1
|
Lönn B, Strandberg L, Roth V, Luneau M, Wickman B. Fuel Cell Catalyst Layers with Platinum Nanoparticles Synthesized by Sputtering onto Liquid Substrates. ACS OMEGA 2024; 9:43725-43733. [PMID: 39494016 PMCID: PMC11525512 DOI: 10.1021/acsomega.4c06245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024]
Abstract
Platinum (Pt) nanoparticles are widely used as catalysts in proton exchange membrane fuel cells. In recent decades, sputter deposition onto liquid substrates has emerged as a potential alternative for nanoparticle synthesis, offering a synthesis process free of contaminant oxygen, capping agents, and chemical precursors. Here, we present a method for the synthesis of supported nanoparticles based on magnetron sputtering onto liquid poly(ethylene glycol) (PEG) combined with a heat-treatment step for attachment of nanoparticles to a carbon support. Transmission electron microscopy imaging reveals Pt nanoparticle growth during the heat-treatment process, facilitated by the carbon support and the reducing properties of PEG. Following the heat treatment, a bimodal size distribution of Pt nanoparticles is observed, with sizes of 2.5 ± 0.8 and 6.7 ± 1.8 nm, compared to 1.8 ± 0.4 nm after sputtering. Synthesized Pt nanoparticles display excellent specific and mass activities for the oxygen reduction reaction, with 1.75 mA/cm2 Pt and 0.27 A/mgPt respectively, measured at 0.9 V vs the reversible hydrogen electrode. The specific activities reported herein outperform literature values of commercial Pt/C catalysts with similar loading and are on par with values of bulk Pt and mass-selected nanoparticles of comparable size. Also, the mass activities agree well with the literature values. The results provide new insights into the growth processes of SoL-synthesized carbon-supported Pt catalyst nanoparticles, and most crucially, the high performance of the synthesized catalyst layers, along with the possibility of nanoparticle growth through a straightforward heat-treatment step at relatively low temperatures, offer a scalable new approach for producing fuel cell catalysts with more efficient material utilization and new material combinations.
Collapse
Affiliation(s)
- Björn Lönn
- Chemical
Physics, Department of Physics, Chalmers
University of Technology, Gothenburg 412 96, Sweden
- Competence
Centre for Catalysis, Chalmers University
of Technology, Gothenburg 412 96, Sweden
| | - Linnéa Strandberg
- Chemical
Physics, Department of Physics, Chalmers
University of Technology, Gothenburg 412 96, Sweden
- Competence
Centre for Catalysis, Chalmers University
of Technology, Gothenburg 412 96, Sweden
| | - Vera Roth
- Chemical
Physics, Department of Physics, Chalmers
University of Technology, Gothenburg 412 96, Sweden
| | - Mathilde Luneau
- Applied
Chemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
- Competence
Centre for Catalysis, Chalmers University
of Technology, Gothenburg 412 96, Sweden
| | - Björn Wickman
- Chemical
Physics, Department of Physics, Chalmers
University of Technology, Gothenburg 412 96, Sweden
- Competence
Centre for Catalysis, Chalmers University
of Technology, Gothenburg 412 96, Sweden
| |
Collapse
|
2
|
Nyabadza A, McCarthy É, Makhesana M, Heidarinassab S, Plouze A, Vazquez M, Brabazon D. A review of physical, chemical and biological synthesis methods of bimetallic nanoparticles and applications in sensing, water treatment, biomedicine, catalysis and hydrogen storage. Adv Colloid Interface Sci 2023; 321:103010. [PMID: 37804661 DOI: 10.1016/j.cis.2023.103010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/30/2023] [Accepted: 09/24/2023] [Indexed: 10/09/2023]
Abstract
This article provides an in-depth analysis of various fabrication methods of bimetallic nanoparticles (BNP), including chemical, biological, and physical techniques. The review explores BNP's diverse uses, from well-known applications such as sensing water treatment and biomedical uses to less-studied areas like breath sensing for diabetes monitoring and hydrogen storage. It cites results from over 1000 researchers worldwide and >300 peer-reviewed articles. Additionally, the article discusses current trends, actionable recommendations, and the importance of synthetic analysis for industry players looking to optimize manufacturing techniques for specific applications. The article also evaluates the pros and cons of various fabrication methods, highlighting the potential of plant extract synthesis for mass production of capped BNPs. However, it warns that this method may not be suitable for certain applications requiring ligand-free surfaces. In contrast, physical methods like laser ablation offer better control and reactivity, especially for applications where ligand-free surfaces are critical. The report underscores the environmental benefits of plant extract synthesis compared to chemical methods that use hazardous chemicals and pose risks to extraction, production, and disposal. The article emphasizes the need for life cycle assessment (LCA) articles in the literature, given the growing volume of research on nanotechnology materials. This article caters to researchers at all stages and applies to various fields applying nanomaterials.
