1
|
Cao Y, Zhu J, Kou J, Tieleman DP, Liang Q. Unveiling Interactions of Tumor-Targeting Nanoparticles with Lipid Bilayers Using a Titratable Martini Model. J Chem Theory Comput 2024; 20:4045-4053. [PMID: 38648670 DOI: 10.1021/acs.jctc.4c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
pH-responsive nanoparticles are ideal vehicles for drug delivery and are widely used in cell imaging in targeted therapy of cancer, which usually has a weakly acidic microenvironment. In this work, we constructed a titratable molecular model for nanoparticles grafted with ligands of pH-sensitive carboxylic acids and investigated the interactions between the nanoparticles and the lipid bilayer in varying pH environments. We mainly examined the effect of the grafting density of the pH-sensitive ligands of the nanoparticles on the interactions of the nanoparticles with the lipid bilayer. The results show that the nanoparticles can penetrate the lipid bilayer only when the pH value is lower than a critical value, which can be readily modulated to the specific pH value of the tumor microenvironment by changing the ligand grafting density. This work provides some insights into modulating the interactions between the pH-sensitive nanoparticles and cellular membranes to realize targeted drug delivery to tumors based on their specific pH environment.
Collapse
Affiliation(s)
- Yu Cao
- Center for Statistical and Theoretical Condensed Matter Physics & Department of Physics, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Jin Zhu
- Center for Statistical and Theoretical Condensed Matter Physics & Department of Physics, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Jianlong Kou
- Center for Statistical and Theoretical Condensed Matter Physics & Department of Physics, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Science, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Qing Liang
- Center for Statistical and Theoretical Condensed Matter Physics & Department of Physics, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| |
Collapse
|
2
|
Huang-Zhu CA, Sheavly JK, Chew AK, Patel SJ, Van Lehn RC. Ligand Lipophilicity Determines Molecular Mechanisms of Nanoparticle Adsorption to Lipid Bilayers. ACS NANO 2024; 18:6424-6437. [PMID: 38354368 PMCID: PMC11298871 DOI: 10.1021/acsnano.3c11854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The interactions of ligand-functionalized nanoparticles with the cell membrane affect cellular uptake, cytotoxicity, and related behaviors, but relating these interactions to ligand properties remains challenging. In this work, we perform coarse-grained molecular dynamics simulations to study how the adsorption of ligand-functionalized cationic gold nanoparticles (NPs) to a single-component lipid bilayer (as a model cell membrane) is influenced by ligand end group lipophilicity. A set of 2 nm diameter NPs, each coated with a monolayer of organic ligands that differ only in their end groups, was simulated to mimic NPs recently studied experimentally. Metadynamics calculations were performed to determine key features of the free energy landscape for adsorption as a function of the distance of the NP from the bilayer and the number of NP-lipid contacts. These simulations revealed that NP adsorption is thermodynamically favorable for all NPs due to the extraction of lipids from the bilayer and into the NP monolayer. To resolve ligand-dependent differences in adsorption behavior, string method calculations were performed to compute minimum free energy pathways for adsorption. These calculations revealed a surprising nonmonotonic dependence of the free energy barrier for adsorption on ligand end group lipophilicity. Large free energy barriers are predicted for the least lipophilic end groups because favorable NP-lipid contacts are initiated only through the unfavorable protrusion of lipid tail groups out of the bilayer. The smallest free energy barriers are predicted for end groups of intermediate lipophilicity which promote NP-lipid contacts by intercalating within the bilayer. Unexpectedly, large free energy barriers are also predicted for the most lipophilic end groups which remain sequestered within the ligand monolayer rather than intercalating within the bilayer. These trends are broadly in agreement with past experimental measurements and reveal how subtle variations in ligand lipophilicity dictate adsorption mechanisms and associated kinetics by influencing the interplay of lipid-ligand interactions.
