1
|
Bezrodnyi VV, Mikhtaniuk SE, Shavykin OV, Sheveleva NN, Markelov DA, Neelov IM. A Molecular Dynamics Simulation of Complexes of Fullerenes and Lysine-Based Peptide Dendrimers with and without Glycine Spacers. Int J Mol Sci 2024; 25:691. [PMID: 38255765 PMCID: PMC10815860 DOI: 10.3390/ijms25020691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The development of new nanocontainers for hydrophobic drugs is one of the most important tasks of drug delivery. Dendrimers with hydrophobic interiors and soluble terminal groups have already been used as drug carriers. However, the most convenient candidates for this purpose are peptide dendrimers since their interiors could be modified by hydrophobic amino acid residues with a greater affinity for the transported molecules. The goal of this work is to perform the first molecular dynamics study of the complex formation of fullerenes C60 and C70 with Lys-2Gly, Lys G2, and Lys G3 peptide dendrimers in water. We carried out such simulations for six different systems and demonstrated that both fullerenes penetrate all these dendrimers and form stable complexes with them. The density and hydrophobicity inside the complex are greater than in dendrimers without fullerene, especially for complexes with Lys-2Gly dendrimers. It makes the internal regions of complexes less accessible to water and counterions and increases electrostatic and zeta potential compared to single dendrimers. The results for complexes based on Lys G2 and Lys G3 dendrimers are similar but less pronounced. Thus, all considered peptide dendrimers and especially the Lys-2Gly dendrimer could be used as nanocontainers for the delivery of fullerenes.
Collapse
Affiliation(s)
- Valeriy V. Bezrodnyi
- Department of Physics, St. Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (V.V.B.); (O.V.S.); (N.N.S.); (D.A.M.)
| | - Sofia E. Mikhtaniuk
- Center of Chemical Engineering (CCE), St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia;
| | - Oleg V. Shavykin
- Department of Physics, St. Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (V.V.B.); (O.V.S.); (N.N.S.); (D.A.M.)
- Center of Chemical Engineering (CCE), St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia;
- Department of Mathematics, Tver State University, Sadoviy Per., 35, 170102 Tver, Russia
| | - Nadezhda N. Sheveleva
- Department of Physics, St. Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (V.V.B.); (O.V.S.); (N.N.S.); (D.A.M.)
| | - Denis A. Markelov
- Department of Physics, St. Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (V.V.B.); (O.V.S.); (N.N.S.); (D.A.M.)
| | - Igor M. Neelov
- Department of Physics, St. Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (V.V.B.); (O.V.S.); (N.N.S.); (D.A.M.)
- Center of Chemical Engineering (CCE), St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia;
- Institute of Macromolecular Compounds RAS, Bolshoi Prospect 31, 199004 St. Petersburg, Russia
| |
Collapse
|
2
|
Lamch Ł, Szczęsna W, Balicki SJ, Bartman M, Szyk-Warszyńska L, Warszyński P, Wilk KA. Multiheaded Cationic Surfactants with Dedicated Functionalities: Design, Synthetic Strategies, Self-Assembly and Performance. Molecules 2023; 28:5806. [PMID: 37570776 PMCID: PMC10421305 DOI: 10.3390/molecules28155806] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Contemporary research concerning surfactant science and technology comprises a variety of requirements relating to the design of surfactant structures with widely varying architectures to achieve physicochemical properties and dedicated functionality. Such approaches are necessary to make them applicable to modern technologies, such as nanostructure engineering, surface structurization or fine chemicals, e.g., magnetic surfactants, biocidal agents, capping and stabilizing reagents or reactive agents at interfaces. Even slight modifications of a surfactant's molecular structure with respect to the conventional single-head-single-tail design allow for various custom-designed products. Among them, multicharge structures are the most intriguing. Their preparation requires specific synthetic routes that enable both main amphiphilic compound synthesis using appropriate step-by-step reaction strategies or coupling approaches as well as further derivatization toward specific features such as magnetic properties. Some of the most challenging aspects of multicharge cationic surfactants relate to their use at different interfaces for stable nanostructures formation, applying capping effects or complexation with polyelectrolytes. Multiheaded cationic surfactants exhibit strong antimicrobial and antiviral activity, allowing them to be implemented in various biomedical fields, especially biofilm prevention and eradication. Therefore, recent advances in synthetic strategies for multiheaded cationic surfactants, their self-aggregation and performance are scrutinized in this up-to-date review, emphasizing their applications in different fields such as building blocks in nanostructure engineering and their use as fine chemicals.