Collapse
Affiliation(s)
- Anesu Nyabadza
- I-Form Advanced Manufacturing Centre Research, Dublin City University, Glasnevin, Dublin 9, Ireland; EPSRC & SFI Centre for Doctoral Training (CDT) in Advanced Metallic Systems, School of Mechanical & Manufacturing Engineering, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Éanna McCarthy
- I-Form Advanced Manufacturing Centre Research, Dublin City University, Glasnevin, Dublin 9, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Mayur Makhesana
- Mechanical Engineering Department, Institute of Technology, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Saeid Heidarinassab
- I-Form Advanced Manufacturing Centre Research, Dublin City University, Glasnevin, Dublin 9, Ireland; EPSRC & SFI Centre for Doctoral Training (CDT) in Advanced Metallic Systems, School of Mechanical & Manufacturing Engineering, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Anouk Plouze
- Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9, Ireland; Conservatoire National des arts et Métiers (CNAM), 61 Rue du Landy, 93210 Saint-Denis, France
| | - Mercedes Vazquez
- I-Form Advanced Manufacturing Centre Research, Dublin City University, Glasnevin, Dublin 9, Ireland; EPSRC & SFI Centre for Doctoral Training (CDT) in Advanced Metallic Systems, School of Mechanical & Manufacturing Engineering, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Dermot Brabazon
- I-Form Advanced Manufacturing Centre Research, Dublin City University, Glasnevin, Dublin 9, Ireland; EPSRC & SFI Centre for Doctoral Training (CDT) in Advanced Metallic Systems, School of Mechanical & Manufacturing Engineering, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
3
|
Coviello V, Forrer D, Amendola V. Recent Developments in Plasmonic Alloy Nanoparticles: Synthesis, Modelling, Properties and Applications. Chemphyschem 2022; 23:e202200136. [PMID: 35502819 DOI: 10.1002/cphc.202200136] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/02/2022] [Indexed: 01/07/2023]
Abstract
Despite the traditional plasmonic materials are counted on one hand, there are a lot of possible combinations leading to alloys with other elements of the periodic table, in particular those renowned for magnetic or catalytic properties. It is not a surprise, therefore, that nanoalloys are considered for their ability to open new perspectives in the panorama of plasmonics, representing a leading research sector nowadays. This is demonstrated by a long list of studies describing multiple applications of nanoalloys in photonics, photocatalysis, sensing and magneto-optics, where plasmons are combined with other physical and chemical phenomena. In some remarkable cases, the amplification of the conventional properties and even new effects emerged. However, this field is still in its infancy and several challenges must be overcome, starting with the synthesis (control of composition, crystalline order, size, processability, achievement of metastable phases and disordered compounds) as well as the modelling of the structure and properties (accuracy of results, reliability of structural predictions, description of disordered phases, evolution over time) of nanoalloys. To foster the research on plasmonic nanoalloys, here we provide an overview of the most recent results and developments in the field, organized according to synthetic strategies, modelling approaches, dominant properties and reported applications. Considering the several plasmonic nanoalloys under development as well as the large number of those still awaiting synthesis, modelling, properties assessment and technological exploitation, we expect a great impact on the forthcoming solutions for sustainability, ultrasensitive and accurate detection, information processing and many other fields.
Collapse
Affiliation(s)
- Vito Coviello
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, I-35131, Padova, Italy
| | - Daniel Forrer
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, I-35131, Padova, Italy
- CNR - ICMATE, I-35131, Padova, Italy
| | - Vincenzo Amendola
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, I-35131, Padova, Italy
| |
Collapse
|
4
|
Sergievskaya A, Chauvin A, Konstantinidis S. Sputtering onto liquids: a critical review. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:10-53. [PMID: 35059275 PMCID: PMC8744456 DOI: 10.3762/bjnano.13.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/07/2021] [Indexed: 05/03/2023]
Abstract
Sputter deposition of atoms onto liquid substrates aims at producing colloidal dispersions of small monodisperse ultrapure nanoparticles (NPs). Since sputtering onto liquids combines the advantages of the physical vapor deposition technique and classical colloidal synthesis, the review contains chapters explaining the basics of (magnetron) sputter deposition and the formation of NPs in solution. This review article covers more than 132 papers published on this topic from 1996 to September 2021 and aims at providing a critical analysis of most of the reported data; we will address the influence of the sputtering parameters (sputter power, current, voltage, sputter time, working gas pressure, and the type of sputtering plasma) and host liquid properties (composition, temperature, viscosity, and surface tension) on the NP formation as well as a detailed overview of the properties and applications of the produced NPs.
Collapse
Affiliation(s)
- Anastasiya Sergievskaya
- Plasma-Surface Interaction Chemistry (ChIPS), University of Mons, 23 Place du Parc, B-7000 Mons, Belgium
| | - Adrien Chauvin
- Plasma-Surface Interaction Chemistry (ChIPS), University of Mons, 23 Place du Parc, B-7000 Mons, Belgium
- Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Praha 2, Czech Republic
| | - Stephanos Konstantinidis
- Plasma-Surface Interaction Chemistry (ChIPS), University of Mons, 23 Place du Parc, B-7000 Mons, Belgium
| |
Collapse
|
5
|
Nguyen MT, Deng L, Yonezawa T. Control of nanoparticles synthesized via vacuum sputter deposition onto liquids: a review. SOFT MATTER 2021; 18:19-47. [PMID: 34901989 DOI: 10.1039/d1sm01002f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Sputter deposition onto a low volatile liquid matrix is a recently developed green synthesis method for metal/metal oxide nanoparticles (NPs). In this review, we introduce the synthesis method and highlight its unique features emerging from the combination of the sputter deposition and the ability of the liquid matrix to regulate particle growth. Then, manipulating the synthesis parameters to control the particle size, composition, morphology, and crystal structure of NPs is presented. Subsequently, we evaluate the key experimental factors governing the particle characteristics and the formation of monometallic and alloy NPs to provide overall directions and insights into the preparation of NPs with desired properties. Following that, the current understanding of the growth and formation mechanism of sputtered particles in liquid media, in particular, ionic liquids and liquid polymers, during and after sputtering is emphasized. Finally, we discuss the challenges that remain and share our perspectives on the future prospects of the synthesis method and the obtained NPs.
