces for the formation of gels due to the characteristics of charged cluster and oxygen-rich surface, but also brings new properties sourcing from unique electronic structures of POMs. Though many POM-containing gels have been reported, a comprehensive review is still absent. Herein, the concept of POM-containing gels is discussed, following with the design strategies and driving forces. To better understand the results in the literature, detailed examples, which are classified into several categories based on the types of organic components, are presented to illustrate the gelation process and gel structures. Moreover, applications of POM-containing gels in energy chemistry, sustainable chemistry and other aspects are also reviewed, as well as the future developments of this field. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Luyun Xuan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
6
|
Makinde ZO, van der Heijden NJ, Clyde D, Nam S, Brothers PJ, Malmström J, Granville S, Domigan LJ, McGillivray DJ, Williams DE. Geometric Frustration and Long-Range Ordering Induced by Surface Pressure Oscillation in a Langmuir-Blodgett Monolayer of Magnetic Soft Spheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10150-10158. [PMID: 34384020 DOI: 10.1021/acs.langmuir.1c01577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As a step toward the bottom-up construction of magnonic systems, this paper demonstrates the use of a large-amplitude surface-pressure annealing technique to generate 2-D order in a Langmuir-Blodgett monolayer of magnetic soft spheres comprising a surfactant-encapsulated polyoxometalate. The films show a distorted square lattice interpreted as due to geometric frustration caused by 2-D confinement between soft walls, one being the air interface and the other the aqueous subphase. Hysteresis and relaxation phenomena in the 2-D layers are suggested to be due to folding and time-dependent interpenetration of surfactant chains.
Collapse
Affiliation(s)
- Zainab O Makinde
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Nadine J van der Heijden
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Daniel Clyde
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Seong Nam
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Penelope J Brothers
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
- Research School of Chemistry, The Australian National University, Canberra ACT 2601, Australia
| | - Jenny Malmström
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
- Department of Chemical and Materials Engineering, The University of Auckland, 20 Symonds St., Auckland 1010, New Zealand
| | - Simon Granville
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
- Robinson Research Institute, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Laura J Domigan
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
- Department of Chemical and Materials Engineering, The University of Auckland, 20 Symonds St., Auckland 1010, New Zealand
| | - Duncan J McGillivray
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
| | - David E Williams
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
| |
Collapse
|
7
|
Zhu Z, Wei M, Li B, Wu L. Constructing chiral polyoxometalate assemblies via supramolecular approaches. Dalton Trans 2021; 50:5080-5098. [PMID: 33734264 DOI: 10.1039/d1dt00182e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyoxometalates (POMs), as a typical class of discrete metal oxide clusters that are known in inorganic and structural chemistry since long, have displayed more and more interesting applications over recent years. However, in comparison to the chemical synthesis, the photochemical, electrochemical, and magnetic properties, the structural asymmetry, and relative characteristic investigations arising therefrom are far behind even if they are very important for functional materials, especially in solution systems. One of the main reasons is that it is hard to control and maintain a stable chiral state of POMs to carry out further corresponding performances. Aiming to overcome these disadvantages, the main concerns of this review are to discuss the generation of the chirality for discrete metal oxide clusters, chirality transfer via a supramolecular approach, chirality amplification in self-assemblies, and the related functional properties such as photochromism, catalysis, and bioactivities in solutions. Considering that some previous reviews dealt with chiral structures and packing architectures in the crystalline solids of POMs, this article only concentrates on the induced chirality and material properties in solution systems, which have been more active recently but no review article has been involved in this interesting area.
Collapse
Affiliation(s)
- Zexi Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Mingfeng Wei
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| |
Collapse
|
8
|
Satake A. The Solvent Effect on Weak Interactions in Supramolecular Polymers: Differences between Small Molecular Probes and Supramolecular Polymers. Chempluschem 2020; 85:1542-1548. [PMID: 32697033 DOI: 10.1002/cplu.202000400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/04/2020] [Indexed: 12/27/2022]
Abstract
In this minireview, weak interactions that occur in supramolecular polymers are discussed. Combination of weak and strong interactions plays an important role in the construction of supramolecular polymers. It is beneficial to separate the contributions of the weak interactions, as well as each solvent effect on the weak interactions. However, it is generally difficult to observe each solvent effect separately at work in each interaction. Small molecular probes are useful to estimate the contributions of the weak interaction. But, the results should be treated with caution when applied to supramolecular polymer systems. To overcome the problems, a new solvent parameter, solvation ability (SA), is introduced, which was determined on the balance point of extended and stacked forms of porphyrin-based interconvertible supramolecular polymers.
Collapse
Affiliation(s)
- Akiharu Satake
- Department of Chemistry, Faculty of Science Division II, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
9
|
Cui Y, Tao D, Huang X, Lu G, Feng C. Self-Assembled Helical and Twisted Nanostructures of a Preferred Handedness from Achiral π-Conjugated Oligo( p-phenylenevinylene) Derivatives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3134-3142. [PMID: 30712352 DOI: 10.1021/acs.langmuir.8b04127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The formation of chiral nanostructures from the self-assembly of achiral building blocks without external symmetry breaking inducing factors is believed to associate with the origin of chirality. Herein, we reported the synthesis and self-assembly of oligo( p-phenylenevinylene)- b-poly(ethylene glycol) (OPV3- b-PEG17, the subscripts represent the number of repeat unit of each block) in solution. We systematically examined the influence of solvent, heating temperature, and concentration of OPV3- b-PEG17 on the self-assembly of OPV3- b-PEG17 by UV/vis absorption and fluorescence spectrometry, circular dichroism technique, and transmission electron and atomic force microscopy. Interestingly, helical and twisted nanoribbons and nanotubes of a preferred handedness can be formed from achiral OPV3- b-PEG17 in the mixture of water/ethanol (v/v = 1/1) and the solution showed an obvious exciton-coupled bisignated signal, which indicated that symmetry breaking occurred during the formation of these nanostructures without external inducing factors. Our results showed that the occurrence of symmetry breaking is subtle to the experimental factors including solvent, heating temperature, and concentration of OPV3- b-PEG17. The directional π-π stacking along with steric repulsion between PEG domains should be the driving force for the formation of these chiral nanostructures. The occurrence of statistical fluctuations in the initial stage of self-assembly led to an accidental excess of helical or/and twisted structures, that is, symmetry breaking. Subsequently, the autocatalysis effect resulted in the formation of helical or/and twisted nanoribbons with a preferred handedness.
