1
|
Basak S, Chatterjee R, Bandyopadhyay A. Beyond Traditional Stimuli: Exploring Salt-Responsive Bottlebrush Polymers-Trends, Applications, and Perspectives. ACS OMEGA 2024; 9:33365-33385. [PMID: 39130571 PMCID: PMC11308035 DOI: 10.1021/acsomega.4c06137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/13/2024]
Abstract
Bottlebrush polymers represent an important class of high-density side-chain-grafted polymers traditionally with high molecular weights, in which one or more polymeric side chains are tethered to each repeating unit of a linear polymer backbone, such that these macromolecules look like "bottlebrushes". The arrangement of molecular brushes is determined by side chains located at a distance considerably smaller than their unperturbed dimensions, leading to substantial monomer congestion and entropically unfavorable extension of both the backbone and the side chains. Traditionally, the conformation and physical properties of polymers are influenced by external stimuli such as solvent, temperature, pH, and light. However, a unique stimulus, salt, has recently gained attention as a means to induce shape changes in these molecular brushes. While the stimulus has been less researched to date, we see that these systems, when stimulated with salts, have the potential to be used in various engineering applications. This potential stems from the unique properties and behaviors these systems show when exposed to different salts, which could lead to new solutions and improvements in engineering processes, thus serving as the primary motivation for this narrative, as we aim to explore and highlight the various ways these systems can be utilized and the benefits they could bring to the field of engineering. This Review aims to introduce the concept of stimuli-responsive bottlebrush polymers, explore the evolutionary trajectory, delve into current trends in salt-responsive bottlebrush polymers, and elucidate how these polymers are addressing a variety of engineering challenges.
Collapse
Affiliation(s)
- Sayan Basak
- Department of Polymer Science
and Technology, University of Calcutta, 92, A.P.C Road, Kolkata 700 009, West
Bengal, India
| | - Rahul Chatterjee
- Department of Polymer Science
and Technology, University of Calcutta, 92, A.P.C Road, Kolkata 700 009, West
Bengal, India
| | - Abhijit Bandyopadhyay
- Department of Polymer Science
and Technology, University of Calcutta, 92, A.P.C Road, Kolkata 700 009, West
Bengal, India
| |
Collapse
|
2
|
Zhu T, Wan L, Li R, Zhang M, Li X, Liu Y, Cai D, Lu H. Janus structure hydrogels: recent advances in synthetic strategies, biomedical microstructure and (bio)applications. Biomater Sci 2024; 12:3003-3026. [PMID: 38695621 DOI: 10.1039/d3bm02051g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Janus structure hydrogels (JSHs) are novel materials. Their primary fabrication methods and various applications have been widely reported. JSHs are primarily composed of Janus particles (JNPs) and polysaccharide components. They exhibit two distinct physical or chemical properties, generating intriguing characteristics due to their asymmetric structure. Normally, one side (adhesive interface) is predominantly constituted of polysaccharide components, primarily serving excellent adhesion. On the other side (functional surface), they integrate diverse functionalities, concurrently performing a plethora of synergistic functions. In the biomedical field, JSHs are widely applied in anti-adhesion, drug delivery, wound healing, and other areas. It also exhibits functions in seawater desalination and motion sensing. Thus, JSHs hold broad prospects for applications, and they possess significant research value in nanotechnology, environmental science, healthcare, and other fields. Additionally, this article proposes the challenges and future work facing these fields.
Collapse
Affiliation(s)
- Taifu Zhu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Lei Wan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Ruiqi Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Mu Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Xiaoling Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Yilong Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Dingjun Cai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Haibin Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
- Department of Stomatology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, 510900, China.
| |
Collapse
|
3
|
Zhou Z, Shi Q. Bioinspired Dopamine and N-Oxide-Based Zwitterionic Polymer Brushes for Fouling Resistance Surfaces. Polymers (Basel) 2024; 16:1634. [PMID: 38931984 PMCID: PMC11207554 DOI: 10.3390/polym16121634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Biofouling is a great challenge for engineering material in medical-, marine-, and pharmaceutical-related applications. In this study, a novel trimethylamine N-oxide (TMAO)-analog monomer, 3-(2-methylacrylamido)-N,N-dimethylpropylamine N-oxide (MADMPAO), was synthesized and applied for the grafting of poly(MADMPAO) (pMPAO) brushes on quartz crystal microbalance (QCM) chips by the combination of bio-inspired poly-dopamine (pDA) and surface-initiated atom transfer radical polymerization technology. The result of ion adsorption exhibited that a sequential pDA and pMPAO arrangement from the chip surface had different characteristics from a simple pDA layer. Ion adsorption on pMPAO-grafted chips was greatly inhibited at low salt concentrations of 1 and 10 mmol/L due to strong surface hydration in the presence of charged N+ and O- of zwitterionic pMPAO brushes on the outer layer on the chip surface, well known as the "anti-polyelectrolyte" effect. During BSA adsorption, pMPAO grafting also led to a marked decrease in frequency shift, indicating great inhibition of protein adsorption. It was attributed to weaker BSA-pMPAO interaction. In this study, the Au@pDA-4-pMPAO chip with the highest coating concentration of DA kept stable dissipation in BSA adsorption, signifying that the chip had a good antifouling property. The research provided a novel monomer for zwitterionic polymer and demonstrated the potential of pMPAO brushes in the development and modification of antifouling materials.
Collapse
Affiliation(s)
- Zhen Zhou
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
| | - Qinghong Shi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
4
|
Deschamps-Biboulet M, Fayolle T, Ziegelmeyer T, Frachet V. [How can nature help us fight bacterial infections?]. Med Sci (Paris) 2024; 40:298-300. [PMID: 38520109 DOI: 10.1051/medsci/2024018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024] Open
Affiliation(s)
- Maëlan Deschamps-Biboulet
- Master 2 Sciences du vivant, Parcours IMaGHE, Université Paris, Sciences et Lettres (PSL), École Pratique des Hautes Études (EPHE), 75014 Paris, France
| | - Théo Fayolle
- Master 2 Sciences du vivant, Parcours IMaGHE, Université Paris, Sciences et Lettres (PSL), École Pratique des Hautes Études (EPHE), 75014 Paris, France
| | - Théo Ziegelmeyer
- Institut pour l'avancée des Biosciences, Inserm U1209, UMR CNRS 5309, Université Grenoble Alpes, 38700 La Tronche, France
| | - Véronique Frachet
- Institut pour l'avancée des Biosciences, Inserm U1209, UMR CNRS 5309, Université Grenoble Alpes, 38700 La Tronche, France - EPHE, Université PSL, 75014 Paris, France
| |
Collapse
|
5
|
Maggay IV, Liao TY, Venault A, Lin HT, Chao CC, Wei TC, Chang Y. Leveraging the Dielectric Barrier Discharge Plasma Process to Create Regenerative Biocidal ePTFE Membranes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48001-48014. [PMID: 37787514 DOI: 10.1021/acsami.3c10800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The utilization of dielectric barrier discharge (DBD) plasma treatment for modifying substrate surfaces constitutes an easy and simple approach with a potential for diverse applications. This technique was used to modify the surface of a commercial porous expanded poly(tetrafluoroethylene) (ePTFE) film with either dimethylaminoethyl methacrylate (DMAEMA) or (trimethylamino)ethyl methacrylate chloride (TMAEMA) monomers, aiming to obtain antibacterial ePTFE. Physicochemical analyses of the membranes revealed that DBD successfully enhanced the surface energy and surface charge of the membranes while maintaining high porosity (>75%) and large pore size (>1.0 μm). Evaluation of the bacteria killing-releasing (K-R) function revealed that both DMAEMA and TMAEMA endowed ePTFE with the ability to kill Escherichia coli bacteria. However, only TMAEMA-grafted ePTFE allowed for the release of dead bacteria from the surface upon washing with sodium hexametaphosphate (SHMP) saline solution, owing to its cationic charge derived from the quaternary amine. Washing with SHMP disturbed the electrostatic force between the polymer brushes and dead bacteria, which caused the release of the dead bacteria. Lastly, dead-end bacteria filtration showed that the TMAEMA-grafted ePTFE was able to kill 99.78% of the bacteria, while approximately 61.55% of bacteria were killed upon contact. The present findings support the feasibility of using DBD plasma treatment for designing surfaces that target bacteria and aid in the containment of disease-causing pathogens.