Collapse
Affiliation(s)
- Carlos A. Huang-Zhu
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, WI, 53706, United States
| | - Jonathan K. Sheavly
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, WI, 53706, United States
| | - Alex K. Chew
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, WI, 53706, United States
| | - Samarthaben J. Patel
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, WI, 53706, United States
| | - Reid C. Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, WI, 53706, United States
- Department of Chemistry, University of Wisconsin – Madison, Madison, WI, 53706, United States
| |
Collapse
|
3
|
Chen LH, Hu JN. Development of nano-delivery systems for loaded bioactive compounds: using molecular dynamics simulations. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 38206576 DOI: 10.1080/10408398.2023.2301427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Over the past decade, a remarkable surge in the development of functional nano-delivery systems loaded with bioactive compounds for healthcare has been witnessed. Notably, the demanding requirements of high solubility, prolonged circulation, high tissue penetration capability, and strong targeting ability of nanocarriers have posed interdisciplinary research challenges to the community. While extensive experimental studies have been conducted to understand the construction of nano-delivery systems and their metabolic behavior in vivo, less is known about these molecular mechanisms and kinetic pathways during their metabolic process in vivo, and lacking effective means for high-throughput screening. Molecular dynamics (MD) simulation techniques provide a reliable tool for investigating the design of nano-delivery carriers encapsulating these functional ingredients, elucidating the synthesis, translocation, and delivery of nanocarriers. This review introduces the basic MD principles, discusses how to apply MD simulation to design nanocarriers, evaluates the ability of nanocarriers to adhere to or cross gastrointestinal mucosa, and regulates plasma proteins in vivo. Moreover, we presented the critical role of MD simulation in developing delivery systems for precise nutrition and prospects for the future. This review aims to provide insights into the implications of MD simulation techniques for designing and optimizing nano-delivery systems in the healthcare food industry.
Collapse
Affiliation(s)
- Li-Hang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Jiang-Ning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
4
|
Sengottiyan S, Mikolajczyk A, Puzyn T. How Does the Study MD of pH-Dependent Exposure of Nanoparticles Affect Cellular Uptake of Anticancer Drugs? Int J Mol Sci 2023; 24:ijms24043479. [PMID: 36834890 PMCID: PMC9958846 DOI: 10.3390/ijms24043479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
The lack of knowledge about the uptake of NPs by biological cells poses a significant problem for drug delivery. For this reason, designing an appropriate model is the main challenge for modelers. To address this problem, molecular modeling studies that can describe the mechanism of cellular uptake of drug-loaded nanoparticles have been conducted in recent decades. In this context, we developed three different models for the amphipathic nature of drug-loaded nanoparticles (MTX-SS-γ-PGA), whose cellular uptake mechanism was predicted by molecular dynamics studies. Many factors affect nanoparticle uptake, including nanoparticle physicochemical properties, protein-particle interactions, and subsequent agglomeration, diffusion, and sedimentation. Therefore, the scientific community needs to understand how these factors can be controlled and the NP uptake of nanoparticles. Based on these considerations, in this study, we investigated for the first time the effects of the selected physicochemical properties of the anticancer drug methotrexate (MTX) grafted with hydrophilic-γ-polyglutamic acid (MTX-SS-γ-PGA) on its cellular uptake at different pH values. To answer this question, we developed three theoretical models describing drug-loaded nanoparticles (MTX-SS-γ-PGA) at three different pH values, such as (1) pH 7.0 (the so-called neutral pH model), (2) pH 6.4 (the so-called tumor pH model), and (3) pH 2.0 (the so-called stomach pH model). Exceptionally, the electron density profile shows that the tumor model interacts more strongly with the head groups of the lipid bilayer than the other models due to charge fluctuations. Hydrogen bonding and RDF analyses provide information about the solution of the NPs with water and their interaction with the lipid bilayer. Finally, dipole moment and HOMO-LUMO analysis showed the free energy of the solution in the water phase and chemical reactivity, which are particularly useful for determining the cellular uptake of the NPs. The proposed study provides fundamental insights into molecular dynamics (MD) that will allow researchers to determine the influence of pH, structure, charge, and energetics of NPs on the cellular uptake of anticancer drugs. We believe that our current study will be useful in developing a new model for drug delivery to cancer cells with a much more efficient and less time-consuming model.
