1
|
Trovagunta R, Marquez R, Tolosa L, Barrios N, Zambrano F, Suarez A, Pal L, Gonzalez R, Hubbe MA. Lignin self-assembly phenomena and valorization strategies for pulping, biorefining, and materials development: Part 1. The physical chemistry of lignin self-assembly. Adv Colloid Interface Sci 2024; 332:103247. [PMID: 39126917 DOI: 10.1016/j.cis.2024.103247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
Physical chemistry aspects are emphasized in this comprehensive review of self-assembly phenomena involving lignin in various forms. Attention to this topic is justified by the very high availability, low cost, and renewable nature of lignin, together with opportunities to manufacture diverse products, for instance, polymers/resins, bioplastics, carbon fibers, bio-asphalt, sunscreen components, hydrophobic layers, and microcapsules. The colloidal lignin material, nanoparticles, and microstructures that can be formed as a result of changes in solvent properties, pH, or other adjustments to a suspending medium have been shown to depend on many factors. Such factors are examined in this work based on the concepts of self-assembly, which can be defined as an organizing principle dependent on specific attributes of the starting entities themselves. As a means to promote such concepts and to facilitate further development of nano-scale lignin products, this article draws upon evidence from a wide range of studies. These include investigations of many different plant sources of lignin, processes of delignification, solvent systems, anti-solvent systems or other means of achieving phase separation, and diverse means of achieving colloidal stability (if desired) of resulting self-assembled lignin structures. Knowledge of the self-organization behavior of lignin can provide significant structural information to optimize the use of lignin in value-added applications. Examples include chemical conditions and preparation procedures in which lignin-related compounds of particles organize themselves as spheres, hollow spheres, surface-bound layers, and a variety of other structures. Published articles show that such processes can be influenced by the selection of lignin type, pulping or extraction processes, functional groups such as phenolic, carboxyl, and sulfonate, chemical derivatization reactions, solvent applications, aqueous conditions, and physical processes, such as agitation. Precipitation from non-aqueous solutions represents a key focus of lignin self-assembly research. The review also considers stabilization mechanisms of self-assembled lignin-related structures.
Collapse
Affiliation(s)
| | - Ronald Marquez
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | - Laura Tolosa
- School of Chemical Engineering, Universidad de Los Andes, Mérida, Venezuela
| | - Nelson Barrios
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Antonio Suarez
- WestRock Company, 2742 Charles City Rd, Richmond, VA 23231, USA
| | - Lokendra Pal
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | - Ronalds Gonzalez
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | - Martin A Hubbe
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
2
|
Chen H, Jiang B, Zou C, Lou Z, Song J, Wu W, Jin Y. Exploring how lignin structure influences the interaction between carbohydrate-binding module and lignin using AFM. Int J Biol Macromol 2023; 232:123313. [PMID: 36682668 DOI: 10.1016/j.ijbiomac.2023.123313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/23/2022] [Accepted: 01/13/2023] [Indexed: 01/22/2023]
Abstract
Nonproductive adsorption of cellulase onto the residual lignin in substrate seriously hinders the enzymatic hydrolysis. To understand how lignin structure affects lignin-cellulase interaction, the carbohydrate-binding module (CBM) functionalized atomic force microscope tip was used to measure CBM-lignin interaction by single-molecule dynamic force spectroscopy in this work. The results showed that sulfonated lignin (SL) has the greatest adhesion force to CBM (4.74 nN), while those of masson pine milled wood lignin (MWL), poplar MWL and herbaceous MWLs were 2.85, 1.03 and 0.27-0.61 nN, respectively. It provides direct quantitative evidence for the significance of lignin structure on lignin-cellulase interaction. The CBM-MWLs interaction decreased sharply to 0.054-0.083 nN while SL was added, indicating the primary mechanism of SL promoting lignocellulose hydrolysis was significantly reducing the nonproductive adsorption of substrate lignin on cellulase. Finally, the "competitive adsorption" mechanism was proposed to interpret why SL effectively promotes the enzymatic hydrolysis of lignin-containing substrates.