Collapse
Affiliation(s)
- Mai Thanh Nguyen
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| | - Lianlian Deng
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| | - Tetsu Yonezawa
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| |
Collapse
|
6
|
Lungulescu EM, Setnescu R, Pătroi EA, Lungu MV, Pătroi D, Ion I, Fierăscu RC, Șomoghi R, Stan M, Nicula NO. High-Efficiency Biocidal Solution Based on Radiochemically Synthesized Cu-Au Alloy Nanoparticles. NANOMATERIALS 2021; 11:nano11123388. [PMID: 34947739 PMCID: PMC8705577 DOI: 10.3390/nano11123388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 01/02/2023]
Abstract
The use of nanotechnologies in the applied biomedical sciences can offer a new way to treat infections and disinfect surfaces, materials, and products contaminated with various types of viruses, bacteria, and fungi. The Cu-Au nanoparticles (NPs) were obtained by an eco-friendly method that allowed the obtaining in a one-step process of size controlled, well dispersed, fully reduced, highly stable NPs at very mild conditions, using high energy ionizing radiations. The gamma irradiation was performed in an aqueous system of Cu2+/Au3+/Sodium Dodecyl Sulfate (SDS)/Ethylene Glycol. After irradiation, the change of color to ruby-red was the first indicator for the formation of NPs. Moreover, the UV-Vis spectra showed a maximum absorption peak between 524 and 540 nm, depending on the copper amount. The Cu-Au NPs presented nearly spherical shapes, sizes between 20 and 90 nm, and a zeta potential of about −44 mV indicating a good electrostatic stability. The biocidal properties performed according to various standards applied in the medical area, in dirty conditions, showed a 5 lg reduction for Staphylococcus aureus, Pseudomonas aeruginosa, and Enterococcus hirae, a 5 lg reduction for both enveloped and non-enveloped viruses such as Adenovirus type 5, Murine Norovirus, and human Coronavirus 229E, and a 4 lg reduction for Candida albicans, respectively. Thus, the radiochemically synthesized Cu-Au alloy NPs proved to have high biocide efficiency against the tested bacteria, fungi, and viruses (both encapsulated and non-encapsulated). Therefore, these nanoparticle solutions are suitable to be used as disinfectants in the decontamination of hospital surfaces or public areas characterized by high levels of microbiological contamination.
Collapse
Affiliation(s)
- Eduard-Marius Lungulescu
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (R.S.); (E.A.P.); (M.V.L.); (D.P.); (I.I.); (N.-O.N.)
- Correspondence:
| | - Radu Setnescu
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (R.S.); (E.A.P.); (M.V.L.); (D.P.); (I.I.); (N.-O.N.)
- Department of Advanced Technologies, Faculty of Sciences and Arts, Valahia University of Târgoviște, 13 Aleea Sinaia, 130004 Targoviste, Romania
| | - Eros A. Pătroi
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (R.S.); (E.A.P.); (M.V.L.); (D.P.); (I.I.); (N.-O.N.)
| | - Magdalena V. Lungu
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (R.S.); (E.A.P.); (M.V.L.); (D.P.); (I.I.); (N.-O.N.)
| | - Delia Pătroi
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (R.S.); (E.A.P.); (M.V.L.); (D.P.); (I.I.); (N.-O.N.)
| | - Ioana Ion
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (R.S.); (E.A.P.); (M.V.L.); (D.P.); (I.I.); (N.-O.N.)
| | - Radu-Claudiu Fierăscu
- National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (R.-C.F.); (R.Ș.)
| | - Raluca Șomoghi
- National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (R.-C.F.); (R.Ș.)
| | - Miruna Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Nicoleta-Oana Nicula
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (R.S.); (E.A.P.); (M.V.L.); (D.P.); (I.I.); (N.-O.N.)