Collapse
Affiliation(s)
- Irish Valerie Maggay
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chungli 32023, Taiwan, R.O.C
| | - Ting-Yu Liao
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chungli 32023, Taiwan, R.O.C
| | - Antoine Venault
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chungli 32023, Taiwan, R.O.C
| | - Hao-Tung Lin
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chungli 32023, Taiwan, R.O.C
| | - Chih-Cheng Chao
- Tasheh Biotec Co., LTD, 226, Yuan-Pei Street, Hsinchu City 300, Taiwan, R.O.C
| | - Ta-Chin Wei
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chungli 32023, Taiwan, R.O.C
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chungli 32023, Taiwan, R.O.C
| |
Collapse
|
6
|
Lan X, Zhao M, Zhang X, Zhang H, Zhang L, Qi H. Mussel-inspired proteins functionalize catheter with antifouling and antibacterial properties. Int J Biol Macromol 2023:125468. [PMID: 37348578 DOI: 10.1016/j.ijbiomac.2023.125468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
Bacterial adhesion and subsequent biofilm formation on catheter can cause inevitably infection. The development of multifunctional antibacterial coating is a promising strategy to resist the bacteria adhesion and biofilm formation. Herein, a mussel-inspired chimeric protein MZAgP is prepared and employed to modify a variety of polymeric catheters. The MZAgP is composed of mussel-adhesive peptide, zwitterionic peptide, and silver-binding peptide, which can endow catheters with antifouling, bactericidal and biocompatibility performances. Expectedly, negligible biofilm is observed on the MZAgP coated catheters after incubating with bacteria for 120 h. And ignorable hemolysis and cytotoxicity are obtained on coated catheters. In addition, the modified catheters also display persistent antifouling and bacteriostatic properties throughout 168 h under hydrodynamic conditions. Moreover, the coated catheters still remain excellent antifouling and antibacterial properties even after 2 months of storage. This multifunctional coating may be promising as antibacterial and antibiofilm material, and the coated catheters are potential in clinical application.
Collapse
Affiliation(s)
- Xiang Lan
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Meirong Zhao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Xiangyu Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Hao Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China.
| | - Haishan Qi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
7
|
Burmeister N, Vollstedt C, Kröger C, Friedrich T, Scharnagl N, Rohnke M, Zorn E, Wicha SG, Streit WR, Maison W. Zwitterionic surface modification of polyethylene via atmospheric plasma-induced polymerization of (vinylbenzyl-)sulfobetaine and evaluation of antifouling properties. Colloids Surf B Biointerfaces 2023; 224:113195. [PMID: 36758459 DOI: 10.1016/j.colsurfb.2023.113195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
Zwitterionic polymer brushes were grafted from bulk polyethylene (PE) by air plasma activation of the PE surface followed by radical polymerization of the zwitterionic styrene derivative (vinylbenzyl)sulfobetaine (VBSB). Successful formation of dense poly-(VBSB)-brush layers was confirmed by goniometry, IR spectroscopy, XPS and ToF-SIMS analysis. The resulting zwitterionic layers are about 50-100 nm thick and cause extremely low contact angles of 10° (water) on the material. Correspondingly we determined a high density of > 1.0 × 1016 solvent accessible zwitterions/cm2 (corresponding to 2,0 *10-8 mol/cm2) by a UV-based ion-exchange assay with crystal violet. The elemental composition as determined by XPS and characteristic absorption bands in the IR spectra confirmed the presence of zwitterionic sulfobetaine polymer brushes. The antifouling properties of the resulting materials were evaluated in a bacterial adhesion test against gram-positive bacteria (S. aureus). We observed significantly reduced cellular adhesion of the zwitterionic material compared to pristine PE. These microbiological tests were complemented by tests in natural seawater. During a test period of 21 days, confocal microscopy revealed excellent antifouling properties and confirmed the operating antifouling mechanism. The procedure reported herein allows the efficient surface modification of bulk PE with zwitterionic sulfobetaine polymer brushes via a scalable approach. The resulting modified PE retains important properties of the bulk material and has excellent and durable antifouling properties.
Collapse
Affiliation(s)
- Nils Burmeister
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Christel Vollstedt
- Universität Hamburg, Department of Microbiology and Biotechnology, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Cathrin Kröger
- Universität Hamburg, Department of Microbiology and Biotechnology, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Timo Friedrich
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Nico Scharnagl
- Helmholtz-Zentrum Hereon GmbH, Institute of Surface Science, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - Marcus Rohnke
- Justus-Liebig-Universität Gießen, Institute of Physical Chemistry, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Eilika Zorn
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Sebastian G Wicha
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Wolfgang R Streit
- Universität Hamburg, Department of Microbiology and Biotechnology, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Wolfgang Maison
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany.
| |
Collapse
|
8
|
Zhang J, Fu Y, Zhou R, Yin M, Zhu W, Yan S, Wang H. The Construction of Alkaline Phosphatase-Responsive Biomaterial and Its Application for In Vivo Urinary Tract Infection Therapy. Adv Healthc Mater 2022; 12:e2202421. [PMID: 36546611 DOI: 10.1002/adhm.202202421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Urinary tract infections caused by urinary catheter implantations are becoming more serious. Therefore, the construction of a responsive antibacterial biomaterial that can not only provide biocompatible conditions, but also effectively prevent the growth and metabolism of bacteria, is urgently needed. In this work, a benzophenone-derived phosphatase light-triggered antibacterial agent is designed and synthesized, which is tethered to the biological materials using a one-step method for in vivo antibacterial therapy. This surface could kill gram-positive bacteria (Staphylococcus aureus) and gram-negative bacteria (Escherichia coli). More importantly, because this material exhibited a zwitterion structure, it does not damage blood cells and tissue cells. When the bacteria interact with this surface, the initial fouling of the bacteria is reduced by zwitterion hydration. When the bacteria actively accumulate and metabolize to produce a certain amount of alkaline phosphatase, the surface immediately started the sterilization performance, and the bactericidal effect is achieved by destroying the bacterial cell membrane. In summary, an antibacterial biomaterial that shows biocompatibility with mammalian cells is successfully constructed, providing new ideas for the development of intelligent urinary catheters.