Collapse
Affiliation(s)
- Łukasz Lamch
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Weronika Szczęsna
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Sebastian J. Balicki
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Marcin Bartman
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Liliana Szyk-Warszyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (L.S.-W.); (P.W.)
| | - Piotr Warszyński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (L.S.-W.); (P.W.)
| | - Kazimiera A. Wilk
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| |
Collapse
|
3
|
Fatullaev EI, Shavykin OV, Neelov IM. Molecular Dynamics of Lysine Dendrigrafts in Methanol-Water Mixtures. Int J Mol Sci 2023; 24:ijms24043063. [PMID: 36834474 PMCID: PMC9963150 DOI: 10.3390/ijms24043063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
The molecular dynamics method was used to study the structure and properties of dendrigrafts of the first and second generations in methanol-water mixtures with various volume fractions of methanol. At a small volume fraction of methanol, the size and other properties of both dendrigrafts are very similar to those in pure water. A decrease in the dielectric constant of the mixed solvent with an increase in the methanol fraction leads to the penetration of counterions into the dendrigrafts and a reduction of the effective charge. This leads to a gradual collapse of dendrigrafts: a decrease in their size, and an increase in the internal density and the number of intramolecular hydrogen bonds inside them. At the same time, the number of solvent molecules inside the dendrigraft and the number of hydrogen bonds between the dendrigraft and the solvent decrease. At small fractions of methanol in the mixture, the dominant secondary structure in both dendrigrafts is an elongated polyproline II (PPII) helix. At intermediate volume fractions of methanol, the proportion of the PPII helix decreases, while the proportion of another elongated β-sheet secondary structure gradually increases. However, at a high fraction of methanol, the proportion of compact α-helix conformations begins to increase, while the proportion of both elongated conformations decreases.
Collapse
Affiliation(s)
- Emil I. Fatullaev
- School of Computer Technologies and Control, St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia
| | - Oleg V. Shavykin
- School of Computer Technologies and Control, St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia
- Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow, Russia
- Department of Mathematics, Tver State University, Sadoviy per. 35, 170102 Tver, Russia
| | - Igor M. Neelov
- School of Computer Technologies and Control, St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
4
|
Brito ME, Mikhtaniuk SE, Neelov IM, Borisov OV, Holm C. Implicit-Solvent Coarse-Grained Simulations of Linear-Dendritic Block Copolymer Micelles. Int J Mol Sci 2023; 24:2763. [PMID: 36769091 PMCID: PMC9917066 DOI: 10.3390/ijms24032763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The design of nanoassemblies can be conveniently achieved by tuning the strength of the hydrophobic interactions of block copolymers in selective solvents. These block copolymer micelles form supramolecular aggregates, which have attracted great attention in the area of drug delivery and imaging in biomedicine due to their easy-to-tune properties and straightforward large-scale production. In the present work, we have investigated the micellization process of linear-dendritic block copolymers in order to elucidate the effect of branching on the micellar properties. We focus on block copolymers formed by linear hydrophobic blocks attached to either dendritic neutral or charged hydrophilic blocks. We have implemented a simple protocol for determining the equilibrium micellar size, which permits the study of linear-dendritic block copolymers in a wide range of block morphologies in an efficient and parallelizable manner. We have explored the impact of different topological and charge properties of the hydrophilic blocks on the equilibrium micellar properties and compared them to predictions from self-consistent field theory and scaling theory. We have found that, at higher degrees of branching in the corona and for short polymer chains, excluded volume interactions strongly influence the micellar aggregation as well as their effective charge.
