1
|
Chikova OA, Tsepelev VS, Shmakova KY. On Spontaneous Dispersion as a Cause of Microstratification of Metal Melts. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2215. [PMID: 38793282 PMCID: PMC11123268 DOI: 10.3390/ma17102215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
The phenomenon of spontaneous dispersion is considered as the cause of the microstratification of metal melts. In a microstratification melt, a violation of long-range order in the arrangement of atoms (LRO) is observed, which corresponds to a dispersed particle size of more than 2 nm. Microseparation occurs due to spontaneous dispersion upon contact of liquid and solid metal or the mixing of two liquid metals. The possibility of spontaneous dispersion was assessed using three different criteria: Volmer's cr iterion, Rehbinder's criterion and the diffusion rate criterion. The diffusion rate criterion was obtained on the basis of the theory of rate processes, which describes how diffusing atoms overcome the interphase boundary. It has been established that Al-Sn melts contain colloidal-scale particles (4 nm), and Al-Si and Al-Ge melts contain atomic-scale particles (0.1 nm). For a system with a continuous series of Cu-Ni solid solutions in dispersion (Cu10Ni90-Cu20Ni80), the particle size is 2 nm. The particle size of the ternary eutectic GaInSn in the dispersion (Ga50In50-Ga50Sn50) is 5.6 nm, and the size of immiscible Cu-Fe melts in the dispersion (Cu80Fe20-Cu60Fe40) is 4.8 nm. Long-range order violations (LRO) and the presence of microlayering with colloidal particles larger than 20 nm were observed in the GaInSn ternary eutectic, in the Al-Sn simple eutectic with the preferential interaction of similar atoms, and in Cu-Fe melts with a monotectic phase diagram.
Collapse
Affiliation(s)
- Olga A. Chikova
- Departament of Physics, Ural Federal University, Yekaterinburg 620002, Russia;
| | - Vladimir S. Tsepelev
- Research Center for Physics of Metal Liquid, Ural Federal University, Yekaterinburg 620002, Russia;
| | - Kseniya Yu. Shmakova
- Research Center for Physics of Metal Liquid, Ural Federal University, Yekaterinburg 620002, Russia;
| |
Collapse
|
2
|
Krishna Mani S, Al-Tooqi S, Song J, Sapre A, Zarzar LD, Sen A. Dynamic Oscillation and Motion of Oil-in-Water Emulsion Droplets. Angew Chem Int Ed Engl 2024; 63:e202316242. [PMID: 37939352 DOI: 10.1002/anie.202316242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/10/2023]
Abstract
The interplay of interfacial tensions on droplets results in a range of self-powered motions that mimic those of living systems and serve as a tunable model to understand their complex non-equilibrium behavior. Spontaneous shape deformations and oscillations are crucial features observed in nature but difficult to incorporate in synthetic artificial systems. Here, we report sessile oil-in-water emulsions that exhibit rapid oscillating behavior. The oscillations depend on the nature and concentration of the surfactant, the chemical composition of the oil, and the wettability of the solid substrate. The rapid changes in the contact angle per oscillation are observed using side-view optical microscopy. We propose that the changes in the interfacial tension of the oil droplets is due to the partitioning of the surfactant into the oil phase and the movement of self-emulsified oil out of the parent droplets giving rise to the rhythmic variation in droplet contact-line. The ability to control and understand droplet oscillation can help model similar oscillations in out-of-equilibrium systems in nature and reproduce biomimetic behavior in artificial systems for various applications, such as microfluidic lab-on-a-chip and adaptive materials.