Collapse
Affiliation(s)
- Jing Zhang
- Jilin Medical University, Jilin, 132013, P. R. China
| | - Ying Fu
- Jilin Medical University, Jilin, 132013, P. R. China
| | - Rongtao Zhou
- National Engineering Laboratory of Medical Implantable Devices, Key Laboratory for Medical Implantable Devices of Shandong Province, WEGO Holding Company Limited, Weihai, 264210, P. R. China
| | - Moli Yin
- Jilin Medical University, Jilin, 132013, P. R. China
| | - Wenhe Zhu
- Jilin Medical University, Jilin, 132013, P. R. China
| | - Shunjie Yan
- National Engineering Laboratory of Medical Implantable Devices, Key Laboratory for Medical Implantable Devices of Shandong Province, WEGO Holding Company Limited, Weihai, 264210, P. R. China
| | - Huiyan Wang
- Jilin Medical University, Jilin, 132013, P. R. China
| |
Collapse
|
9
|
Bao X, Huang X, Jin X, Hu Q. Bactericidal Anti-Adhesion Potential Integrated Polyoxazoline/Silver Nanoparticle Composite Multilayer Film with pH Responsiveness. Polymers (Basel) 2022; 14:3685. [PMID: 36080760 PMCID: PMC9460790 DOI: 10.3390/polym14173685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 02/07/2023] Open
Abstract
Bacterial infections occur frequently during the implantation of medical devices, and functional coating is one of the effective means to prevent and remove biofilms. In this study, three different hydrophilic polyoxazolines with carboxyl groups (aPOx: PT1, PT2 and PT3) and bactericidal silver nanoparticles (AgNPs) were synthesized successfully, and an aPOx-AgNP multilayer film was prepared by electrostatic layer-by-layer self-assembly. The effect of charge density and assembly solution concentration was explored, and the optimal self-assembly parameters were established (PT2 1 mg/mL and AgNPs 3 mg/mL). The hydrophilicity of the surface can be enhanced to resist protein adhesion if the outermost layer is aPOx, and AgNPs can be loaded to kill bacteria, thereby realizing the bactericidal anti-adhesion potential integration of the aPOx-AgNP multilayer film. In addition, the aPOx-AgNP multilayer film was found to have the characteristic of intelligent and efficient pH-responsive silver release, which is expected to be used as a targeted anti-biofilm surface of implantable medical devices.
Collapse
Affiliation(s)
- Xiaojiong Bao
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaofei Huang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaoqiang Jin
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Qiaoling Hu
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
10
|
Sarvari R, Naghili B, Agbolaghi S, Abbaspoor S, Bannazadeh Baghi H, Poortahmasebi V, Sadrmohammadi M, Hosseini M. Organic/polymeric antibiofilm coatings for surface modification of medical devices. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2066668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Raana Sarvari
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Agbolaghi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| | | | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Sadrmohammadi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hosseini
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
11
|
Dhingra S, Sharma S, Saha S. Infection Resistant Surface Coatings by Polymer Brushes: Strategies to Construct and Applications. ACS APPLIED BIO MATERIALS 2022; 5:1364-1390. [DOI: 10.1021/acsabm.1c01006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Shaifali Dhingra
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shivangi Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
12
|
Biocompatible mechano-bactericidal nanopatterned surfaces with salt-responsive bacterial release. Acta Biomater 2022; 141:198-208. [PMID: 35066170 DOI: 10.1016/j.actbio.2022.01.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 12/15/2022]
Abstract
Bio-inspired nanostructures have demonstrated highly efficient mechano-bactericidal performances with no risk of bacterial resistance; however, they are prone to become contaminated with the killed bacterial debris. Herein, a biocompatible mechano-bactericidal nanopatterned surface with salt-responsive bacterial releasing behavior is developed by grafting salt-responsive polyzwitterionic (polyDVBAPS) brushes on a bio-inspired nanopattern surface. Benefiting from the salt-triggered configuration change of the grafted polymer brushes, this dual-functional surface shows high mechano-bactericidal efficiency in water (low ionic strength condition), while the dead bacterial residuals can be easily lifted by the extended polymer chains and removed from the surface in 1 M NaCl solution (high ionic strength conditions). Notably, this functionalized nanopatterned surface shows selective biocidal activity between bacterial cells sand eukaryotic cells. The biocompatibility with red blood cells (RBCs) and mammalian cells was tested in vitro. The histocompatibility and prevention of perioperative contamination activity were verified by in vivo evaluation in a rat subcutaneous implant model. This nanopatterned surface with bacterial killing and releasing activities may open new avenues for designing bio-inspired mechano-bactericidal platforms with long-term efficacy, thus presenting a facile alternative in combating perioperative-related bacterial infection. STATEMENT OF SIGNIFICANCE: Bioinspired nanostructured surfaces with noticeable mechano-bactericidal activity showed great potential in moderating drug-resistance. However, the nanopatterned surfaces are prone to be contaminated by the killed bacterial debris and compromised the bactericidal performance. In this study, we provide a dual-functional antibacterial conception with both mechano-bactericidal and bacterial releasing performances not requiring external chemical bactericidal agents. Additionally, this functionalized antibacterial surface also shows selective biocidal activity between bacteria and eukaryotic cells, and the excellent biocompatibility was tested in vitro and in vivo. The new concept for the functionalized mechano-bactericidal surface here illustrated presents a facile antibiotic-free alternative in combating perioperative related bacterial infection in practical application.
Collapse
|
13
|
Asha AB, Peng YY, Cheng Q, Ishihara K, Liu Y, Narain R. Dopamine Assisted Self-Cleaning, Antifouling, and Antibacterial Coating via Dynamic Covalent Interactions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9557-9569. [PMID: 35144379 DOI: 10.1021/acsami.1c19337] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The rapid accumulation of dead bacteria or protein on a bactericidal surface can reduce the effectiveness of the modified surface and alter its biocidal activity by shielding the surface biocide functional groups, promoting microbial attachment and subsequent biofilm formation. Thus, the alteration of biocidal activity due to biofilm formation can cause serious trouble including severe infection or implant or medical device failure leading to death. Therefore, developing a smart self-cleaning surface is of great interest. Ideally, such a surface can not only kill the attached microbials but also release the dead cells and foulants from the surface under a particular incitement on demand. In this project, a sugar-responsive self-cleaning coating has been developed by forming covalent boronic ester bonds between catechol groups from polydopamine and a benzoxaborole pendant from zwitterionic and cationic polymers. To incorporate antifouling properties and enhance the biocompatibility of the coating, bioinspired zwitterionic compound 2-methacryloyloxyethyl phosphorylcholine (MPC) was chosen and benzoxaborole pendant containing zwitterionic polymer poly(MPC-st-MAABO) (MAABO: 5-methacrylamido-1,2-benzoxaborole) was synthesized. Additionally to impart antibacterial properties to the surface, a quaternary ammonium containing cationic polymer poly(2-(methacryloyloxy)ethyl trimethylammonium (META)-st-MAABO)) was synthesized. These synthesized polymers were covalently grafted to a polydopamine (PDA) coated surface by forming a strong cyclic boronic ester complex with a catechol group of the PDA layer endowing the surface with bacteria contact-killing properties and capturing specific protein. After the addition of cis-diol containing competitive molecules, i.e., saccharides/sugars, this boronic ester complex with a catechol group of PDA was replaced and the attached polymer layer was cleaved from the surface, resulting in the release of both absorbed protein and live/killed bacteria electrostatically attached to the polymer layer. This dynamic self-cleaning surface can be a promising material for biomedical applications avoiding the gathering of dead cells and debris that are typically encountered on a traditional biocidal surface.