| |
Collapse
|
7
|
Polymer-metal nanocomposite thin films fabricated by a sputter-anneal process and relevance of the polymer matrix. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01957-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Brown R, Lönn B, Pfeiffer R, Frederiksen H, Wickman B. Plasma-Induced Heating Effects on Platinum Nanoparticle Size During Sputter Deposition Synthesis in Polymer and Ionic Liquid Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8821-8828. [PMID: 34253018 PMCID: PMC8397345 DOI: 10.1021/acs.langmuir.1c01190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Nanoparticle catalyst materials are becoming ever more important in a sustainable future. Specifically, platinum (Pt) nanoparticles have relevance in catalysis, in particular, fuel cell technologies. Sputter deposition into liquid substrates has been shown to produce nanoparticles without the presence of air and other contaminants and the need for precursors. Here, we produce Pt nanoparticles in three imidazolium-based ionic liquids and PEG 600. All Pt nanoparticles are crystalline and around 2 nm in diameter. We show that while temperature has an effect on particle size for Pt, it is not as great as for other materials. Sputtering power, time, and postheat treatment all show slight influence on the particle size, indicating the importance of temperature during sputtering. The temperature of the liquid substrate is measured and reaches over 150 °C during deposition which is found to increase the particle size by less than 20%, which is small compared to the effect of temperature on Au nanoparticles presented in the literature. High temperatures during Pt sputtering are beneficial for increasing Pt nanoparticle size beyond 2 nm. Better temperature control would allow for more control over the particle size in the future.
Collapse
Affiliation(s)
- Rosemary Brown
- Chemical
Physics, Department of Physics, Chalmers
University of Technology, Gothenburg 412 96, Sweden
| | - Björn Lönn
- Chemical
Physics, Department of Physics, Chalmers
University of Technology, Gothenburg 412 96, Sweden
| | - Robin Pfeiffer
- Chemical
Physics, Department of Physics, Chalmers
University of Technology, Gothenburg 412 96, Sweden
| | - Henrik Frederiksen
- MC2,
Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Björn Wickman
- Chemical
Physics, Department of Physics, Chalmers
University of Technology, Gothenburg 412 96, Sweden
| |
Collapse
|
9
|
Zhu M, Nguyen MT, Chau YTR, Deng L, Yonezawa T. Pt/Ag Solid Solution Alloy Nanoparticles in Miscibility Gaps Synthesized by Cosputtering onto Liquid Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6096-6105. [PMID: 33960790 DOI: 10.1021/acs.langmuir.1c00916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pt/Ag solid solution alloy nanoparticles (NPs) with mean size below 3 nm were obtained with composition in miscibility gaps by cosputtering onto liquid polyethylene glycol (PEG, MW = 600). Adjusting the sputtering currents from 10 to 50 mA did not influence the particle sizes obviously but caused a substantial difference in the composition and distributions of Pt/Ag NPs. This is different from sputtered Pt/Au NPs where particle size is correlated with composition. For a pair of sputtering currents, the formed Pt/Ag alloy NPs have a range of compositions. The normal distribution with Pt of 60.2 ± 16.2 at % is observed for the Pt/Ag sample with a nominal Pt content of 55.9 at %, whereas Pt-rich (85.1 ± 14.0 at % Pt) and Ag-rich (19.8 ± 12.2 at % Pt) Pt/Ag samples with nominal Pt contents of 90.9 and 11.9 at % contain more pure Pt and pure Ag NPs, respectively. Different from NPs obtained in PEG, the sputtered NPs on TEM grids had more uniform composition for a longer sputtering time along with a significant increase of particle sizes. This reveals that PEG hindered the combination of NPs and clusters, resulting in small particle sizes even for long time sputtering and broader composition distributions. Thus, the samples obtained in PEG have the compositions mainly determined by the random atom combination in the vacuum chamber and possibly in initial landing of atom/clusters on the PEG surface.
Collapse
Affiliation(s)
- Mingbei Zhu
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Mai Thanh Nguyen
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Yuen-Ting Rachel Chau
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Lianlian Deng
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Tetsu Yonezawa
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
- Institute of Business-Regional Collaboration, Hokkaido University, Kita 21 Nishi 11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
10
|
Kumar G, Soni RK. Bimetallic Ag-Au alloy nanocubes for SERS based sensitive detection of explosive molecules. NANOTECHNOLOGY 2020; 31:505504. [PMID: 33021229 DOI: 10.1088/1361-6528/abb628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We have fabricated Ag-Au alloy nanocubes using the galvanic replacement of silver nanocubes by aqueous HAuCl4 and investigated their morphological, structural, compositional and optical properties. The inter-diffusion between silver and gold at 100 °C leads to the formation of Ag-Au alloy nanocubes with hollow interiors. A broad tuning of the surface plasmon resonance (SPR) wavelength from 624 nm to 920 nm is obtained with the varying volume of HAuCl4. When excited at wavelength 785 nm, the bimetallic Ag-Au nanocubes with pinholes exhibit two-fold Raman intensity enhancement compared to pristine Ag nanocubes. The surface-enhanced Raman spectroscopy (SERS) substrate prepared with Ag-Au alloy nanocubes shows high-intensity enhancement factor of 1.9 × 107 for 11.2 wt% Au content. The SERS-active Ag-Au alloy nanocubes substrates were exploited for the detection of two explosive molecules; p-nitrobenzoic acid (PNBA) and picric acid (PA). Remarkable detection sensitivity and ultra-low detection limit of 1.7 × 10-14 M for PNBA and 4.1 × 10-11 M for PA were obtained, demonstrating the very high SERS detection capabilities of the as-prepared substrate.