Collapse
Affiliation(s)
- Hui Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Chunyang Zou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhichao Lou
- Joint International Research Lab of Lignocellulosic Functional Materials, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Junlong Song
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Nascimento DM, Colombari FM, Focassio B, Schleder GR, Costa CAR, Biffe CA, Ling LY, Gouveia RF, Strauss M, Rocha GJM, Leite E, Fazzio A, Capaz RB, Driemeier C, Bernardes JS. How lignin sticks to cellulose-insights from atomic force microscopy enhanced by machine-learning analysis and molecular dynamics simulations. NANOSCALE 2022; 14:17561-17570. [PMID: 36346287 DOI: 10.1039/d2nr05541d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Elucidating cellulose-lignin interactions at the molecular and nanometric scales is an important research topic with impacts on several pathways of biomass valorization. Here, the interaction forces between a cellulosic substrate and lignin are investigated. Atomic force microscopy with lignin-coated tips is employed to probe the site-specific adhesion to a cellulose film in liquid water. Over seven thousand force-curves are analyzed by a machine-learning approach to cluster the experimental data into types of cellulose-tip interactions. The molecular mechanisms for distinct types of cellulose-lignin interactions are revealed by molecular dynamics simulations of lignin globules interacting with different cellulose Iβ crystal facets. This unique combination of experimental force-curves, data-driven analysis, and molecular simulations opens a new approach of investigation and updates the understanding of cellulose-lignin interactions at the nanoscale.
Collapse
Affiliation(s)
- Diego M Nascimento
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
| | - Felippe M Colombari
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
| | - Bruno Focassio
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), CEP 09606-070 Santo André, São Paulo, Brazil
| | - Gabriel R Schleder
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), CEP 09606-070 Santo André, São Paulo, Brazil
| | - Carlos A R Costa
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
| | - Cleyton A Biffe
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
| | - Liu Y Ling
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
| | - Rubia F Gouveia
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), CEP 09606-070 Santo André, São Paulo, Brazil
| | - Mathias Strauss
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
| | - George J M Rocha
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
| | - Edson Leite
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
- Department of Chemistry, Federal University of São Carlos (UFSCAR), CEP 13565905 São Carlos, São Paulo, Brazil
| | - Adalberto Fazzio
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), CEP 09606-070 Santo André, São Paulo, Brazil
| | - Rodrigo B Capaz
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
- Instituto de Física, Universidade Federal do Rio de Janeiro (UFRJ), CEP 21941-972 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Driemeier
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
| | - Juliana S Bernardes
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-970 Campinas, São Paulo, Brazil.
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), CEP 09606-070 Santo André, São Paulo, Brazil
| |
Collapse
|
4
|
Yuan Y, Jiang B, Chen H, Wu W, Wu S, Jin Y, Xiao H. Recent advances in understanding the effects of lignin structural characteristics on enzymatic hydrolysis. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:205. [PMID: 34670604 PMCID: PMC8527784 DOI: 10.1186/s13068-021-02054-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/10/2021] [Indexed: 05/19/2023]
Abstract
Enzymatic hydrolysis of lignocellulose for bioethanol production shows a great potential to remit the rapid consumption of fossil fuels, given the fact that lignocellulose feedstocks are abundant, cost-efficient, and renewable. Lignin results in low enzymatic saccharification by forming the steric hindrance, non-productive adsorption of cellulase onto lignin, and deactivating the cellulase. In general, the non-productive binding of cellulase on lignin is widely known as the major cause for inhibiting the enzymatic hydrolysis. Pretreatment is an effective way to remove lignin and improve the enzymatic digestibility of lignocellulose. Along with removing lignin, the pretreatment can modify the lignin structure, which significantly affects the non-productive adsorption of cellulase onto lignin. To relieve the inhibitory effect of lignin on enzymatic hydrolysis, enormous efforts have been made to elucidate the correlation of lignin structure with lignin-enzyme interactions but with different views. In addition, contrary to the traditional belief that lignin inhibits enzymatic hydrolysis, in recent years, the addition of water-soluble lignin such as lignosulfonate or low molecular-weight lignin exerts a positive effect on enzymatic hydrolysis, which gives a new insight into the lignin-enzyme interactions. For throwing light on their structure-interaction relationship during enzymatic hydrolysis, the effect of residual lignin in substrate and introduced lignin in hydrolysate on enzymatic hydrolysis are critically reviewed, aiming at realizing the targeted regulation of lignin structure for improving the saccharification of lignocellulose. The review is also focused on exploring the lignin-enzyme interactions to mitigate the negative impact of lignin and reducing the cost of enzymatic hydrolysis of lignocellulose.