Collapse
|
5
|
Zwitterionic polymers: addressing the barriers for drug delivery. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
6
|
Liao M, Gong H, Quan X, Wang Z, Hu X, Chen Z, Li Z, Liu H, Zhang L, McBain AJ, Waigh TA, Zhou J, Lu JR. Intramembrane Nanoaggregates of Antimicrobial Peptides Play a Vital Role in Bacterial Killing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204428. [PMID: 36417574 DOI: 10.1002/smll.202204428] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Recent developments in antimicrobial peptides (AMPs) have focused on the rational design of short sequences with less than 20 amino acids due to their relatively low synthesis costs and ease of correlation of the structure-function relationship. However, gaps remain in the understanding of how short cationic AMPs interact with the bacterial outer and inner membranes to affect their antimicrobial efficacy and dynamic killing. The membrane-lytic actions of two designed AMPs, G(IIKK)3 I-NH2 (G3 ) and G(IIKK)4 I-NH2 (G4 ), and previously-studied controls GLLDLLKLLLKAAG-NH2 (LDKA, biomimetic) and GIGAVLKVLTTGLPALISWIKRKR-NH2 (Melittin, natural) are examined. The mechanistic processes of membrane damage and the disruption strength of the four AMPs are characterized by molecular dynamics simulations and experimental measurements including neutron reflection and scattering. The results from the combined studies are characterized with distinctly different intramembrane nanoaggregates formed upon AMP-specific binding, reflecting clear influences of AMP sequence, charge and the chemistry of the inner and outer membranes. G3 and G4 display different nanoaggregation with the outer and inner membranes, and the smaller sizes and further extent of insertion of the intramembrane nanoaggregates into bacterial membranes correlate well with their greater antimicrobial efficacy and faster dynamic killing. This work demonstrates the crucial roles of intramembrane nanoaggregates in optimizing antimicrobial efficacy and dynamic killing.
Collapse
Affiliation(s)
- Mingrui Liao
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Haoning Gong
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Xuebo Quan
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, China
| | - Ziwei Wang
- National Graphene Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Xuzhi Hu
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Zheng Chen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, China
| | - Zongyi Li
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Huayang Liu
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Lin Zhang
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Thomas A Waigh
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, China
| | - Jian Ren Lu
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
7
|
Javan Nikkhah S, Vandichel M. Modeling Polyzwitterion-Based Drug Delivery Platforms: A Perspective of the Current State-of-the-Art and Beyond. ACS ENGINEERING AU 2022; 2:274-294. [PMID: 35996394 PMCID: PMC9389590 DOI: 10.1021/acsengineeringau.2c00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Drug delivery platforms are anticipated to have biocompatible and bioinert surfaces. PEGylation of drug carriers is the most approved method since it improves water solubility and colloid stability and decreases the drug vehicles' interactions with blood components. Although this approach extends their biocompatibility, biorecognition mechanisms prevent them from biodistribution and thus efficient drug transfer. Recent studies have shown (poly)zwitterions to be alternatives for PEG with superior biocompatibility. (Poly)zwitterions are super hydrophilic, mainly stimuli-responsive, easy to functionalize and they display an extremely low protein adsorption and long biodistribution time. These unique characteristics make them already promising candidates as drug delivery carriers. Furthermore, since they have highly dense charged groups with opposite signs, (poly)zwitterions are intensely hydrated under physiological conditions. This exceptional hydration potential makes them ideal for the design of therapeutic vehicles with antifouling capability, i.e., preventing undesired sorption of biologics from the human body in the drug delivery vehicle. Therefore, (poly)zwitterionic materials have been broadly applied in stimuli-responsive "intelligent" drug delivery systems as well as tumor-targeting carriers because of their excellent biocompatibility, low cytotoxicity, insignificant immunogenicity, high stability, and long circulation time. To tailor (poly)zwitterionic drug vehicles, an interpretation of the structural and stimuli-responsive behavior of this type of polymer is essential. To this end, a direct study of molecular-level interactions, orientations, configurations, and physicochemical properties of (poly)zwitterions is required, which can be achieved via molecular modeling, which has become an influential tool for discovering new materials and understanding diverse material phenomena. As the essential bridge between science and engineering, molecular simulations enable the fundamental understanding of the encapsulation and release behavior of intelligent drug-loaded (poly)zwitterion nanoparticles and can help us to systematically design their next generations. When combined with experiments, modeling can make quantitative predictions. This perspective article aims to illustrate key recent developments in (poly)zwitterion-based drug delivery systems. We summarize how to use predictive multiscale molecular modeling techniques to successfully boost the development of intelligent multifunctional (poly)zwitterions-based systems.