Collapse
Affiliation(s)
- Anika B Asha
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
| | - Yi-Yang Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
| | - Qiuli Cheng
- Chemical Engineering and Pharmaceutics School, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yang Liu
- Department of Civil and Environment Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
| |
Collapse
|
14
|
Gao D, Zhang Y, Bowers DT, Liu W, Ma M. Functional hydrogels for diabetic wound management. APL Bioeng 2021; 5:031503. [PMID: 34286170 PMCID: PMC8272650 DOI: 10.1063/5.0046682] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic wounds often have a slow healing process and become easily infected owing to hyperglycemia in wound beds. Once planktonic bacterial cells develop into biofilms, the diabetic wound becomes more resistant to treatment. Although it remains challenging to accelerate healing in a diabetic wound due to complex pathology, including bacterial infection, high reactive oxygen species, chronic inflammation, and impaired angiogenesis, the development of multifunctional hydrogels is a promising strategy. Multiple functions, including antibacterial, pro-angiogenesis, and overall pro-healing, are high priorities. Here, design strategies, mechanisms of action, performance, and application of functional hydrogels are systematically discussed. The unique properties of hydrogels, including bactericidal and wound healing promotive effects, are reviewed. Considering the clinical need, stimuli-responsive and multifunctional hydrogels that can accelerate diabetic wound healing are likely to form an important part of future diabetic wound management.
Collapse
Affiliation(s)
- Daqian Gao
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Yidan Zhang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Daniel T. Bowers
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Wanjun Liu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
15
|
Mao S, Zhang D, He X, Yang Y, Protsak I, Li Y, Wang J, Ma C, Tan J, Yang J. Mussel-Inspired Polymeric Coatings to Realize Functions from Single and Dual to Multiple Antimicrobial Mechanisms. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3089-3097. [PMID: 33400490 DOI: 10.1021/acsami.0c16510] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Numerous efforts to fabricate antimicrobial surfaces by simple yet universal protocols with high efficiency have attracted considerable interest but proved to be particularly challenging. Herein, we designed and fabricated a series of antimicrobial polymeric coatings with different functions from single to multiple mechanisms by selectively utilizing diethylene glycol diglycidyl ether (PEGDGE), polylysine, and poly[glycidylmethacrylate-co-3-(dimethyl(4-vinylbenzyl)ammonium)propyl sulfonate] (poly(GMA-co-DVBAPS)) via straightforward mussel-inspired codeposition techniques. Bactericidal polylysine endowed the modified surfaces with a high ability (∼90%) to kill attached bacteria, while PEGDGE components with unique surface hydration prevented bacterial adhesion, avoiding the initial biofilm formation. Moreover, excellent salt-responsive poly(GMA-co-DVBAPS) enabled reactant polymeric coatings to change chain conformations from shrinkable to stretchable state and subsequently release >90% attached bacteria when treated with NaCl solution, even after repeated cycles. Therefore, the obtained polymeric coatings, polydopamine/poly(GMA-co-DVBAPS) (PDA/PDV), polydopamine/polylysine/poly(GMA-co-DVBAPS) (PDA/l-PDV), and polydopamine/polylysine/poly(GMA-co-DVBAPS)/diethylene glycol diglycidyl ether (PDA/l-PDV-PEGDGE), controllably realized functions from single and dual to multiple antimicrobial mechanisms, as evidenced by long-term antifouling activity to bacteria, high bactericidal efficiency, and salt-responsive bacterial regeneration performance with several bacterial killing-release cycles. This study not only contributes to mussel-inspired chemistry for polymeric coatings with controllable functions but also provides a series of reliable and highly efficient antimicrobial surfaces for potential biomedical applications.
Collapse
Affiliation(s)
- Shihua Mao
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Xiaomin He
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yuting Yang
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, P. R. China
| | - Iryna Protsak
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, Kyiv 03164, Ukraine
| | - Yuting Li
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jiawen Wang
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Chunxin Ma
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Jun Tan
- College of Biological, Chemical Science and Technology, Jiaxing University, Jiaxing 314001, P. R. China
| | - Jintao Yang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
16
|
Lin HT, Venault A, Chang Y. Reducing the pathogenicity of wastewater with killer vapor-induced phase separation membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Xiao S, He X, Qian J, Wu X, Huang G, Jiang H, He Z, Yang J. Natural Lipid Inspired Hydrogel–Organogel Bilayer Actuator with a Tough Interface and Multiresponsive, Rapid, and Reversible Behaviors. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00688] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shengwei Xiao
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou, 318000, China
| | - Xiaomin He
- College of Materials Science& Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jie Qian
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou, 318000, China
| | - Xiaohui Wu
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou, 318000, China
| | - Guobo Huang
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou, 318000, China
| | - Huajiang Jiang
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou, 318000, China
| | - Zhicai He
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou, 318000, China
| | - Jintao Yang
- College of Materials Science& Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
18
|
Shi Y, Liu K, Zhang Z, Tao X, Chen HY, Kingshott P, Wang PY. Decoration of Material Surfaces with Complex Physicochemical Signals for Biointerface Applications. ACS Biomater Sci Eng 2020; 6:1836-1851. [DOI: 10.1021/acsbiomaterials.9b01806] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yue Shi
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
| | - Kun Liu
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
| | - Zhen Zhang
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
| | - Xuelian Tao
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
| | - Hsien-Yeh Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- ARC Training Centre Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Engineering, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Peng-Yuan Wang
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
19
|
Sun W, Liu W, Wu Z, Chen H. Chemical Surface Modification of Polymeric Biomaterials for Biomedical Applications. Macromol Rapid Commun 2020; 41:e1900430. [DOI: 10.1002/marc.201900430] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/08/2020] [Accepted: 02/16/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Sun
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| | - Wenying Liu
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| | - Zhaoqiang Wu
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| | - Hong Chen
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| |
Collapse
|
20
|
|
21
|
Wang Y, Wu J, Zhang D, Chen F, Fan P, Zhong M, Xiao S, Chang Y, Gong X, Yang J, Zheng J. Design of salt-responsive and regenerative antibacterial polymer brushes with integrated bacterial resistance, killing, and release properties. J Mater Chem B 2019; 7:5762-5774. [PMID: 31465075 DOI: 10.1039/c9tb01313j] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of smart materials and surfaces with multiple antibacterial actions is of great importance for both fundamental research and practical applications, but this has proved to be extremely challenging. In this work, we proposed to integrate salt-responsive polyDVBAPS (poly(3-(dimethyl(4-vinylbenzyl) ammonio)propyl sulfonate)), antifouling polyHEAA (poly(N-hydroxyethyl acrylamide)), and bactericidal TCS (triclosan) into single surfaces by polymerizing and grafting polyDVBAPS and polyHEAA onto the substrate in a different way to form two types of polyDVBAPS/poly(HEAA-g-TCS) and poly(DVBAPS-b-HEAA-g-TCS) brushes with different hierarchical structures, as confirmed by X-ray photoelectron spectroscopy (XPS), atom force microscopy (AFM), and ellipsometry. Both types of polymer brushes demonstrated their tri-functional antibacterial activity to resist bacterial attachment by polyHEAA, to release ∼90% of dead bacteria from the surface by polyDVBAPS, and to kill ∼90% of bacteria on the surface by TCS. Comparative studies also showed that removal of any component from polyDVBAPS/poly(HEAA-g-TCS) and poly(DVBAPS-b-HEAA-g-TCS) compromised the overall antibacterial performance, further supporting a synergistic effect of the three compatible components. More importantly, the presence of salt-responsive polyDVBAPS allowed both brushes to regenerate with almost unaffected antibacterial capacity for reuse in multiple kill-and-release cycles. The tri-functional antibacterial surfaces present a promising design strategy for further developing next-generation antibacterial materials and coatings for antibacterial applications.
