1
|
Freeman-Gallant G, Davis EJ, Scholer E, Alija O, Navea JG. Photooxidation of Nonanoic Acid by Molecular and Complex Environmental Photosensitizers. J Phys Chem A 2024. [PMID: 39498797 DOI: 10.1021/acs.jpca.4c05608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Photochemical aging and photooxidation of atmospheric particles play a crucial role in both the chemical and physical processes occurring in the troposphere. In particular, the presence of organic chromophores within atmospheric aerosols can trigger photosensitized oxidation that drives the atmospheric processes in these interfaces. However, the light-induced oxidation of the surface of atmospheric aerosols, especially those enriched with organic components, remains poorly understood. Herein, we present a gravimetric and vibrational spectroscopy study aimed to investigate the photosensitized oxidation of nonanoic acid (NA), a model system of fatty acids within organic aerosols, in the presence of complex organic photosensitizers and molecular proxies. Specifically, this study shows a comparative analysis of the photosensitized reactions of thin films containing nonanoic acid and four different organic photosensitizers, namely marine dissolved organic matter (m-DOM) and humic acids (HA) as environmental photosensitizers, and 4-imidazolecarboxaldehyde (4IC) and 4-benzoylbenzoic acid (4BBA) as molecular proxies. All reactions show predominant photooxidation of nonanoic acid, with important differences in the rate and yield of product formation depending on the photosensitizer. Limited changes were observed in the organic photosensitizer itself. Results show that, among the photosensitizers examined, 4BBA is the most effective in photooxidizing nonanoic acid. Overall, this work underscores the role of chromophores in the photooxidation of organic thin films and the relevance of such reactions on the surface of aerosols in the marine environment.
Collapse
Affiliation(s)
- Grace Freeman-Gallant
- Chemistry Department, Skidmore College, Saratoga Springs, New York 12866-1632, United States
| | - Emily J Davis
- Chemistry Department, Skidmore College, Saratoga Springs, New York 12866-1632, United States
| | - Elizabeth Scholer
- Chemistry Department, Skidmore College, Saratoga Springs, New York 12866-1632, United States
| | - Onita Alija
- Chemistry Department, Skidmore College, Saratoga Springs, New York 12866-1632, United States
| | - Juan G Navea
- Chemistry Department, Skidmore College, Saratoga Springs, New York 12866-1632, United States
| |
Collapse
|
2
|
Mozaffari Majd M, Kordzadeh-Kermani V, Ghalandari V, Askari A, Sillanpää M. Adsorption isotherm models: A comprehensive and systematic review (2010-2020). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:151334. [PMID: 34748826 DOI: 10.1016/j.scitotenv.2021.151334] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Among numerous methods developed in purification and separation industries, the adsorption process has received considerable attention due to its inexpensive, facile, and eco-friendly nature. The importance of the adsorption process causes extraordinary endeavors for modeling the adsorption isotherms during the years; thus, myriads of research have been conducted and many reviews have been published. In this paper, we have attempted to gather the most widely used adsorption isotherms and their related definitions, along with examples of correlated work of the recent decade. In the present review, 37 adsorption isotherms with about 400 references have been collected from the research published in the period of 2010-2020. The adsorption isotherms utilized are alphabetically organized for ease of access. The parameters of each isotherm, as well as the applicable definitions, are presented in the table, in addition to being discussed in the text. Another table is provided for the practical use of researchers, featuring the usage of the related isotherms in peer-reviewed studies.
Collapse
Affiliation(s)
- Mahdieh Mozaffari Majd
- Kerman Momtazan Cement Company, 32(nd) km Kerman-Tehran Highway, 7637158135, Kerman, Iran
| | - Vahid Kordzadeh-Kermani
- Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| | - Vahab Ghalandari
- Kerman Momtazan Cement Company, 32(nd) km Kerman-Tehran Highway, 7637158135, Kerman, Iran
| | - Anis Askari
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mika Sillanpää
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; School of Chemistry, Shoolini University, Solan, Himachal Pradesh 173229, India; Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000 Aarhus C, Denmark.