Collapse
Affiliation(s)
- Sousa Javan Nikkhah
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Matthias Vandichel
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| |
Collapse
|
8
|
Liu H, Pei Y. Atomistic Molecular Dynamics Simulation Study on the Interaction between Atomically Precise Thiolate-Protected Gold Nanoclusters and Phospholipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1653-1661. [PMID: 35080404 DOI: 10.1021/acs.langmuir.1c02001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The interaction of atomically precise monolayer thiolate (SR) protected gold nanoclusters (Au NCs) with the phospholipid membranes has been studied by the all-atom molecular dynamics (AAMD) simulations. The effect of cluster size, type, and the surface charge density of protection ligand was studied. The simulation results show gold nanoclusters with different size and surface modifications have much different transmembrane behaviors. The Au25(SR)18 cluster was found to possess the best affinity to the phospholipid membranes among six atomically accurate clusters Au25(SR)18, Au36(SR)24, Au44(SR)28, Au68(SR)32, Au144(SR)60, and Au314(SR)96. Using the Au25 NC as a model, this work also found that the aggregation mode of the surface ligands and the surface charge density are the important factors affecting the interaction between the gold nanoclusters and the phospholipid membranes. Moreover, the balance of hydrophilic and hydrophobic ligands on the surface of Au NCs is beneficial to the high permeability.
Collapse
Affiliation(s)
- Hengzhi Liu
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, Hunan Province 411105, China
| |
Collapse
|
9
|
Quan X, Zhao D, Zhou J. The interplay between surface-functionalized gold nanoparticles and negatively charged lipid vesicles. Phys Chem Chem Phys 2021; 23:23526-23536. [PMID: 34642720 DOI: 10.1039/d1cp01903a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The comprehensive understanding of the interactions between gold nanoparticles (AuNPs) and phospholipid vesicles has important implications in various biomedical applications; however, this is not yet well understood. Here, coarse-grained molecular dynamics (CGMD) simulations were performed to study the interactions between functionalized AuNPs and negatively charged lipid vesicles, and the effects of the surface chemistry and surface charge density (SCD) of AuNPs were analyzed. It is revealed that AuNPs with different surface ligands adhere to the membrane surface (anionic AuNPs) or get into the vesicle bilayer (hydrophobic and cationic AuNPs). Due to the loose arrangement of lipid molecules, AuNPs penetrate curved vesicle membranes more easily than planar lipid bilayers. Cationic AuNPs present three different interaction modes with the vesicle, namely insertion, partial penetration and complete penetration, which are decided by the SCD difference. Both hydrophobic interaction and electrostatic interaction play crucial roles in the interplay between cationic AuNPs and lipid vesicles. For the cationic AuNP with a low SCD, it gets into the lipid bilayer without membrane damage through the hydrophobic interaction, and it is finally stabilized in the hydrophobic interior of the vesicle membrane in a thermodynamically stable "snorkeling" configuration. For the cationic AuNP with a high SCD, it crosses the vesicle membrane and gets into the vesicle core through a membrane pore induced by strong electrostatic interaction. In this process, the membrane structure is destroyed. These findings provide a molecular-level understanding of the interplay between AuNPs and lipid vesicles, which may further expand the application of functional AuNPs in modern biomedicine.
Collapse
Affiliation(s)
- Xuebo Quan
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, P. R. China.
| | - Daohui Zhao
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, P. R. China.
| |
Collapse
|
10
|
Xu Z, He Z, Quan X, Sun D, Miao Z, Yu H, Yang S, Chen Z, Zeng J, Zhou J. Molecular simulations of charged complex fluids: A review. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.11.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Zeng S, Quan X, Zhu H, Sun D, Miao Z, Zhang L, Zhou J. Computer Simulations on a pH-Responsive Anticancer Drug Delivery System Using Zwitterion-Grafted Polyamidoamine Dendrimer Unimolecular Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1225-1234. [PMID: 33417464 DOI: 10.1021/acs.langmuir.0c03217] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Unimolecular micelles have attracted wide attention in the field of drug delivery because of their thermodynamic stability and uniform size distribution. However, their drug loading/release mechanisms at the molecular level have been poorly understood. In this work, the stability and drug loading/release behaviors of unimolecular micelles formed using generation-5 polyamidoamine-graft-poly(carboxybetaine methacrylate) (PAMAM(G5)-PCBMA) were studied by dissipative particle dynamics simulations. In addition, the unimolecular micelles formed using generation-5 polyamidoamine-graft-poly(ethyleneglycol methacrylate) (PAMAM(G5)-PEGMA) were used as a comparison. The simulation results showed that PAMAM(G5)-PCBMA can spontaneously form core-shell unimolecular micelles. The PAMAM(G5) dendrimer constitutes a hydrophobic core to load the doxorubicin (DOX), while the zwitterionic PCBMA serves as a protective shell to improve the stability of the unimolecular micelle. The DOX can be encapsulated into the cavity of PAMAM(G5) at the physiological pH 7.4. The drug loading efficiency and drug loading content showed some regularities with the increase in the drug concentration. At the acidic pH 5.0, the loaded DOX can be released gradually from the hydrophobic core. The comparison of DOX-loaded morphologies between the PAMAM(G5)-PCBMA system and PAMAM(G5)-PEGMA system showed that the former has better monodisperse stability. This work could offer theoretical guidance for the design and development of promising unimolecular micelles for drug delivery.