Collapse
Affiliation(s)
- Mariano E. Brito
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Sofia E. Mikhtaniuk
- School of Computer Technologies and Control, St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101 St. Petersburg, Russia
| | - Igor M. Neelov
- School of Computer Technologies and Control, St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101 St. Petersburg, Russia
| | - Oleg V. Borisov
- School of Computer Technologies and Control, St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101 St. Petersburg, Russia
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, UMR 5254 CNRS UPPA, 64053 Pau, France
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
| |
Collapse
|
5
|
Hybrid Molecules Consisting of Lysine Dendrons with Several Hydrophobic Tails: A SCF Study of Self-Assembling. Int J Mol Sci 2023; 24:ijms24032078. [PMID: 36768408 PMCID: PMC9916814 DOI: 10.3390/ijms24032078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
In this article, we used the numerical self-consistent field method of Scheutjens-Fleer to study the micellization of hybrid molecules consisting of one polylysine dendron with charged end groups and several linear hydrophobic tails attached to its root. The main attention was paid to spherical micelles and the determination of the range of parameters at which they can appear. A relationship has been established between the size and internal structure of the resulting spherical micelles and the length and number of hydrophobic tails, as well as the number of dendron generations. It is shown that the splitting of the same number of hydrophobic monomers from one long tail into several short tails leads to a decrease in the aggregation number and, accordingly, the number of terminal charges in micelles. At the same time, it was shown that the surface area per dendron does not depend on the number of hydrophobic monomers or tails in the hybrid molecule. The relationship between the structure of hybrid molecules and the electrostatic properties of the resulting micelles has also been studied. It is found that the charge distribution in the corona depends on the number of dendron generations G in the hybrid molecule. For a small number of generations (up to G=3), a standard double electric layer is observed. For a larger number of generations (G=4), the charges of dendrons in the corona are divided into two populations: in the first population, the charges are in the spherical layer near the boundary between the micelle core and shell, and in the second population, the charges are near the periphery of the spherical shell. As a result, a part of the counterions is localized in the wide region between them. These results are of potential interest for the use of spherical dendromicelles as nanocontainers for drug delivery.
Collapse
|
6
|
Sheveleva NN, Tarasenko II, Vovk MA, Mikhailova ME, Neelov IM, Markelov DA. NMR Studies of Two Lysine Based Dendrimers with Insertion of Similar Histidine-Arginine and Arginine-Histidine Spacers Having Different Properties for Application in Drug Delivery. Int J Mol Sci 2023; 24:ijms24020949. [PMID: 36674466 PMCID: PMC9866564 DOI: 10.3390/ijms24020949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
In this paper we study two lysine-based peptide dendrimers with Lys-His-Arg and Lys-Arg-His repeating units and terminal lysine groups. Combination of His and Arg properties in a dendrimer could be important for biomedical applications, especially for prevention of dendrimer aggregation and for penetration of dendrimers through various cell membranes. We describe the synthesis of these dendrimers and the confirmation of their structure using 1D and 2D Nuclear Magnetic Resonance (NMR) spectroscopy. NMR spectroscopy and relaxation are used to study the structural and dynamic properties of these macromolecules and to compare them with properties of previously studied dendrimers with Lys-2Arg and Lys-2His repeating units. Our results demonstrate that both Lys-His-Arg and Lys-Arg-His dendrimers have pH sensitive conformation and dynamics. However, properties of Lys-His-Arg at normal pH are more similar to those of the more hydrophobic Lys-2His dendrimer, which has tendency towards aggregation, while the Lys-Arg-His dendrimer is more hydrophilic. Thus, the conformation with the same amino acid composition of Lys-His-Arg is more pH sensitive than Lys-Arg-His, while the presence of Arg groups undoubtedly increases its hydrophilicity compared to Lys-2His. Hence, the Lys-His-Arg dendrimer could be a more suitable (in comparison with Lys-2His and Lys-Arg-His) candidate as a pH sensitive nanocontainer for drug delivery.