Collapse
Affiliation(s)
- Yinan Cui
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| | - Daliao Tao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials , Donghua University , 2999 North Renmin Road , Songjiang, Shanghai 201620 , People's Republic of China
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| |
Collapse
|
10
|
Zhang L, Song S, Yang N, Tantai X, Xiao X, Jiang B, Sun Y. Porous Hybrid Nanoflower Self-Assembled from Polyoxometalate and Polyionene for Efficient Oxidative Desulfurization. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05905] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Liu D, Zhang G, Gao B, Li B, Wu L. From achiral to helical bilayer self-assemblies of a 1,3,5-triazine-2,4,6-triphenol-grafted polyanionic cluster: countercation and solvent modulation. Dalton Trans 2019; 48:11623-11627. [DOI: 10.1039/c9dt01780a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An organic-component grafted polyanionic cluster performs assembly structures from regular head to tail bilayer to inverse helical packing upon solvent polarity and counterions.
Collapse
Affiliation(s)
- Danjinkun Liu
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry and College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Guohua Zhang
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry and College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Bo Gao
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry and College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry and College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry and College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
12
|
Wu A, Sun P, Sun N, Yu Y, Zheng L. Coassembly of a Polyoxometalate and a Zwitterionic Amphiphile into a Luminescent Hydrogel with Excellent Stimuli Responsiveness. Chemistry 2018; 24:16857-16864. [DOI: 10.1002/chem.201803800] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Aoli Wu
- Key Laboratory of Colloid and Interface Chemistry Shandong University, Ministry of Education Jinan 250100 P. R. China
| | - Panpan Sun
- Key Laboratory of Colloid and Interface Chemistry Shandong University, Ministry of Education Jinan 250100 P. R. China
| | - Na Sun
- Key Laboratory of Colloid and Interface Chemistry Shandong University, Ministry of Education Jinan 250100 P. R. China
| | - Yang Yu
- Key Laboratory of Colloid and Interface Chemistry Shandong University, Ministry of Education Jinan 250100 P. R. China
| | - Liqiang Zheng
- Key Laboratory of Colloid and Interface Chemistry Shandong University, Ministry of Education Jinan 250100 P. R. China
| |
Collapse
|
13
|
Yang Y, Zhong K, Chen T, Jin LY. Morphological Control of Coil-Rod-Coil Molecules Containing m-Terphenyl Group: Construction of Helical Fibers and Helical Nanorings in Aqueous Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10613-10621. [PMID: 30107734 DOI: 10.1021/acs.langmuir.8b01904] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Rod-coil molecules, composed of rigid segments and flexible coil chains, have a strong intrinsic ability to self-assemble into diverse supramolecular nanostructures. Herein, we report the synthesis and the morphological control of a new series of amphiphilic coil-rod-coil molecular isomers 1-2 containing flexible oligoether chains. These molecules are comprised of m-terphenyl and biphenyl groups, along with triple bonds, and possess lateral methyl or butyl groups at the coil or rod segments. The results of this study suggest that the morphology of supramolecular aggregates is significantly influenced by the lateral alkyl groups and by the sequence of the rigid fragments in the bulk and in aqueous solution. The molecules with different coils self-assemble into lamellar or oblique columnar structures in the bulk state. In aqueous solution, molecule 1a, with a lack of lateral groups, self-assembled into large strips of sheets, whereas exquisite nanostructures of helical fibers were obtained from molecule 1b, which incorporated lateral methyl groups between the rod and coil segments. Interestingly, molecule 1c with lateral butyl and methyl groups exhibited a strong self-organizing capacity to form helical nanorings. Nanoribbons, helical fibers, and small nanorings were simultaneously formed from the 2a-2c, which are structural isomers of 1a, 1b, and 1c. Accurate control of these supramolecular nanostructures can be achieved by tuning the synergistic interactions of the noncovalent driving force with hydrophilic-hydrophobic interactions in aqueous solution.
Collapse
Affiliation(s)
- Yuntian Yang
- Key Laboratory for Organism Resources of the Changbai Mountain and Functional Molecules, Ministry of Education, and Department of Chemistry, College of Science , Yanbian University , Yanji 133002 , China
| | - Keli Zhong
- College of Chemistry, Chemical Engineering and Food Safety, Bohai University , Jinzhou 121013 , China
| | - Tie Chen
- Key Laboratory for Organism Resources of the Changbai Mountain and Functional Molecules, Ministry of Education, and Department of Chemistry, College of Science , Yanbian University , Yanji 133002 , China
| | - Long Yi Jin
- Key Laboratory for Organism Resources of the Changbai Mountain and Functional Molecules, Ministry of Education, and Department of Chemistry, College of Science , Yanbian University , Yanji 133002 , China
| |
Collapse
|