| |
Collapse
|
3
|
da Silva Santos DH, Paulino JCPL, Dos Santos Alves GF, de Magalhães Oliveira LMT, de Carvalho Nagliate P, da Silva Duarte JL, Meili L, Tonholo J, Zanta CLDPES. Effluent treatment using activated carbon adsorbents: a bibliometric analysis of recent literature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-14267-w. [PMID: 33950424 DOI: 10.1007/s11356-021-14267-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Agricultural practices and industrial and human discharges play an important role in the generation of highly contaminated effluents, which becomes a threat to the environment. The persistence of many of these compounds to conventional treatments in recent years has meant that numerous efforts have been devoted to the proposal of new selective materials that allow the removal of these contaminants by adsorption. In addition, bibliometric studies have grown as powerful tools to indicate trends in innovation. In this way, the present study consisted of evaluating the potential interest to use activated carbon as adsorbent through a prospection study in scientific and technological databases. The number of records obtained for the use of activated carbon in effluent remediation processes is equivalent to 4898, which corresponds to approximately 2.5% of the total documents (articles/patents) found for the use of carbon with no defined purpose. A total of 2275 works that used the adsorptive property of activated carbon were recovered. According to the data recovered, Brazil is the leader in scientific publications among Latin American countries and the 12th worldwide, according to the SciELO and Scopus databases, respectively. In general, a significant number of patents have been recovered for this theme, in the Derwent database, 1167 documents were recovered. The results obtained in this work evidenced the growing interest in developing technologies in this area.
Collapse
Affiliation(s)
- Danilo Henrique da Silva Santos
- Laboratório de Eletroquímica Aplicada, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, UFAL, Maceió, Brazil
| | | | | | | | | | - José Leandro da Silva Duarte
- Laboratório de Eletroquímica Aplicada, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, UFAL, Maceió, Brazil
- Laboratório de Processos, Centro de Tecnologia, Universidade Federal de Alagoas, UFAL, Maceió, Brazil
| | - Lucas Meili
- Laboratório de Processos, Centro de Tecnologia, Universidade Federal de Alagoas, UFAL, Maceió, Brazil.
- Laboratory of Processes - LAPRO, Center of Technology, Federal University of Alagoas, Campus A. C. Simões, Av. Lourival Melo Mota, Tabuleiro dos Martins, Maceió, AL, CEP 57072-970, Brazil.
| | - Josealdo Tonholo
- Laboratório de Eletroquímica Aplicada, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, UFAL, Maceió, Brazil
| | | |
Collapse
|
4
|
Falzone G, Mehdipour I, Neithalath N, Bauchy M, Simonetti D, Sant G. New insights into the mechanisms of carbon dioxide mineralization by portlandite. AIChE J 2021. [DOI: 10.1002/aic.17160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gabriel Falzone
- Laboratory for the Chemistry of Construction Materials (LC2), Department of Civil and Environmental Engineering University of California Los Angeles California USA
- Institute for Carbon Management (ICM) University of California Los Angeles California USA
| | - Iman Mehdipour
- Laboratory for the Chemistry of Construction Materials (LC2), Department of Civil and Environmental Engineering University of California Los Angeles California USA
- Institute for Carbon Management (ICM) University of California Los Angeles California USA
| | - Narayanan Neithalath
- School of Sustainable Engineering and the Built‐Environment Arizona State University Tempe Arizona USA
| | - Mathieu Bauchy
- Institute for Carbon Management (ICM) University of California Los Angeles California USA
- Laboratory for the Physics of Amorphous and Inorganic Solids (PARISlab), Department of Civil and Environmental Engineering University of California Los Angeles California USA
| | - Dante Simonetti
- Institute for Carbon Management (ICM) University of California Los Angeles California USA
- Department of Chemical and Biomolecular Engineering University of California Los Angeles California USA
| | - Gaurav Sant
- Laboratory for the Chemistry of Construction Materials (LC2), Department of Civil and Environmental Engineering University of California Los Angeles California USA
- Institute for Carbon Management (ICM) University of California Los Angeles California USA
- Department of Materials Science and Engineering University of California Los Angeles California USA
- California Nanosystems Institute (CNSI) University of California Los Angeles California USA