Collapse
Affiliation(s)
- Sanjana Krishna Mani
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sulaiman Al-Tooqi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jiaqi Song
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Aditya Sapre
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lauren D Zarzar
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Material Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ayusman Sen
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
3
|
Racles C, Bele A, Vasiliu AL, Sacarescu L. Emulsion Gels as Precursors for Porous Silicones and All-Polymer Composites-A Proof of Concept Based on Siloxane Stabilizers. Gels 2022; 8:377. [PMID: 35735721 PMCID: PMC9222695 DOI: 10.3390/gels8060377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 12/05/2022] Open
Abstract
In spite of its versatility, the emulsion templating method is rather uncommon for the preparation of porous silicones. In this contribution, two siloxane-containing stabilizers, designed to be soluble in polar (water) and non-polar (toluene) solvents, respectively, were used in low concentrations to produce stable emulsions, wherein polysiloxane gels were obtained by UV-photoinitiated thiol-ene click cross-linking. The stabilizers exhibited negative interfacial tension, as measured by Wilhelmy plate tensiometry. The emulsion gels evolved into porous silicones (xerogels), with tunable morphology and properties. According to TEM and SEM investigations, the emulsion template was preserved in the final materials. Several parameters (e.g., the structure of the polysiloxane precursors, composition of the emulsion gels, nature of the continuous phase, cross-linking conditions, or additives) can be varied in order to obtain porous elastic materials with desired properties, such as Janus membranes, absorbent monoliths, all-polymer porous composites, or silicone-swollen gels. The feasibility of these types of materials was tested, and exemplary porous silicones were briefly characterized by contact angle measurements, mechanical testing, and absorption tests. The proposed method is simple, fast, and economic, uses very little amounts of stabilizers, and can be adjusted as a green technique. In this contribution, all the silicon-based materials with a convenient design were prepared in house.
Collapse
Affiliation(s)
- Carmen Racles
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania; (A.B.); (L.S.)
| | - Adrian Bele
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania; (A.B.); (L.S.)
| | - Ana-Lavinia Vasiliu
- Mihai Dima Laboratory of Functional Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania;
| | - Liviu Sacarescu
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania; (A.B.); (L.S.)
| |
Collapse
|
4
|
Santos MSCS, Reis JC. Examination of the Butler Equation for the Surface Tension of Liquid Mixtures. ACS OMEGA 2021; 6:21571-21578. [PMID: 34471760 PMCID: PMC8388096 DOI: 10.1021/acsomega.1c02606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/26/2021] [Indexed: 05/14/2023]
Abstract
The classical Butler equation used to describe surface tension and the surface composition of liquid mixtures is revisited. A straightforward derivation is presented, separating basic chemical thermodynamics and assumptions proper to Butler's model. This model is shown to conceal an approximation not recognized by other researchers. The shortcoming identified consists of not allowing surface standard values to vary with surface tension by virtue of the changing composition. A more rigorous equation is derived and shown to yield the Butler equation in case of incompressible surface phases. It is concluded that the Butler equation slightly overestimates ideal surface tensions. Butler's surface-phase concentrations of the surface-active component are also slightly overestimated in the surface-active component dilute range, being just underestimated at higher concentrations. Despite this, Butler's model stands as a very good standard due to its versatility.
Collapse
|
5
|
Hasnain J, Jiang Y, Hou H, Yan J, Athanasopoulou L, Forth J, Ashby PD, Helms BA, Russell TP, Geissler PL. Spontaneous emulsification induced by nanoparticle surfactants. J Chem Phys 2020; 153:224705. [PMID: 33317311 DOI: 10.1063/5.0029016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Microemulsions, mixtures of oil, water, and surfactant, are thermodynamically stable. Unlike conventional emulsions, microemulsions form spontaneously, have a monodisperse droplet size that can be controlled by adjusting the surfactant concentration, and do not degrade with time. To make microemulsions, a judicious choice of surfactant molecules must be made, which significantly limits their potential use. Nanoparticle surfactants, on the other hand, are a promising alternative because the surface chemistry needed to make them bind to a liquid-liquid interface is both well flexible and understood. Here, we derive a thermodynamic model predicting the conditions in which nanoparticle surfactants drive spontaneous emulsification that agrees quantitatively with experiments using Noria nanoparticles. This new class of microemulsions inherits the mechanical, chemical, and optical properties of the nanoparticles used to form them, leading to novel applications.