Collapse
Affiliation(s)
- Yang Wang
- College of Materials Science & Engineering Zhejiang, University of Technology, Hangzhou 310014, China.
| | - Jiahui Wu
- College of Materials Science & Engineering Zhejiang, University of Technology, Hangzhou 310014, China.
| | - Dong Zhang
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, USA.
| | - Feng Chen
- College of Materials Science & Engineering Zhejiang, University of Technology, Hangzhou 310014, China.
| | - Ping Fan
- College of Materials Science & Engineering Zhejiang, University of Technology, Hangzhou 310014, China.
| | - Mingqiang Zhong
- College of Materials Science & Engineering Zhejiang, University of Technology, Hangzhou 310014, China.
| | - Shengwei Xiao
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China
| | - Yung Chang
- Department of Chemical Engineering R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taiwan
| | - Xiong Gong
- Department of Polymer Engineering, The University of Akron, Akron, Ohio 44325, USA
| | - Jintao Yang
- College of Materials Science & Engineering Zhejiang, University of Technology, Hangzhou 310014, China.
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, USA.
| |
Collapse
|
22
|
Wu J, Zhang D, He X, Wang Y, Xiao S, Chen F, Fan P, Zhong M, Tan J, Yang J. “Janus-Featured” Hydrogel with Antifouling and Bacteria-Releasing Properties. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiahui Wu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Dong Zhang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Xiaomin He
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yang Wang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shengwei Xiao
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Feng Chen
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ping Fan
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Mingqiang Zhong
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jun Tan
- College of Biological, Chemical Science and Technology, Jiaxing University, Jiaxing 314001, P. R. China
| | - Jintao Yang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
23
|
He X, Zhang D, Wu J, Wang Y, Chen F, Fan P, Zhong M, Xiao S, Yang J. One-Pot and One-Step Fabrication of Salt-Responsive Bilayer Hydrogels with 2D and 3D Shape Transformations. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25417-25426. [PMID: 31140780 DOI: 10.1021/acsami.9b06691] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bilayer hydrogels are one of the most promising materials for use as soft actuators, artificial muscles, and soft robotic elements. Therefore, the development of new and simple methods for the fabrication of such hydrogels is of particular importance for both academic research and industrial applications. Herein, a facile, one-pot, and one-step methodology was used to prepare bilayer hydrogels. Specifically, several common monomers, including N-isopropyl acrylamide, acrylamide, and N-(2-hydroxyethyl)acrylamide, as well as two salt-responsive zwitterionic monomers, 3-(1-(4-vinylbenzyl)-1H-imidazol-3-ium-3-yl)propane-1-sulfonate (VBIPS) and dimethyl-(4-vinylphenyl)ammonium propane sulfonate (DVBAPS), were chosen and employed with different combinations and ratios to understand the formation and structural tunability of the bilayer hydrogels. The results indicated that a salt-responsive zwitterionic-enriched copolymer, which could precipitate from water, plays a dominant role in the formation of the bilayer structure and that the ratio between the common monomer and the zwitterionic monomer had a significant effect on the structure. Due to the salt-responsive properties of polyVBIPS and polyDVBAPS, the resultant bilayer hydrogels exhibited excellent bidirectional bending properties in response to the salt solution. With the optimal monomer pair and ratio determined, the bend of the hydrogel could be reversed from ∼-360 to ∼266° in response to a switch between water and a 1.0 M NaCl solution. Additionally, this method was further used to fabricate small-scaled patterns with structural and compositional distinction in two-dimensional hydrogel sheets. These two-dimensional hydrogel sheets exhibited complex and reversible three-dimensional shape transformations due to the different bending behaviors of the patterned hydrogel stripes under the action of an external stimulus. This work provides greater insight into the mechanism of the one-step, one-pot method fabrication of bilayer hydrogels, demonstrates the ability of this method for the preparation of small-scale patterns in hydrogel sheets to endow the complex with a three-dimensional shape transformation capability, and hopefully opens up a new pathway for the design and fabrication of smart hydrogels.
Collapse
Affiliation(s)
- Xiaomin He
- College of Materials Science & Engineering , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Dong Zhang
- Department of Chemical and Biomolecular Engineering , The University of Akron , Akron , Ohio 44325 , United States
| | - Jiahui Wu
- College of Materials Science & Engineering , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Yang Wang
- College of Materials Science & Engineering , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Feng Chen
- College of Materials Science & Engineering , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Ping Fan
- College of Materials Science & Engineering , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Mingqiang Zhong
- College of Materials Science & Engineering , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Shengwei Xiao
- School of Pharmaceutical and Chemical Engineering , Taizhou University , Jiaojiang 318000 , China
| | - Jintao Yang
- College of Materials Science & Engineering , Zhejiang University of Technology , Hangzhou 310014 , China
| |
Collapse
|
24
|
Ghasemlou M, Daver F, Ivanova EP, Rhim JW, Adhikari B. Switchable Dual-Function and Bioresponsive Materials to Control Bacterial Infections. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22897-22914. [PMID: 31180196 DOI: 10.1021/acsami.9b05901] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The colonization of undesired bacteria on the surface of devices used in biomedical and clinical applications has become a persistent problem. Different types of single-function (cell resistance or bactericidal) bioresponsive materials have been developed to cope with this problem. Even though these materials meet the basic requirements of many biomedical and clinical applications, dual-function (cell resistance and biocidal) bioresponsive materials with superior design and function could be better suited for these applications. The past few years have witnessed the emergence of a new class of dual-function materials that can reversibly switch between cell-resistance and biocidal functions in response to external stimuli. These materials are finding increased applications in biomedical devices, tissue engineering, and drug-delivery systems. This review highlights the recent advances in design, structure, and fabrication of dual-function bioresponsive materials and discusses translational challenges and future prospects for research involving these materials.
Collapse
Affiliation(s)
| | | | - Elena P Ivanova
- School of Science , RMIT University , Melbourne VIC 3000 , Australia
| | - Jong-Whan Rhim
- Center for Humanities and Sciences, Department of Food and Nutrition, Bionanocomposite Research Center , Kyung Hee University , 26 Kyungheedae-ro, Dongdaemun-gu , Seoul 02447 , Republic of Korea
| | | |
Collapse
|
25
|
Wu J, Zhang D, Wang Y, Mao S, Xiao S, Chen F, Fan P, Zhong M, Tan J, Yang J. Electric Assisted Salt-Responsive Bacterial Killing and Release of Polyzwitterionic Brushes in Low-Concentration Salt Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8285-8293. [PMID: 31194566 DOI: 10.1021/acs.langmuir.9b01151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Polyzwitterionic brushes with strong antipolyelectrolyte effects have shown great potential as versatile platforms for the development of switchable friction/lubrication and bacterial absorption/desorption surfaces. However, the surface property switches of these brushes are usually triggered by high salt concentrations (>0.53 M), thereby greatly limiting their applications in biological fields where the salt concentration for mammals is ?0.15 M. To solve this problem, an electric field was used to assist the salt-responsive process of the polyzwitterionic brushes to achieve bacterial release at low concentrations of the salt solution. Briefly, poly(3-(dimethyl (4-vinylbenzyl) ammonium) propyl sulfonate) (polyDVBAPS) brushes grafted on ITO surfaces were prepared by surface initiated atom transfer radical polymerization. The bacterial release of this surface was conducted under an electric field, where anions were migrated and enriched around the brush-grafted ITO surface as anode. The local high concentration ion led to the conformation change of the brush and release of the attached bacteria. The effect of salt type, salt concentration, electric field strength, and conducting time on the bacterial release properties were investigated. The results indicated that under an electrical field of 3 V/mm, polyDVBAPS showed release capacities of ?93% for E. coli and ?81% for S. aureus in 0.12 M NaCl electrolyte solution. Furthermore, by the introduction of a bactericidal agent, i.e., Triclosan (TCS), an antibacterial surface with dual functions of killing and release was fabricated. This surface could kill ?90% and release 95% of attached E. coli in a 0.12 M NaCl solution by the application of a 3 V/mm electric field. This work demonstrated the feasibility of triggering a salt-responsive behavior of polyzwitterionic at low salt concentration by assistance of electric field, which would greatly extend the applications of polyzwitterionic, in particular in biological applications.