Collapse
Affiliation(s)
- Govind Kumar
- Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - R K Soni
- Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
11
|
Chauvin A, Sergievskaya A, El Mel AA, Fucikova A, Antunes Corrêa C, Vesely J, Duverger-Nédellec E, Cornil D, Cornil J, Tessier PY, Dopita M, Konstantinidis S. Co-sputtering of gold and copper onto liquids: a route towards the production of porous gold nanoparticles. NANOTECHNOLOGY 2020; 31:455303. [PMID: 32726767 DOI: 10.1088/1361-6528/abaa75] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Effective methods for the synthesis of high-purity nanoparticles (NPs) have been extensively studied for a few decades. Among others, cold plasma-based sputtering metals onto a liquid substrate appears to be a very promising technique for the synthesis of high-purity NPs. The process enables the production of very small NPs without using any toxic reagents and complex chemical synthesis routes, and enables the synthesis of alloy NPs which can be the first step towards the formation of porous NPs. In this paper, the synthesis of gold-copper alloy NPs has been performed by co-sputtering gold and copper targets over pentaerythritol ethoxylate. The resulting solutions contain a mixture of gold, copper oxide, and alloy NPs having a radius of few angstroms. The annealing of these NPs, inside the solution, has been performed in order to increase their size and further induce the dealloying of the Au-Cu NPs. The resulting NPs exhibit either a nanoporous structure or are self-organized in an agglomerate of small NPs.
Collapse
Affiliation(s)
- Adrien Chauvin
- Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16, Praha 2, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Deng L, Nguyen MT, Shi J, Chau YTR, Tokunaga T, Kudo M, Matsumura S, Hashimoto N, Yonezawa T. Highly Correlated Size and Composition of Pt/Au Alloy Nanoparticles via Magnetron Sputtering onto Liquid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3004-3015. [PMID: 32150418 DOI: 10.1021/acs.langmuir.0c00152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pt/Au alloy nanoparticles (NPs) in a wide composition range have been synthesized by room-temperature simultaneous sputter deposition from two independent magnetron sources onto liquid PEG (MW = 600). The prepared NPs were alloyed with the face-centered cubic (fcc) structure. In addition, the particle sizes, composition, and shape are strongly correlated but can be tailored by an appropriate variation of the sputtering parameters. No individual particle but large agglomerates with partial alloy structure formed at Pt content of less than 16 atom %. Highly dispersed NPs with no agglomeration were observed in PEG when the quantity of Pt is more than 26 atom %. On the other hand, a small amount of Pt could terminate the agglomeration of Au when sputtering on the grids for transmission electron microscope observation. Our experiment and computer simulation carried out by two different methods indicate that the composition-dependent particle size of Pt/Au can be explained by the atomic concentration, formation energy of the cluster, and interaction between different metal atoms and the PEG molecule.
Collapse
Affiliation(s)
- Lianlian Deng
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Mai Thanh Nguyen
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Jingming Shi
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Yuen-Ting Rachel Chau
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Tomoharu Tokunaga
- Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | | | | | - Naoyuki Hashimoto
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Tetsu Yonezawa
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
- Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Kita 21 Nishi 11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
13
|
Chau YTR, Nguyen MT, Zhu M, Romier A, Tokunaga T, Yonezawa T. Synthesis of composition-tunable Pd–Cu alloy nanoparticles by double target sputtering. NEW J CHEM 2020. [DOI: 10.1039/d0nj00288g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we introduce a green synthesis technique, double-target sputtering into a liquid polymer – polyethylene glycol (PEG, M. W. = 600), to synthesize palladium–copper (Pd–Cu) alloy nanoparticles (NPs) dispersed in PEG.
Collapse
Affiliation(s)
- Yuen-ting Rachel Chau
- Division of Materials and Engineering
- Faculty of Engineering
- Hokkaido University
- Hokkaido 060-8628
- Japan
| | - Mai Thanh Nguyen
- Division of Materials and Engineering
- Faculty of Engineering
- Hokkaido University
- Hokkaido 060-8628
- Japan
| | - Mingbei Zhu
- Division of Materials and Engineering
- Faculty of Engineering
- Hokkaido University
- Hokkaido 060-8628
- Japan
| | - Arnaud Romier
- Division of Materials and Engineering
- Faculty of Engineering
- Hokkaido University
- Hokkaido 060-8628
- Japan
| | - Tomoharu Tokunaga
- Institute of Materials and Systems for Sustainability
- Nagoya University
- Furo-cho
- Chikusa-ku
- Nagoya 464-8601
| | - Tetsu Yonezawa
- Division of Materials and Engineering
- Faculty of Engineering
- Hokkaido University
- Hokkaido 060-8628
- Japan
| |
Collapse
|
14
|