Collapse
Affiliation(s)
- Sijun Zeng
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xuebo Quan
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Huilin Zhu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Delin Sun
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Zhaohong Miao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Lizhi Zhang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
12
|
Bunker A, Róg T. Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery. Front Mol Biosci 2020; 7:604770. [PMID: 33330633 PMCID: PMC7732618 DOI: 10.3389/fmolb.2020.604770] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
In this review, we outline the growing role that molecular dynamics simulation is able to play as a design tool in drug delivery. We cover both the pharmaceutical and computational backgrounds, in a pedagogical fashion, as this review is designed to be equally accessible to pharmaceutical researchers interested in what this new computational tool is capable of and experts in molecular modeling who wish to pursue pharmaceutical applications as a context for their research. The field has become too broad for us to concisely describe all work that has been carried out; many comprehensive reviews on subtopics of this area are cited. We discuss the insight molecular dynamics modeling has provided in dissolution and solubility, however, the majority of the discussion is focused on nanomedicine: the development of nanoscale drug delivery vehicles. Here we focus on three areas where molecular dynamics modeling has had a particularly strong impact: (1) behavior in the bloodstream and protective polymer corona, (2) Drug loading and controlled release, and (3) Nanoparticle interaction with both model and biological membranes. We conclude with some thoughts on the role that molecular dynamics simulation can grow to play in the development of new drug delivery systems.
Collapse
Affiliation(s)
- Alex Bunker
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tomasz Róg
- Department of Physics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Liu F, Liu D, Zhou W, Wang S, Chen F, Wei J. Weakening or losing of surfactant drag reduction ability: A coarse-grained molecular dynamics study. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Jiang C, Wang G, Hein R, Liu N, Luo X, Davis JJ. Antifouling Strategies for Selective In Vitro and In Vivo Sensing. Chem Rev 2020; 120:3852-3889. [DOI: 10.1021/acs.chemrev.9b00739] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Cheng Jiang
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Guixiang Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- College of Chemistry and Chemical Engineering, Taishan University, Taian 271021, China
| | - Robert Hein
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Nianzu Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jason J. Davis
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
15
|
Lunnoo T, Assawakhajornsak J, Ruangchai S, Puangmali T. Role of Surface Functionalization on Cellular Uptake of AuNPs Characterized by Computational Microscopy. J Phys Chem B 2020; 124:1898-1908. [DOI: 10.1021/acs.jpcb.9b11600] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thodsaphon Lunnoo
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Sukhum Ruangchai
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
- Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Theerapong Puangmali
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
- Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
16
|
Khandelwal P, Singh DK, Poddar P. Advances in the Experimental and Theoretical Understandings of Antibiotic Conjugated Gold Nanoparticles for Antibacterial Applications. ChemistrySelect 2019. [DOI: 10.1002/slct.201900083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Puneet Khandelwal
- Physical & Materials Chemistry DivisionCSIR-National Chemical Laboratory Pune - 411008 India
| | - Dheeraj K. Singh
- Department of PhysicsInstitute of Infrastructure Technology Research & Management Ahmedabad - 380026 India
| | - Pankaj Poddar
- Physical & Materials Chemistry DivisionCSIR-National Chemical Laboratory Pune - 411008 India
| |
Collapse
|
17
|
Quan X, Sun D, Zhou J. Molecular mechanism of HIV-1 TAT peptide and its conjugated gold nanoparticles translocating across lipid membranes. Phys Chem Chem Phys 2019; 21:10300-10310. [PMID: 31070638 DOI: 10.1039/c9cp01543d] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The trans-acting activator of transcription (TAT) peptide, which is derived from human immunodeficiency virus-1 (HIV-1), has been widely used as an effective nanocarrier to transport extracellular substances into cells. However, the underlying translocation mechanism of TAT peptide across cell membranes still remains controversial. Besides, the molecular process of TAT peptide facilitating the transport of extracellular substances into cells is largely unknown. In this study, we explore the interactions of TAT peptides and their conjugated gold nanoparticles with lipid membranes