Collapse
Affiliation(s)
- Jiahui Wu
- College of Materials Science& Engineering Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Dong Zhang
- College of Materials Science& Engineering Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Yang Wang
- College of Materials Science& Engineering Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Shihua Mao
- College of Materials Science& Engineering Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Shengwei Xiao
- College of Materials Science& Engineering Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Feng Chen
- College of Materials Science& Engineering Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Ping Fan
- College of Materials Science& Engineering Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Mingqiang Zhong
- College of Materials Science& Engineering Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Jun Tan
- College of Biological, Chemical Science and Technology Jiaxing University , Jiaxing 314001 , P. R. China
| | - Jintao Yang
- College of Materials Science& Engineering Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| |
Collapse
|
26
|
Sun X, Li Q, Guo Z, Wang K, Gui T, Gao C. Study on the Core-Shell Reversion of PSBMA- b-PLMA Nanoparticles for the Fabrication of Antifouling Coatings. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21323-21333. [PMID: 31134794 DOI: 10.1021/acsami.9b02258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this paper, two series of poly(sulfobetaine methacrylate)- b-poly(lauryl methacrylate) (PSBMA- b-PLMA) diblock copolymers were prepared to investigate the core-shell reversion of amphiphilic copolymers. Experimental results proved that the PSBMA- b-PLMA copolymers can be self-assembled as core-shell nanoparticles in chloroform. Moreover, 1H NMR spectra and contact angle measurements revealed that there is a transitional PSBMA/PLMA block ratio of 0.6, above which the nanoparticles are capable of switching their core and shell in aqueous solution. Consequently, nanoparticles with PSBMA/PLMA block ratios above 0.6 showed superior antifouling and antibacterial abilities to those with block ratios below 0.4. Moreover, it was also found that the block chain length plays an important role in core-shell reversion as evidenced by 1H NMR spectra, water contact angle, and antifouling tests. As a result, coatings fabricated with the PLMA100 series of nanoparticles showed better antifouling abilities than those of the PLMA150 series at the same block ratio probably because of the thinner shell of PLMA100 copolymers. PSBMA100- b-PLMA100 was proved to be the best candidate for the fabrication of antifouling coatings as it exhibited the highest efficacy in antibacterial adhesion and antiprotein adsorption. This study provided a facile method to fabricate antifouling coatings by developing amphiphilic diblock copolymers with tuned hydrophobic/hydrophilic block ratio, block chain length, etc.
Collapse
Affiliation(s)
- Xiuhua Sun
- School of Marine Science and Technology , Harbin Institute of Technology at Weihai , Weihai 264209 , China
| | - Qi Li
- School of Marine Science and Technology , Harbin Institute of Technology at Weihai , Weihai 264209 , China
| | - Zhiren Guo
- School of Marine Science and Technology , Harbin Institute of Technology at Weihai , Weihai 264209 , China
| | - Ke Wang
- State Key Laboratory of Marine Coatings , Marine Chemical Research Institute Co., Ltd. , Qingdao 266071 , China
| | - Taijiang Gui
- State Key Laboratory of Marine Coatings , Marine Chemical Research Institute Co., Ltd. , Qingdao 266071 , China
| | - Changlu Gao
- School of Marine Science and Technology , Harbin Institute of Technology at Weihai , Weihai 264209 , China
| |
Collapse
|
27
|
Wei T, Yu Q, Chen H. Responsive and Synergistic Antibacterial Coatings: Fighting against Bacteria in a Smart and Effective Way. Adv Healthc Mater 2019; 8:e1801381. [PMID: 30609261 DOI: 10.1002/adhm.201801381] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/13/2018] [Indexed: 01/12/2023]
Abstract
Antibacterial coatings that eliminate initial bacterial attachment and prevent subsequent biofilm formation are essential in a number of applications, especially implanted medical devices. Although various approaches, including bacteria-repelling and bacteria-killing mechanisms, have been developed, none of them have been entirely successful due to their inherent drawbacks. In recent years, antibacterial coatings that are responsive to the bacterial microenvironment, that possess two or more killing mechanisms, or that have triggered-cleaning capability have emerged as promising solutions for bacterial infection and contamination problems. This review focuses on recent progress on three types of such responsive and synergistic antibacterial coatings, including i) self-defensive antibacterial coatings, which can "turn on" biocidal activity in response to a bacteria-containing microenvironment; ii) synergistic antibacterial coatings, which possess two or more killing mechanisms that interact synergistically to reinforce each other; and iii) smart "kill-and-release" antibacterial coatings, which can switch functionality between bacteria killing and bacteria releasing under a proper stimulus. The design principles and potential applications of these coatings are discussed and a brief perspective on remaining challenges and future research directions is presented.
Collapse
Affiliation(s)
- Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; 199 Ren'ai Road Suzhou 215123 P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; 199 Ren'ai Road Suzhou 215123 P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; 199 Ren'ai Road Suzhou 215123 P. R. China
| |
Collapse
|
28
|
Zhang D, Yao Y, Wu J, Protsak I, Lu W, He X, Xiao S, Zhong M, Chen T, Yang J. Super Hydrophilic Semi-IPN Fluorescent Poly(N-(2-hydroxyethyl)acrylamide) Hydrogel for Ultrafast, Selective, and Long-Term Effective Mercury(II) Detection in a Bacteria-Laden System. ACS APPLIED BIO MATERIALS 2019; 2:906-915. [DOI: 10.1021/acsabm.8b00761] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dong Zhang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yingchun Yao
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiahui Wu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Iryna Protsak
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Lu
- Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xiaomin He
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shengwei Xiao
- Department of Polymer Science and Engineering, School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Mingqiang Zhong
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tao Chen
- Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jintao Yang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
29
|
Yu X, Liu J, Xin Y, Zhan M, Xiao J, Lu L, Peng S. Temperature and salt responsive zwitterionic polysulfamide-based nanogels with surface regeneration ability and controlled drug release. Polym Chem 2019. [DOI: 10.1039/c9py01548e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A novel zwitterionic polysulfamide-based nanogel was developed with UCST-type thermo-responsiveness and salt-responsiveness, which showed surface regeneration ability and controlled drug release.