Aouidat F, Boumati S, Khan M, Tielens F, Doan BT, Spadavecchia J. Design and Synthesis of Gold-Gadolinium-Core-Shell Nanoparticles as Contrast Agent: a Smart Way to Future Nanomaterials for Nanomedicine Applications. Int J Nanomedicine 2019; 14:9309-9324. [PMID: 31819433 PMCID: PMC6894158 DOI: 10.2147/ijn.s224805] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/02/2019] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION The development of biopolymers for the synthesis of Gd(III) nanoparticles, as therapeutics, could play a key role in nanomedicine. Biocompatible polymers are not only used for complex monovalent biomolecules, but also for the realization of multivalent active targeting materials as diagnostic and/or therapeutic hybrid nanoparticles. In this article, it was reported for the first time, a novel synthesis of Gd(III)-biopolymer-Au(III) complex, acting as a key ingredient of core-shell gold nanoparticles (Gd(@AuNPs). MATERIAL AND METHODS The physical and chemical evaluation was carried out by spectroscopic analytical techniques (Raman spectroscopy, UV-visible and TEM). The theoretical characterization by DFT (density functional theory) analysis was carried out under specific conditions to investigate the interaction between the Au and the Gd precursors, during the first nucleation step. Magnetic features with relaxivity measurements at 7T were also performed as well as cytotoxicity studies on hepatocyte cell lines for biocompatibility studies. The in vivo detailed dynamic biodistribution studies in mice to characterize the potential applications for biology as MRI contrast agents were then achieved. RESULTS Physical-chemical evaluation confirms the successful design and reaction supposed. Viabilities of TIB-75 (hepatocytes) cells were evaluated using Alamar blue cytotoxic tests with increasing concentrations of nanoparticles. In vivo biodistribution studies were then accomplished to assess the kinetic behavior of the nanoparticles in mice and characterize their stealthiness property after intravenous injection. CONCLUSION We demonstrated that Gd@AuNPs have some advantages to display hepatocytes in the liver. Particularly, these nanoconjugates give a good cellular uptake of several quantities of Gd@NPs into cells, while preserving a T1 contrast inside cells that provide a robust in vivo detection using T1-weighted MR images. These results will strengthen the role of gadolinium as complex to gold in order to tune Gd(@AuNPs) as an innovative diagnostic agent in the field of nanomedicine.
Collapse
Affiliation(s)
- Fatima Aouidat
- CNRS, UMR 7244, CSPBAT, Laboratory of Chemistry, Structures and Properties of Biomaterials And Therapeutic Agents University Paris 13, Sorbonne Paris Cité, Bobigny, France
| | - Sarah Boumati
- UTCBS – Chimie ParisTech – University Paris Descartes - CNRS UMR 8258 – INSERM U1022 Equipe “Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnostics” SEISAD, Paris, France
| | - Memona Khan
- CNRS, UMR 7244, CSPBAT, Laboratory of Chemistry, Structures and Properties of Biomaterials And Therapeutic Agents University Paris 13, Sorbonne Paris Cité, Bobigny, France
| | - Frederik Tielens
- General Chemistry (ALGC), Vrije University of Brussel (Free University Brussels-VUB), Brussel, Belgium
| | - Bich-Thuy Doan
- UTCBS – Chimie ParisTech – University Paris Descartes - CNRS UMR 8258 – INSERM U1022 Equipe “Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnostics” SEISAD, Paris, France
| | - Jolanda Spadavecchia
- CNRS, UMR 7244, CSPBAT, Laboratory of Chemistry, Structures and Properties of Biomaterials And Therapeutic Agents University Paris 13, Sorbonne Paris Cité, Bobigny, France
| |
Collapse
|
15
|
Noble copper-silver-gold trimetallic nanobowls: An efficient catalyst. J Colloid Interface Sci 2019; 556:140-146. [DOI: 10.1016/j.jcis.2019.08.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022]
|
16
|
McNally MJ, Galinis G, Youle O, Petr M, Prucek R, Machala L, von Haeften K. Silver nanoparticles by atomic vapour deposition on an alcohol micro-jet. NANOSCALE ADVANCES 2019; 1:4041-4051. [PMID: 36132097 PMCID: PMC9418456 DOI: 10.1039/c9na00347a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/05/2019] [Indexed: 05/13/2023]
Abstract
We achieved sputter deposition of silver atoms onto liquid alcohols by injection of solvents into vacuum via a liquid microjet. Mixing silver atoms into ethanol by this method produced metallic silver nanoparticles. These had a broad, log-normal size distribution, with median size between 3.3 ± 1.4 nm and 2.0 ± 0.7 nm, depending on experiment geometry; and a broad plasmon absorption band centred around 450 nm. We also deposited silver atoms into a solution of colloidal silica nanoparticles, generating silver-decorated silica particles with consistent decoration of almost one silver particle to each silica sphere. The silver-silica mixture showed increased colloidal stability and yield of silver, along with a narrowed size distribution and a narrower plasmon band blue-shifted to 410 nm. Significant methanol loss of 1.65 × 10-7 mol MeOH per g per s from the mature silver-silica solutions suggests we have reproduced known silica supported silver catalysts. The excellent distribution of silver on each silica sphere shows this technique has potential to improve the distribution of catalytically active particles in supported catalysts.