Collapse
Affiliation(s)
- Nadezhda N. Sheveleva
- Saint Petersburg State University, 7/9 Universitetskaya Nab, 199034 Saint Petersburg, Russia
| | - Irina I. Tarasenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect 31, V.O., 199004 Saint Petersburg, Russia
| | - Mikhail A. Vovk
- Saint Petersburg State University, 7/9 Universitetskaya Nab, 199034 Saint Petersburg, Russia
| | - Mariya E. Mikhailova
- Saint Petersburg State University, 7/9 Universitetskaya Nab, 199034 Saint Petersburg, Russia
| | - Igor M. Neelov
- School of Computer Technologies and Control, Saint Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy Pr. 49, 197101 Saint Petersburg, Russia
| | - Denis A. Markelov
- Saint Petersburg State University, 7/9 Universitetskaya Nab, 199034 Saint Petersburg, Russia
- Correspondence:
| |
Collapse
|
7
|
Correlation among copolyether spacers, molecular geometry and interfacial properties of extended surfactants. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Bezrodnyi VV, Mikhtaniuk SE, Shavykin OV, Neelov IM, Sheveleva NN, Markelov DA. Size and Structure of Empty and Filled Nanocontainer Based on Peptide Dendrimer with Histidine Spacers at Different pH. Molecules 2021; 26:6552. [PMID: 34770963 PMCID: PMC8588109 DOI: 10.3390/molecules26216552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
Novel peptide dendrimer with Lys-2His repeating units was recently synthesized, studied by NMR (Molecules, 2019, 24, 2481) and tested as a nanocontainer for siRNA delivery (Int. J. Mol. Sci., 2020, 21, 3138). Histidine amino acid residues were inserted in the spacers of this dendrimer. Increase of their charge with a pH decrease turns a surface-charged dendrimer into a volume-charged one and should change all properties. In this paper, the molecular dynamics simulation method was applied to compare the properties of the dendrimer in water with explicit counterions at two different pHs (at normal pH with neutral histidines and at low pH with fully protonated histidines) in a wide interval of temperatures. We obtained that the dendrimer at low pH has essentially larger size and size fluctuations. The electrostatic properties of the dendrimers are different but they are in good agreement with the theoretical soft sphere model and practically do not depend on temperature. We have shown that the effect of pairing of side imidazole groups is much stronger in the dendrimer with neutral histidines than in the dendrimer with protonated histidines. We also demonstrated that the capacity of a nanocontainer based on this dendrimer with protonated histidines is significantly larger than that of a nanocontainer with neutral histidines.
Collapse
Affiliation(s)
- Valeriy V. Bezrodnyi
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (V.V.B.); (N.N.S.); (D.A.M.)
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia;
| | - Sofia E. Mikhtaniuk
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia;
| | - Oleg V. Shavykin
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (V.V.B.); (N.N.S.); (D.A.M.)
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia;
- Tver State University, Zhelyabova St., 33, 170100 Tver, Russia
| | - Igor M. Neelov
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia;
| | - Nadezhda N. Sheveleva
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (V.V.B.); (N.N.S.); (D.A.M.)
| | - Denis A. Markelov
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (V.V.B.); (N.N.S.); (D.A.M.)