Collapse
Affiliation(s)
- Xiangrong Yu
- Zhuhai Precision Medical Center
- Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University)
- Zhuhai
- P.R. China
| | - Jiansheng Liu
- Zhuhai Precision Medical Center
- Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University)
- Zhuhai
- P.R. China
| | - Yongjie Xin
- Zhuhai Precision Medical Center
- Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University)
- Zhuhai
- P.R. China
| | - Meixiao Zhan
- Zhuhai Precision Medical Center
- Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University)
- Zhuhai
- P.R. China
| | - Jing Xiao
- Zhuhai Precision Medical Center
- Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University)
- Zhuhai
- P.R. China
| | - Ligong Lu
- Zhuhai Precision Medical Center
- Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University)
- Zhuhai
- P.R. China
| | - Shaojun Peng
- Zhuhai Precision Medical Center
- Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University)
- Zhuhai
- P.R. China
| |
Collapse
|
30
|
Xiao S, Zhang M, He X, Huang L, Zhang Y, Ren B, Zhong M, Chang Y, Yang J, Zheng J. Dual Salt- and Thermoresponsive Programmable Bilayer Hydrogel Actuators with Pseudo-Interpenetrating Double-Network Structures. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21642-21653. [PMID: 29878750 DOI: 10.1021/acsami.8b06169] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Development of smart soft actuators is highly important for fundamental research and industrial applications but has proved to be extremely challenging. In this work, we present a facile, one-pot, one-step method to prepare dual-responsive bilayer hydrogels, consisting of a thermoresponsive poly( N-isopropylacrylamide) (polyNIPAM) layer and a salt-responsive poly(3-(1-(4-vinylbenzyl)-1 H-imidazol-3-ium-3-yl)propane-1-sulfonate) (polyVBIPS) layer. Both polyNIPAM and polyVBIPS layers exhibit a completely opposite swelling/shrinking behavior, where polyNIPAM shrinks (swells) but polyVBIPS swells (shrinks) in salt solution (water) or at high (low) temperatures. By tuning NIPAM:VBIPS ratios, the resulting polyNIPAM/polyVBIPS bilayer hydrogels enable us to achieve fast and large-amplitude bidirectional bending in response to temperatures, salt concentrations, and salt types. Such bidirectional bending, bending orientation, and degree can be reversibly, repeatedly, and precisely controlled by salt- or temperature-induced cooperative swelling-shrinking properties from both layers. Based on their fast, reversible, and bidirectional bending behavior, we further design two conceptual hybrid hydrogel actuators, serving as a six-arm gripper to capture, transport, and release an object and an electrical circuit switch to turn on-and-off a lamp. Different from the conventional two- or multistep methods for preparation of bilayer hydrogels, our simple, one-pot, one-step method and a new bilayer hydrogel system provide an innovative concept to explore new hydrogel-based actuators through combining different responsive materials that allow us to program different stimuli for soft and intelligent materials applications.
Collapse
Affiliation(s)
- Shengwei Xiao
- College of Materials Science & Engineering , Zhejiang University of Technology , Hangzhou 310014 , China
- School of Pharmaceutical and Chemical Engineering , Taizhou University , Jiaojiang 318000 , China
| | - Mingzhen Zhang
- Department of Chemical and Biomolecular Engineering , The University of Akron , Akron , Ohio 44325 , United States
| | - Xiaomin He
- College of Materials Science & Engineering , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Lei Huang
- College of Materials Science & Engineering , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Yanxian Zhang
- Department of Chemical and Biomolecular Engineering , The University of Akron , Akron , Ohio 44325 , United States
| | - Baiping Ren
- Department of Chemical and Biomolecular Engineering , The University of Akron , Akron , Ohio 44325 , United States
| | | | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering , Chung Yuan Christian University , Chung-Li , Taoyuan 320 , Taiwan
| | - Jintao Yang
- College of Materials Science & Engineering , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering , The University of Akron , Akron , Ohio 44325 , United States
| |
Collapse
|
31
|
Fu Y, Wang Y, Huang L, Xiao S, Chen F, Fan P, Zhong M, Tan J, Yang J. Salt-Responsive “Killing and Release” Antibacterial Surfaces of Mixed Polymer Brushes. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b01730] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yanhong Fu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yang Wang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Lei Huang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shengwei Xiao
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Feng Chen
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ping Fan
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Mingqiang Zhong
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jun Tan
- College of Biological, Chemical Science and Technology, Jiaxing University, Jiaxing 314001, P. R. China
| | - Jintao Yang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
32
|
Zhan W, Qu Y, Wei T, Hu C, Pan Y, Yu Q, Chen H. Sweet Switch: Sugar-Responsive Bioactive Surfaces Based on Dynamic Covalent Bonding. ACS APPLIED MATERIALS & INTERFACES 2018; 10:10647-10655. [PMID: 29533581 DOI: 10.1021/acsami.7b18166] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Smart bioactive surfaces that can modulate interactions with biological systems are of great interest. In this work, a surface with switchable bioactivity in response to sugars has been developed. It is based on dynamic covalent bonding between phenylboronic acid (PBA) and secondary hydroxyls on the "wide" rim of β-cyclodextrin (β-CD). The system reported consists of gold surface modified with PBA-containing polymer brushes and a series of functional β-CD derivatives conjugated to diverse bioactive ligands (CD-X). CD-X molecules are attached to the surface to give specified bioactivity such as capture of a specific protein or killing of attached bacteria. Subsequent treatment with cis-diol containing biomolecules having high affinity for PBA (e.g. fructose) leads to the release of CD-X together with the captured proteins, killed bacteria, and so forth from the surface. The surface bioactivity is thereby "turned off". Effectively, this constitutes an on-off bioactivity switch in a mild and noninvasive way, which has the potential in the design of dynamic bioactive surfaces for biomedical applications.
Collapse
Affiliation(s)
- Wenjun Zhan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Yangcui Qu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Changming Hu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Yue Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| |
Collapse
|
33
|
Xiao S, Ren B, Huang L, Shen M, Zhang Y, Zhong M, Yang J, Zheng J. Salt-responsive zwitterionic polymer brushes with anti-polyelectrolyte property. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2017.12.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Xiao S, Zhang Y, Shen M, Chen F, Fan P, Zhong M, Ren B, Yang J, Zheng J. Structural Dependence of Salt-Responsive Polyzwitterionic Brushes with an Anti-Polyelectrolyte Effect. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:97-105. [PMID: 29232140 DOI: 10.1021/acs.langmuir.7b03667] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Some polyzwitterionic brushes exhibit a strong "anti-polyelectrolyte effect" and ionic specificity that make them versatile platforms to build smart surfaces for many applications. However, the structure-property relationship of zwitterionic polymer brushes still remains to be elucidated. Herein, we aim to study the structure-dependent relationship between different zwitterionic polymers and the anti-polyelectrolyte effect. To this end, a series of polyzwitterionic brushes with different cationic moieties (e.g., imidazolium, ammonium, and pyridinium) in their monomeric units and with different carbon spacer lengths (e.g., CSL = 1, 3, and 4) between the cation and anion were designed and synthesized to form polymer brushes via the surface-initiated atom transfer radical polymerization. All zwitterionic brushes were carefully characterized for their surface morphologies, compositions, wettability, and film thicknesses by atomic force microscopy, contact angle measurement, and ellipsometry, respectively. The salt-responsiveness of all zwitterionic brushes to surface hydration and friction was further examined and compared both in water and in salt solutions with different salt concentrations and counterion types. The collective data showed that zwitterionic brushes with different cationic moieties and shorter CSLs in salt solution induced higher surface friction and lower surface hydration than those in water, exhibiting strong anti-polyelectrolyte effect salt-responsive behaviors. By tuning the CSLs, cationic moieties, and salt concentrations and types, the surface wettability can be changed from a highly hydrophobic surface (∼60°) to a highly hydrophilic surface (∼9°), while interfacial friction can be changed from ultrahigh friction (μ ≈ 4.5) to superior lubrication (μ ≈ 10-3). This work provides important structural insights into how subtle structural changes in zwitterionic polymers can yield great changes in the salt-responsive properties at the interface, which could be used for the development of smart surfaces for different applications.