Collapse
Affiliation(s)
- J Hasnain
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Y Jiang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - H Hou
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - J Yan
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - L Athanasopoulou
- Faculty of Mathematics and Physics, University of Ljubjana, Jadranska 19, SI-1000 Ljubjana, Slovenia
| | - J Forth
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - P D Ashby
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - B A Helms
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - T P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - P L Geissler
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
6
|
A coherent set of model equations for various surface and interface energies in systems with liquid and solid metals and alloys. Adv Colloid Interface Sci 2020; 283:102212. [PMID: 32781298 DOI: 10.1016/j.cis.2020.102212] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/27/2022]
Abstract
In this paper first a generally valid model is derived from the two fundamental equations of Gibbs for temperature and composition dependences of all types of interfacial energies. This general model is applied here to develop a coherent set of particular model equations for surface tension of liquid metals and alloys, for surface energy of solid metals and alloys, for high-angle grain boundary energy in metals and alloys, for solid/liquid interfacial energy in metals and alloys, for liquid/liquid interfacial energy in alloys and for solid/solid interfacial energy in metals and alloys. The latter case is sub-divided into models on coherent, incoherent and semi-coherent interfaces with the same phases and with different phases on the two sides of the interface. Model parameters are given here as an example for the 111 plane of fcc metals and alloys. For other crystal planes or other crystal structures the model parameters should be adjusted, while the model equations remain the same. The method is demonstrated on various surface and interfacial energies of pure Au, on solid/liquid interfacial energy in the AlCu system, on different types of solid/solid interfacial energies in the AuNi system, on solid/solid, solid/liquid and liquid/liquid interfacial energies in the AlPb system and on the coherent, incoherent and semi-coherent interfacial energies between ordered and disordered fcc phases in the Ni-rich part of the NiAl system. The ability of this method is demonstrated to predict surface and interface transition along free surfaces and grain boundaries and also negative interfacial energies in nano-systems.
Collapse
|
7
|
Li Z, Xu D, Yuan Y, Wu H, Hou J, Kang W, Bai B. Advances of spontaneous emulsification and its important applications in enhanced oil recovery process. Adv Colloid Interface Sci 2020; 277:102119. [PMID: 32045722 DOI: 10.1016/j.cis.2020.102119] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/23/2022]
Abstract
Emulsions, including oil-in-water (O/W) and water-in-oil (W/O) emulsions, can play important roles in both controlling reservoir conformance and displacing residual oil for enhanced oil recovery (EOR) projects. However, current methods, like high-shear mixing, high-pressure homogenizing, sonicators and others, often use lots of extra energy to prepare the emulsions with high costs but very low energy efficiency. In recent decades, spontaneous emulsification methods, which allow one to create micro- and nano-droplets with very low or even no mechanical energy input, have been launched as an overall less expensive and more efficient alternatives to current high extra energy methods. Herein, we primarily review the basic concepts on spontaneous emulsification, including mechanisms, methods and influenced parameters, which are relevant for fundamental applications for industrials. The spontaneity of the emulsification process is influenced by the following variables: surfactant structure, concentration and initial location, oil phase composition, addition of co-surfactant and non-aqueous solvent, as well as salinity and temperature. Then, we focus on the description of importance for emulsions in EOR processes from advances and categories to improving oil recovery mechanisms, including both sweep efficiency and displacement efficiency aspects. Finally, we systematically address the applications and outlooks based on the use of spontaneous emulsification in the practical oil reservoirs for EOR processes, in which conventional, heavy, high-temperature, high-salinity and low-permeability oil reservoirs, as well as wastewater treatments after EOR processes are involved.
Collapse
Affiliation(s)
- Zhe Li
- Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, PR China
| | - Derong Xu
- Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, PR China
| | - Yongjie Yuan
- Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, PR China
| | - Hairong Wu
- Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, PR China
| | - Jirui Hou
- Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, PR China
| | - Wanli Kang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| | - Baojun Bai
- Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, PR China; Department of Geosciences and Geological and Petroleum Engineering, Missouri University of Science and Technology, Rolla, MO 65401, United States
| |
Collapse
|
8
|
Letellier P, Turmine M. Bubble Solution Description by Non-Extensive Thermodynamics: Pressure Effect. Chemphyschem 2019; 20:2230-2235. [PMID: 31328380 DOI: 10.1002/cphc.201900412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Indexed: 12/23/2022]
Abstract
We showed in this study that nanobubble solutions should not be considered as the simple juxtaposition of autonomous phases (a solution and bubbles) but as particular entities, that is, "supersaturated solutions" where gas is simultaneously in two forms in permanent exchange. Gibbs' extensive thermodynamics cannot claim to describe legitimately their behavior. In this work, we showed how the use of the non-extensive thermodynamics allows describing the physicochemical properties of such media, some of which are counter-intuitive. Thus, an increase in pressure can result in an increase in the bubble size, contrary to what is provided by Boyle-Mariotte's law. The theoretical relationships proposed in this work constitute another approach to bubble solutions, which considers the non-autonomous nature of the components of supersaturated gas solutions and their "non-extensive" nature.