by coarse-grained molecular dynamics simulations. It is found that the TAT peptides can hardly penetrate through the membrane at low peptide concentrations; after the concentration increases to a threshold value, they can cross the membrane through an induced nanopore due to the transmembrane electrostatic potential difference. The translocation of TAT peptides is mainly caused by the overall structural changes of membranes. Furthermore, we demonstrate that the translocation of gold nanoparticles (AuNPs) across the membrane is significantly affected by the number of grafted TAT peptides on the particle surface. The transmembrane efficiency of AuNPs may even be reduced when a small number of peptides modify them; whereas, when the number of grafted peptides increases to a certain value, the TAT-AuNP complex can translocate across the membrane in a pore-mediated way. Based on our findings, an effective strategy has been proposed to enhance the delivery efficiency of AuNPs. The present study can improve our understanding of the interactions between TAT peptides and cell membranes; it may also give some insightful suggestions on the design and development of nanocarriers with high efficiency for the delivery of nanoparticles and drugs.
Collapse
Affiliation(s)
- Xuebo Quan
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, P. R. China.
| | | | | |
Collapse
|
18
|
|
19
|
Hao L, Lin L, Zhou J. pH-Responsive Zwitterionic Copolymer DHA-PBLG-PCB for Targeted Drug Delivery: A Computer Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1944-1953. [PMID: 29692174 DOI: 10.1021/acs.langmuir.8b00626] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, the self-assembled behaviors of zwitterionic copolymer docosahexaenoic acid- b-poly(γ-benzyl-l-glutamate)- b-poly(carboxybetaine methacrylate) (DHA-PBLG-PCB) and the loading and release mechanism of the anticancer drug doxorubicin (DOX) was investigated via computer simulations. The effects of polymer concentration, drug content, and pH on polymeric micelles were explored by dissipative particle dynamics (DPD) simulations. Simulation results show that DHA-PBLG15-PCB10 can self-assemble into core-shell micelles; in addition, the drug-loaded micelles have a pH-responsive feature. DOX can be encapsulated into the core-shell micelle under normal physiological pH conditions, whereas it can be released under acidic pH conditions. The self-assembled behaviors of copolymer DHA-PBLG-PEG were also studied to have a comparison with those of DHA-PBLG-PCB. The DHA-PBLG15-PCB10 system has a stable structure and it has a great potential to serve as drug delivery vehicles for targeted drug delivery.
Collapse
Affiliation(s)
- Lingxia Hao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology , South China University of Technology , Guangzhou , Guangdong 510640 , People's Republic of China
| | - Lin Lin
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology , South China University of Technology , Guangzhou , Guangdong 510640 , People's Republic of China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology , South China University of Technology , Guangzhou , Guangdong 510640 , People's Republic of China
| |
Collapse
|
20
|
Van Lehn RC, Alexander-Katz A. Energy landscape for the insertion of amphiphilic nanoparticles into lipid membranes: A computational study. PLoS One 2019; 14:e0209492. [PMID: 30625163 PMCID: PMC6326551 DOI: 10.1371/journal.pone.0209492] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/30/2018] [Indexed: 11/19/2022] Open
Abstract
Amphiphilic, monolayer-protected gold nanoparticles (NPs) have been shown to enter cells via a non-endocytic, non-disruptive pathway that could be valuable for biomedical applications. The same NPs were also found to insert into a series of model cell membranes as a precursor to cellular uptake, but the insertion mechanism remains unclear. Previous simulations have demonstrated that an amphiphilic NP can insert into a single leaflet of a planar lipid bilayer, but in this configuration all charged end groups are localized to one side of the bilayer and it is unknown if further insertion is thermodynamically favorable. Here, we use atomistic molecular dynamics simulations to show that an amphiphilic NP can reach the bilayer midplane non-disruptively if charged ligands iteratively "flip" across the bilayer. Ligand flipping is a favorable process that relaxes bilayer curvature, decreases the nonpolar solvent-accessible surface area of the NP monolayer, and increases attractive ligand-lipid electrostatic interactions. Analysis of end group hydration further indicates that iterative ligand flipping can occur on experimentally relevant timescales. Supported by these results, we present a complete energy landscape for the non-disruptive insertion of amphiphilic NPs into lipid bilayers. These findings will help guide the design of NPs to enhance bilayer insertion and non-endocytic cellular uptake, and also provide physical insight into a possible pathway for the translocation of charged biomacromolecules.