| |
Collapse
|
5
|
Wu C, He B, Su Y, Ling G, Cai G. Adsorption Isotherms of Low-Pressure H 2O on a Low-Temperature Surface Measured by a Quartz Crystal Microbalance. ACS OMEGA 2020; 5:26673-26681. [PMID: 33110994 PMCID: PMC7581229 DOI: 10.1021/acsomega.0c03538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
The low-pressure gas in the vacuum plume produced by the chemical thrusters contaminates the spacecraft when adsorbed on the low-temperature surface. To provide theoretical support for further research on gaseous plume pollutants, the adsorption isotherms of low-pressure H2O were measured by a quartz crystal microbalance (QCM) at temperatures ranging from 233 to 273 K. The measured isotherms are similar to the type-I and type-II isotherms and have been correlated by various models (e.g., the Langmuir, Dubinin-Radushkevich, Brunauer-Emmett-Teller (BET), and universal models). It shows that the universal model has a great advantage in predicting the adsorption at a specific temperature point in our study. To estimate the adsorption at the continuous temperature range, the critical parameters of the multi-Langmuir model were expressed in semiempirical formulas. Since the normalized isotherms of H2O at different temperatures converge well, a simplified multi-Langmuir (SML) model was proposed. The experimental results at the temperature and pressure ranges we explored are consistent with the results predicted by the SML model, suggesting that the SML model is more suitable and convenient to predict the low-pressure adsorption of H2O for a continuous low-temperature range. Moreover, the low-pressure adsorption behaviors of H2O and CO2 on the low-temperature surface are compared and discussed.
Collapse
Affiliation(s)
- Chenggeng Wu
- School
of Astronautics, Beihang University, Beijing 100191, P. R. China
| | - Bijiao He
- School
of Astronautics, Beihang University, Beijing 100191, P. R. China
| | - Yang Su
- School
of Astronautics, Beihang University, Beijing 100191, P. R. China
- Sichuan
Institute of Aerospace System Engineering, Chengdu 610100, P. R. China
| | - Guilong Ling
- School
of Astronautics, Beihang University, Beijing 100191, P. R. China
| | - Guobiao Cai
- School
of Astronautics, Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
6
|
Losey DJ, Sihvonen SK, Veghte DP, Chong E, Freedman MA. Acidic processing of fly ash: chemical characterization, morphology, and immersion freezing. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:1581-1592. [PMID: 30339168 DOI: 10.1039/c8em00319j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fly ash can undergo aging in the atmosphere through interactions with sulfuric acid and water. These reactions could result in chemical and physical changes that could affect the cloud condensation or ice nucleation activity of fly ash particles. To explore this process, different water and acid treated fly ash types were characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM), electron dispersive spectroscopy (EDS), selected area diffraction (SAED), and inductively coupled plasma atomic emission spectroscopy (ICP-AES). Then, their immersion freezing activity was assessed. With water and acid treatment, a wide variety of metals were leached, depending on the starting composition of the fly ash. Acid treatment resulted in the formation of gypsum, Ca(SO4)·2H2O, for fly ash containing Ca as well as morphological changes. The immersion freezing activity was also assessed for each fly ash system to compare the effects of water and acid processing. Our results support the assertion that fly ash can serve as a cloud condensation or ice nucleus to affect climate.
Collapse
Affiliation(s)
- Delanie J Losey
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | |
Collapse
|
7
|
Ostaszewski CJ, Stuart NM, Lesko DMB, Kim D, Lueckheide MJ, Navea JG. Effects of Coadsorbed Water on the Heterogeneous Photochemistry of Nitrates Adsorbed on TiO2. J Phys Chem A 2018; 122:6360-6371. [DOI: 10.1021/acs.jpca.8b04979] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Natalie M. Stuart
- Chemistry Department, Skidmore College, Saratoga Springs, New York 12866-1632, United States
| | - Daniel M. B. Lesko
- Chemistry Department, Skidmore College, Saratoga Springs, New York 12866-1632, United States
| | - Deborah Kim
- Chemistry Department, Skidmore College, Saratoga Springs, New York 12866-1632, United States
| | - Matthew J. Lueckheide
- Chemistry Department, Skidmore College, Saratoga Springs, New York 12866-1632, United States
| | - Juan G. Navea
- Chemistry Department, Skidmore College, Saratoga Springs, New York 12866-1632, United States
| |
Collapse
|