Collapse
Affiliation(s)
| | - Yanxian Zhang
- Department of Chemical and Biomolecular Engineering, The University of Akron , Akron, Ohio 44325, United States
| | | | | | | | | | - Baiping Ren
- Department of Chemical and Biomolecular Engineering, The University of Akron , Akron, Ohio 44325, United States
| | | | - Jie Zheng
- Department of Chemical and Biomolecular Engineering, The University of Akron , Akron, Ohio 44325, United States
| |
Collapse
|
35
|
Li X, Wu B, Chen H, Nan K, Jin Y, Sun L, Wang B. Recent developments in smart antibacterial surfaces to inhibit biofilm formation and bacterial infections. J Mater Chem B 2018; 6:4274-4292. [PMID: 32254504 DOI: 10.1039/c8tb01245h] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since their development over 70 years, antibiotics are still the most effective strategy to treat bacterial biofilms and infections.
Collapse
Affiliation(s)
- Xi Li
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
| | - Biao Wu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
| | - Hao Chen
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences
- Wenzhou
| | - Kaihui Nan
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences
- Wenzhou
| | - Yingying Jin
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
| | - Lin Sun
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
| | - Bailiang Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences
- Wenzhou
| |
Collapse
|
36
|
Qu Y, Wei T, Zhao J, Jiang S, Yang P, Yu Q, Chen H. Regenerable smart antibacterial surfaces: full removal of killed bacteria via a sequential degradable layer. J Mater Chem B 2018; 6:3946-3955. [DOI: 10.1039/c8tb01122b] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An antibiotic-free and regenerable antibacterial hybrid film with both photothermal bactericidal activity and bacteria-releasing properties is fabricated on diverse substrates.
Collapse
Affiliation(s)
- Yangcui Qu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Jian Zhao
- Key Laboratory of Applied Surface and Colloids Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an
| | - Shuaibing Jiang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloids Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| |
Collapse
|
37
|
Jana S, Klähn M, Parthiban A. Nucleophile-initiated anionic polymerization of zwitterionic monomers derived from vinylpyridines in aqueous media under ambient aerobic conditions. Polym Chem 2018. [DOI: 10.1039/c8py00520f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anionic polymerization of vinylpyridine based zwitterionic monomers using nucleophile initiators under natural conditions and DFT calculations for such polymerization are reported here.
Collapse
Affiliation(s)
- Satyasankar Jana
- Polymer Engineering & Characterization
- Institute of Chemical and Engineering Sciences
- Agency for Science, Technology and Research (A*STAR)
- Jurong Island
- Singapore 627 833
| | - Marco Klähn
- Polymer Engineering & Characterization
- Institute of Chemical and Engineering Sciences
- Agency for Science, Technology and Research (A*STAR)
- Jurong Island
- Singapore 627 833
| | - Anbanandam Parthiban
- Polymer Engineering & Characterization
- Institute of Chemical and Engineering Sciences
- Agency for Science, Technology and Research (A*STAR)
- Jurong Island
- Singapore 627 833
| |
Collapse
|
38
|
Zhang D, Fu Y, Huang L, Zhang Y, Ren B, Zhong M, Yang J, Zheng J. Integration of antifouling and antibacterial properties in salt-responsive hydrogels with surface regeneration capacity. J Mater Chem B 2018; 6:950-960. [DOI: 10.1039/c7tb03018e] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A new design for a new multifunctional hydrogel that integrates antimicrobial, antifouling, and surface regeneration properties for antimicrobial applications.
Collapse
Affiliation(s)
- Dong Zhang
- College of Materials Science & Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Yanhong Fu
- College of Materials Science & Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Lei Huang
- College of Materials Science & Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Yanxian Zhang
- Department of Chemical and Biomolecular Engineering
- The University of Akron
- Akron
- USA
| | - Baiping Ren
- Department of Chemical and Biomolecular Engineering
- The University of Akron
- Akron
- USA
| | - Mingqiang Zhong
- College of Materials Science & Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Jintao Yang
- College of Materials Science & Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering
- The University of Akron
- Akron
- USA
| |
Collapse
|
39
|
Wu J, Zhao S, Xu S, Pang X, Cai G, Wang J. Acidity-triggered charge-reversible multilayers for construction of adaptive surfaces with switchable bactericidal and bacteria-repelling functions. J Mater Chem B 2018; 6:7462-7470. [DOI: 10.1039/c8tb02093k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Microenvironment acidity of infected sites was utilized to control the surface charge, and therefore, manipulate bacterial behavior.
Collapse
Affiliation(s)
- Jindan Wu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P. R. China
- MOE Engineering Research Center for Eco-Dyeing & Finishing of Textiles
| | - Sufang Zhao
- MOE Engineering Research Center for Eco-Dyeing & Finishing of Textiles
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P. R. China
| | - Shuting Xu
- MOE Engineering Research Center for Eco-Dyeing & Finishing of Textiles
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P. R. China
| | - Xiaoyu Pang
- MOE Engineering Research Center for Eco-Dyeing & Finishing of Textiles
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P. R. China
| | - Guoqiang Cai
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P. R. China
- MOE Engineering Research Center for Eco-Dyeing & Finishing of Textiles
| | - Jiping Wang
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P. R. China
- MOE Engineering Research Center for Eco-Dyeing & Finishing of Textiles
| |
Collapse
|
40
|
Wei T, Tang Z, Yu Q, Chen H. Smart Antibacterial Surfaces with Switchable Bacteria-Killing and Bacteria-Releasing Capabilities. ACS APPLIED MATERIALS & INTERFACES 2017; 9:37511-37523. [PMID: 28992417 DOI: 10.1021/acsami.7b13565] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The attachment and subsequent colonization of bacteria on the surfaces of synthetic materials and devices lead to serious problems in both human healthcare and industrial applications. Therefore, antibacterial surfaces that can prevent bacterial attachment and biofilm formation have been a long-standing focus of considerable interest and research efforts. Recently, a promising "kill-release" strategy has been proposed and applied to construct so-called smart antibacterial surfaces, which can kill bacteria attached to their surface and then undergo on-demand release of the dead bacteria and other debris to reveal a clean surface under an appropriate stimulus, thereby maintaining effective long-term antibacterial activity. This Review focuses on the recent progress (particularly over the past 5 years) on such smart antibacterial surfaces. According to the different design strategies, these surfaces can be divided into three categories: (i) "K + R"-type surfaces, which have both a killing unit and a releasing unit; (ii) "K → R"-type surfaces, which have a surface-immobilized killing unit that can be switched to perform a releasing function; and (iii) "K + (R)"-type surfaces, which have only a killing unit but can release dead bacteria upon the addition of a release solution. In the end, a brief perspective on future research directions and the major challenges in this promising field is also presented.
Collapse
Affiliation(s)
- Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, PR China
| | - Zengchao Tang
- Jiangsu Biosurf Biotech Company Ltd. , 218 Xinghu Street, Suzhou, 215123, PR China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, PR China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, PR China
| |
Collapse
|