Collapse
Affiliation(s)
- Reid C. Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| |
Collapse
|
21
|
Jeon S, Clavadetscher J, Lee DK, Chankeshwara SV, Bradley M, Cho WS. Surface Charge-Dependent Cellular Uptake of Polystyrene Nanoparticles. NANOMATERIALS 2018; 8:nano8121028. [PMID: 30544753 PMCID: PMC6316338 DOI: 10.3390/nano8121028] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/04/2018] [Accepted: 12/08/2018] [Indexed: 01/05/2023]
Abstract
The evaluation of the role of physicochemical properties in the toxicity of nanoparticles is important for the understanding of toxicity mechanisms and for controlling the behavior of nanoparticles. The surface charge of nanoparticles is suggested as one of the key parameters which decide their biological impact. In this study, we synthesized fluorophore-conjugated polystyrene nanoparticles (F-PLNPs), with seven different types of surface functional groups that were all based on an identical core, to evaluate the role of surface charge in the cellular uptake of nanoparticles. Phagocytic differentiated THP-1 cells or non-phagocytic A549 cells were incubated with F-PLNP for 4 h, and their cellular uptake was quantified by fluorescence intensity and confocal microscopy. The amount of internalized F-PLNPs showed a good positive correlation with the zeta potential of F-PLNPs in both cell lines (Pearson’s r = 0.7021 and 0.7852 for zeta potential vs. cellular uptake in THP-1 cells and nonphagocytic A549 cells, respectively). This result implies that surface charge is the major parameter determining cellular uptake efficiency, although other factors such as aggregation/agglomeration, protein corona formation, and compositional elements can also influence the cellular uptake partly or indirectly.
Collapse
Affiliation(s)
- Soyeon Jeon
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea.
| | - Jessica Clavadetscher
- EastChem, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK.
| | - Dong-Keun Lee
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea.
| | - Sunay V Chankeshwara
- EastChem, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK.
- Medicinal Chemistry, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, 431 50 Mölndal, Sweden.
| | - Mark Bradley
- EastChem, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK.
| | - Wan-Seob Cho
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea.
| |
Collapse
|
22
|
Progress in ligand design for monolayer-protected nanoparticles for nanobio interfaces. Biointerphases 2018; 13:06D502. [PMID: 30463411 DOI: 10.1116/1.5044381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ligand-functionalized inorganic nanoparticles, also known as monolayer-protected nanoparticles, offer great potential as vehicles for in vivo delivery of drugs, genes, and other therapeutics. These nanoparticles offer highly customizable chemistries independent of the size, shape, and functionality imparted by the inorganic core. Their success as drug delivery agents depends on their interaction with three major classes of biomolecules: nucleic acids, proteins, and membranes. Here, the authors discuss recent advances and open questions in the field of nanoparticle ligand design for nanomedicine, with a focus on atomic-scale interactions with biomolecules. While the importance of charge and hydrophobicity of ligands for biocompatibility and cell internalization has been demonstrated, ligand length, flexibility, branchedness, and other properties also influence the properties of nanoparticles. However, a comprehensive understanding of ligand design principles lies in the cost associated with synthesizing and characterizing diverse ligand chemistries and the ability to carefully assess the structural integrity of biomolecules upon interactions with nanoparticles.
Collapse
|
23
|
Shi X, Tian F. Multiscale Modeling and Simulation of Nano‐Carriers Delivery through Biological Barriers—A Review. ADVANCED THEORY AND SIMULATIONS 2018. [DOI: 10.1002/adts.201800105] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xinghua Shi
- CAS Key Laboratory for Nanosystem and Hierarchy FabricationCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyChinese Academy of Sciences Beijing 100190 China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of Sciences NO.19A Yuquan Road Beijing 100049 China
| | - Falin Tian
- CAS Key Laboratory for Nanosystem and Hierarchy FabricationCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyChinese Academy of Sciences Beijing 100190 China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of Sciences NO.19A Yuquan Road Beijing 100049 China
| |
Collapse
|