Collapse
Affiliation(s)
- Yufeng Yuan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Hui Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Shufang Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China.
- Laboratory of Wood Chemistry, Nanjing Forestry University, 159 Longpan Rd, Nanjing, 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 11 5A3, Canada
| |
Collapse
|
5
|
Yuan H, Zhang X, Jiang Z, Chen X, Zhang X. Quantitative Criterion to Predict Cell Adhesion by Identifying Dominant Interaction between Microorganisms and Abiotic Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3524-3533. [PMID: 30580526 DOI: 10.1021/acs.langmuir.8b03465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cell adhesion is ubiquitous and plays an important role in various scientific and engineering problems. Herein, a quantitative criterion to predict cell adhesion was proposed by identifying the dominant interaction between microorganisms and abiotic surfaces. According to the criterion, the dominant interaction in cell adhesion could be identified as a Lewis acid-base (AB) interaction or electrostatic (EL) interaction via comparison of two expressions containing the electron-donor characteristics of the microorganism (γmv-) and abiotic surface (γsv-) and their ζ potentials (ζm, ζs). The results revealed that when dominated by the AB interaction, adhesion would decrease with increasing [Formula: see text]. However, when the EL interaction was dominant, adhesion would decrease with increasing (ζm + ζs)2. We have verified the criterion based on the adhesion of microalgae, bacteria, and fungi onto various surfaces obtained via our experiments and available in literature studies. The results demonstrated that the criterion had important implications in the prediction of cell adhesion in various applications.
Collapse
|
6
|
Zhang H, Wei W, Zhang J, Huang S, Xie J. Enhancing enzymatic saccharification of sugarcane bagasse by combinatorial pretreatment and Tween 80. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:309. [PMID: 30455738 PMCID: PMC6225707 DOI: 10.1186/s13068-018-1313-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/01/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND The recalcitrant structure of lignocellulosic biomass made it challenging for their bioconversion into biofuels and biochemicals. Pretreatment was required to deconstruct the intact structure by the removal of hemicellulose/lignin, improving the cellulose accessibility of enzyme. Combinatorial pretreatments with liquid hot water/H2SO4 and ethanol/NaOH of sugarcane bagasse were developed to improve enzymatic hydrolysis under mild conditions. RESULTS After one-step 60% ethanol containing 0.5% NaOH pretreatment with solid to liquid ratio of 1/10, the glucose yield after hydrolysis for 72 h with enzyme dosage of 20 FPU/g substrate was enhanced by 41% and 205% compared to that of NaOH or 60% ethanol pretreated solids, respectively. This improvement was correlated with the removal of hemicellulose and lignin. However, using combinatorial pretreatments with 1% H2SO4 followed by 60% ethanol containing 0.5% NaOH, the highest glucose yield with Tween 80 reached 76%, representing 84.5% of theoretical glucose in pretreated substrate. While retaining similar glucose yield, the addition of Tween 80 capacitated either a reduction of enzyme loading by 50% or shortening hydrolysis time to 24 h. However, the enhancement with the addition of Tween 80 decreased as hydrolysis time was extended. CONCLUSIONS This study demonstrated that a combinatorial pretreatment with 1% H2SO4 followed by 60% ethanol containing 0.5% NaOH had significant effects on improving the enzymatic hydrolysis of sugarcane bagasse. The addition of Tween 80 enabled reducing the enzyme loading or shortening the hydrolysis time. This study provided an economically feasible and mild process for the generation of glucose, which will be subsequently converted to bioethanol and biochemicals.
Collapse
Affiliation(s)
- Hongdan Zhang
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640 People’s Republic of China
| | - Weiqi Wei
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Jiajie Zhang
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Shihang Huang
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Jun Xie
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| |
Collapse
|