Collapse
Affiliation(s)
- Pierre Letellier
- Sorbonne Université, CNRS, Laboratoire Interfaces et Systèmes Électrochimiques (LISE), 4, place Jussieu, 75005, Paris, France
| | - Mireille Turmine
- Sorbonne Université, CNRS, Laboratoire Interfaces et Systèmes Électrochimiques (LISE), 4, place Jussieu, 75005, Paris, France
| |
Collapse
|
9
|
Kaptay G. Improved Derivation of the Butler Equations for Surface Tension of Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10987-10992. [PMID: 31355648 DOI: 10.1021/acs.langmuir.9b01892] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Butler equation was published in 1932 to describe the equilibrium surface composition and equilibrium surface tension of solutions. Unfortunately, it used the so-called "partial surface tension of a component", which was not properly defined by Butler, leading to a reluctant acceptance of this equation. Although the present author defined the partial surface tension recently in this journal, it is considered an advantage to derive the same key equations of Butler without the need to employ the concept of partial surface tension. This derivation is offered in the present paper, starting from the two fundamental equations of Gibbs. No assumptions are made on the thickness and structure of the surface region, it is only supposed that the surface region has an average composition with a negligible concentration gradient. In this way, the Butler equations are obtained, which have more general validity compared to the original Butler equations derived by supposing a surface monolayer.
Collapse
Affiliation(s)
- George Kaptay
- Department Nanotechnology , University of Miskolc , Egyetemvaros , Miskolc 3515 , Hungary
- Department Materials Development , BAY-ENG , 2 Igloi , Miskolc 3519 , Hungary
- MTA ME Materials Science Research Group , Egyetemvaros , Miskolc 3515 , Hungary
| |
Collapse
|
10
|
Samsonov VM, Talyzin IV, Kartoshkin AY, Vasilyev SA. Surface segregation in binary Cu–Ni and Au–Co nanoalloys and the core–shell structure stability/instability: thermodynamic and atomistic simulations. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0895-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Kaptay G. The chemical (not mechanical) paradigm of thermodynamics of colloid and interface science. Adv Colloid Interface Sci 2018; 256:163-192. [PMID: 29705027 DOI: 10.1016/j.cis.2018.04.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/25/2018] [Accepted: 04/09/2018] [Indexed: 12/22/2022]
Abstract
In the most influential monograph on colloid and interfacial science by Adamson three fundamental equations of "physical chemistry of surfaces" are identified: the Laplace equation, the Kelvin equation and the Gibbs adsorption equation, with a mechanical definition of surface tension by Young as a starting point. Three of them (Young, Laplace and Kelvin) are called here the "mechanical paradigm". In contrary it is shown here that there is only one fundamental equation of the thermodynamics of colloid and interface science and all the above (and other) equations of this field follow as its derivatives. This equation is due to chemical thermodynamics of Gibbs, called here the "chemical paradigm", leading to the definition of surface tension and to 5 rows of equations (see Graphical abstract). The first row is the general equation for interfacial forces, leading to the Young equation, to the Bakker equation and to the Laplace equation, etc. Although the principally wrong extension of the Laplace equation formally leads to the Kelvin equation, using the chemical paradigm it becomes clear that the Kelvin equation is generally incorrect, although it provides right results in special cases. The second row of equations provides equilibrium shapes and positions of phases, including sessile drops of Young, crystals of Wulff, liquids in capillaries, etc. The third row of equations leads to the size-dependent equations of molar Gibbs energies of nano-phases and chemical potentials of their components; from here the corrected versions of the Kelvin equation and its derivatives (the Gibbs-Thomson equation and the Freundlich-Ostwald equation) are derived, including equations for more complex problems. The fourth row of equations is the nucleation theory of Gibbs, also contradicting the Kelvin equation. The fifth row of equations is the adsorption equation of Gibbs, and also the definition of the partial surface tension, leading to the Butler equation and to its derivatives, including the Langmuir equation and the Szyszkowski equation. Positioning the single fundamental equation of Gibbs into the thermodynamic origin of colloid and interface science leads to a coherent set of correct equations of this field. The same provides the chemical (not mechanical) foundation of the chemical (not mechanical) discipline of colloid and interface science.
Collapse
|