Collapse
Affiliation(s)
- Michael J McNally
- Department of Physics and Astronomy, University of Leicester Leicester UK
| | - Gediminas Galinis
- Department of Physics and Astronomy, University of Leicester Leicester UK
| | - Oliver Youle
- Department of Physics and Astronomy, University of Leicester Leicester UK
- Department of Engineering, University of Leicester Leicester UK
| | - Martin Petr
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc Olomouc Czech Republic
| | - Robert Prucek
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc Olomouc Czech Republic
| | - Libor Machala
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc Olomouc Czech Republic
| | - Klaus von Haeften
- Department of Physics and Astronomy, University of Leicester Leicester UK
- Kanano GmbH 89077 Ulm Germany
| |
Collapse
|
17
|
Chau YTR, Deng L, Nguyen MT, Yonezawa T. Monitor the Growth and Oxidation of Cu-nanoparticles in PEG after Sputtering. ACTA ACUST UNITED AC 2019. [DOI: 10.1557/adv.2019.55] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Deng L, Nguyen MT, Mei S, Tokunaga T, Kudo M, Matsumura S, Yonezawa T. Preparation and Growth Mechanism of Pt/Cu Alloy Nanoparticles by Sputter Deposition onto a Liquid Polymer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8418-8427. [PMID: 31194557 DOI: 10.1021/acs.langmuir.9b01112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We use a green sputtering technique to deposit a Pt/Cu alloy target on liquid polyethylene glycol (PEG) to obtain well-dispersed and stable Pt29Cu71 alloy nanoparticles (NPs). The effects of sputtering current, rotation speed of the stirrer, sputtering time, sputtering period, and temperature of PEG on the particle size are studied systematically. Our key results demonstrate that the aggregation and growth of Pt/Cu alloy NPs occurred at the surface as well as inside the liquid polymer after the particles landed on the liquid surface. According to particle size analysis, a low sputtering current, high rotation speed for the stirrer, short sputtering period, and short sputtering time are found to be favorable for producing small-sized single crystalline alloy NPs. On the other hand, varying the temperature of the liquid PEG does not have any significant impact on the particle size. Thus, our findings shed light on controlling NP growth using the newly developed green sputtering deposition technique.
Collapse
Affiliation(s)
- Lianlian Deng
- Division of Materials Science and Engineering, Faculty of Engineering , Hokkaido University , Kita 13 Nishi 8, Kita-ku , Sapporo , Hokkaido 060-8628 , Japan
| | - Mai Thanh Nguyen
- Division of Materials Science and Engineering, Faculty of Engineering , Hokkaido University , Kita 13 Nishi 8, Kita-ku , Sapporo , Hokkaido 060-8628 , Japan
| | - Shuang Mei
- Division of Materials Science and Engineering, Faculty of Engineering , Hokkaido University , Kita 13 Nishi 8, Kita-ku , Sapporo , Hokkaido 060-8628 , Japan
| | - Tomoharu Tokunaga
- Department of Materials Design Innovation Engineering , Graduate School of Engineering , Nagoya University, Furo-cho, Chikusa-ku , Nagoya 464-8603 , Japan
| | | | | | - Tetsu Yonezawa
- Division of Materials Science and Engineering, Faculty of Engineering , Hokkaido University , Kita 13 Nishi 8, Kita-ku , Sapporo , Hokkaido 060-8628 , Japan
| |
Collapse
|
19
|
Aouidat F, Halime Z, Moretta R, Rea I, Filosa S, Donato S, Tatè R, de Stefano L, Tripier R, Spadavecchia J. Design and Synthesis of Hybrid PEGylated Metal Monopicolinate Cyclam Ligands for Biomedical Applications. ACS OMEGA 2019; 4:2500-2509. [PMID: 31459488 PMCID: PMC6648416 DOI: 10.1021/acsomega.8b03266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 12/28/2018] [Indexed: 06/10/2023]
Abstract
In this study, we report, for the first time, the synthesis of two original nanosystems, based on gold Au(III) and copper Cu(II): simple gold-copper nanoparticles (Cu0AuNPs) and enriched monopicolinate cyclam (L1)-Cu(II)-Au(III)-complex (L1@Cu2+AuNPs). The two nanomaterials differ substantially by the chelation or not of the Cu(II) ions during the NPs synthesis process. The two hybrid nanoparticles (Cu0AuNPs; L1@Cu2+AuNPs) were deeply studied from the chemical and physical point of view, using many different analytical techniques such as Raman and UV-vis spectroscopy, electron transmission microscopy, and dynamic light scattering. Both nanosystems show morphological and good chemical stability at pH 4 values and in physiological conditions during 98 h. Undifferentiated and neural differentiated murine embryonic stem cells were used as a model system for in vitro experiments to reveal the effects of NPs on these cells. The comparative study between Cu0AuNPs and L1@Cu2+AuNPs highlights that copper chelated in its +2 oxidation state in the NPs is more functional for biological application.
Collapse
Affiliation(s)
- Fatima Aouidat
- CNRS,
UMR 7244, CSPBAT, Laboratoire de Chimie, Structures et Propriétés
de Biomateriaux et d’Agents Therapeutiques Université
Paris 13, 1 rue Chablis
93000, Sorbonne Paris Cité, 93000 Bobigny, France
| | - Zakaria Halime
- Universitè
de Brest, UMR-CNRS 6521/IBSAM, UFR Sciences et Techniques, 6 Avenue Victor le Gorgeu, C.S.
93837, 29238 Brest, France
| | - Rosalba Moretta
- Institute
for Microelectronics and Microsystems, Unit of Naples, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Ilaria Rea
- Institute
for Microelectronics and Microsystems, Unit of Naples, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Stefania Filosa
- Institute
of Biosciences and Bioresources (IBBR), National Research Council
(CNR), Naples, Italy-IRCCS, Neuromed, Via Università, 133, 80055 Pozzilli, Isernia, Italy
| | - Stella Donato
- Institute
of Biosciences and Bioresources (IBBR), National Research Council
(CNR), Naples, Italy-IRCCS, Neuromed, Via Università, 133, 80055 Pozzilli, Isernia, Italy
| | - Rosarita Tatè
- Institute
of Genetics and Biophysics “Adriano Buzzati-Traverso”,
CNR, Via P. Castellino
111, 80131 Naples, Italy
| | - Luca de Stefano
- Institute
for Microelectronics and Microsystems, Unit of Naples, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Raphaël Tripier
- Universitè
de Brest, UMR-CNRS 6521/IBSAM, UFR Sciences et Techniques, 6 Avenue Victor le Gorgeu, C.S.
93837, 29238 Brest, France
| | - Jolanda Spadavecchia
- CNRS,
UMR 7244, CSPBAT, Laboratoire de Chimie, Structures et Propriétés
de Biomateriaux et d’Agents Therapeutiques Université
Paris 13, 1 rue Chablis
93000, Sorbonne Paris Cité, 93000 Bobigny, France
| |
Collapse
|
20
|
Yonezawa T, Čempel D, Nguyen MT. Microwave-Induced Plasma-In-Liquid Process for Nanoparticle Production. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180285] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tetsu Yonezawa
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - David Čempel
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Mai Thanh Nguyen
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
21
|
Deng L, Nguyen MT, Yonezawa T. Sub-2 nm Single-Crystal Pt Nanoparticles via Sputtering onto a Liquid Polymer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2876-2881. [PMID: 29384382 DOI: 10.1021/acs.langmuir.7b04274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Matrix sputtering with the use of a low vapor pressure liquid as its matrix becomes a green technique to prepare nanoparticles dispersed in liquid. In the present study, we proposed using this method with polyethylene glycol (PEG, molecular weight = 600) as the liquid matrix to produce highly uniform Pt nanoparticles with a small size (below 2.0 nm) and a narrow size distribution. The results indicated that particle sizes were tailorable from 0.9 ± 0.3 to 1.4 ± 0.3 nm by varying the sputtering current (5-50 mA) with negligible particle aggregation that occurred in PEG during sputtering. The slight growth of the particle size observed after sputtering was attributed to the addition of free Pt atoms to the existing Pt nanoparticles. All samples formed stable dispersion in PEG for 5 month storage. This result suggested an advantage of using a liquid matrix to produce and stabilize nanoparticles.
Collapse
Affiliation(s)
- Lianlian Deng
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University , Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Mai Thanh Nguyen
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University , Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Tetsu Yonezawa
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University , Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| |
Collapse
|
22
|
Nie F, Ga L, Ai J, Wang Y. Synthesis of highly fluorescent Cu/Au bimetallic nanoclusters and their application in a temperature sensor and fluorescent probe for chromium(iii) ions. RSC Adv 2018; 8:13708-13713. [PMID: 35539310 PMCID: PMC9079805 DOI: 10.1039/c8ra02118j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 04/06/2018] [Indexed: 11/30/2022] Open
Abstract
Bimetallic nanoclusters (BNCs) have attracted great attention due to their cooperative electronic, optical, and catalytic properties. Here, a novel one-step synthetic method is presented to prepare highly fluorescent bimetallic copper–gold nanoclusters (Cu/Au BNCs) in ambient conditions by using glutathione (GSH) as both the reducing agent and the protective layer preventing the aggregation of the as-formed NCs. The resultant Cu/Au BNCs are uniformly dispersed, with an average diameter of 1.5 nm, and it exhibits emission at 450 nm with excitation at 380 nm. Interestingly, the fluorescence signal of the Cu/Au BNCs is reversibly responsive to the environmental temperature, and it shows good sensitivity in the range of 20–70 °C (F = −23.96T + 3149.2 (R = 0.94)). Furthermore, it was found that the fluorescence of Cu/Au BNCs was quenched selectively by Cr3+, and a detection method was further developed with detection linear range from 50 nM to 1 mM (F = −174.85[Cr3+] + 1686.69 (R = 0.98)) and high sensitivity (LOD = 10 nM, S/N = 3). The Cu/Au BNCs have been successfully synthesized as a temperature sensor and it successful detection Cr3+.![]()
Collapse
Affiliation(s)
- Furong Nie
- College of Chemistry and Enviromental Science
- Inner Mongolia Normal University
- Hohhot 010022
- China
| | - Lu Ga
- College of Chemistry and Enviromental Science
- Inner Mongolia Normal University
- Hohhot 010022
- China
- College of Pharmacy
| | - Jun Ai
- College of Chemistry and Enviromental Science
- Inner Mongolia Normal University
- Hohhot 010022
- China
- Inner Mongolian Key Laboratory for Physics and Chemistry of Functional Materials
| | - Yong Wang
- College of Chemistry and Enviromental Science
- Inner Mongolia Normal University
- Hohhot 010022
- China
| |
Collapse
|