| |
Collapse
|
9
|
Ren L, Tang Z, Qiang T, Zhang G. Hyperbranched polymer surfactant: synthesis, characterization and surface tension activity. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2021. [DOI: 10.1186/s42825-020-00049-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
A series of hyperbranched polymer surfactants (HBP-C8, HBP-C12 and HBP-C16) were synthesized by the reaction between hydroxyl-terminated hyperbranched polymers (HBP) and fatty acyl chloride. The structure of obtained hyperbranched polymer surfactant was characterized by FTIR, NMR and GPC. The results showed that the products have amphiphilic structure. The thermal property of the hyperbranched polymer surfactant investigated by DSC and TGA was strongly influenced by the length of end alkyl chain. Surface activity of hyperbranched polymer surfactant was analyzed by surface tension method and UV spectrophotometry, respectively. The results showed that hyperbranched polymer surfactant took on better surface activity, which can effectively reduce the surface tension of the water. The hyperbranched polymer surfactant has a lower critical micelle concentration (CMC) and displays single molecular micellar properties, which can package small hydrophilic molecules in relatively low concentration.
Graphical abstract
Collapse
|
10
|
Bezrodnyi VV, Shavykin OV, Mikhtaniuk SE, Neelov IM, Sheveleva NN, Markelov DA. Why the Orientational Mobility in Arginine and Lysine Spacers of Peptide Dendrimers Designed for Gene Delivery Is Different? Int J Mol Sci 2020; 21:E9749. [PMID: 33371242 PMCID: PMC7766995 DOI: 10.3390/ijms21249749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
New peptide dendrimer with Lys-2Arg repeating units was recently studied experimentally by NMR (RSC Advances, 2019, 9, 18018) and tested as gene carrier successfully (Int. J. Mol. Sci., 2020, 21, 3138). The unusual slowing down of the orientational mobility of 2Arg spacers in this dendrimer was revealed. It has been suggested that this unexpected behavior is caused by the Arg-Arg pairing effect in water, which leads to entanglements between dendrimer branches. In this paper, we determine the reason for this slowing down using atomistic molecular dynamics simulation of this dendrimer. We present that the structural properties of Lys-2Arg dendrimer are close to those of the Lys-2Lys dendrimer at all temperatures (Polymers, 2020, 12, 1657). However, the orientational mobility of the H-H vector in CH2-N groups of 2Arg spacers in Lys-2Arg dendrimer is significantly slower than the mobility of the same vector in the Lys-2Lys dendrimer. This result is in agreement with the recent NMR experiments for the same systems. We revealed that this difference is not due to the arginine-arginine pairing, but is due to the semiflexibility effect associated with the different contour length from CH2-N group to the end of the side arginine or lysine segment in spacers.
Collapse
Affiliation(s)
- Valeriy V. Bezrodnyi
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (V.V.B.); (N.N.S.)
- Faculty of Applied Optics and Bioengineering Institute, St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia; (S.E.M.); (I.M.N.)
| | - Oleg V. Shavykin
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (V.V.B.); (N.N.S.)
- Faculty of Applied Optics and Bioengineering Institute, St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia; (S.E.M.); (I.M.N.)
| | - Sofia E. Mikhtaniuk
- Faculty of Applied Optics and Bioengineering Institute, St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia; (S.E.M.); (I.M.N.)
| | - Igor M. Neelov
- Faculty of Applied Optics and Bioengineering Institute, St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia; (S.E.M.); (I.M.N.)
| | - Nadezhda N. Sheveleva
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (V.V.B.); (N.N.S.)
| | - Denis A. Markelov
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (V.V.B.); (N.N.S.)
| |
Collapse
|
11
|
Lou Y, Dong Y, Wang X, Gong F, Zhao M, Rong Z. Synthesis, Micellization, and Surface Activity of Novel Linear‐Dendritic Carboxylate Surfactants. J SURFACTANTS DETERG 2020. [DOI: 10.1002/jsde.12455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yuning Lou
- School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Yajuan Dong
- School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Xiaoyong Wang
- School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Feirong Gong
- School of Materials Science & Engineering East China University of Science and Technology Shanghai 200237 China
| | - Min Zhao
- School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Zongming Rong
- School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
12
|
Shavykin OV, Neelov IM, Borisov OV, Darinskii AA, Leermakers FAM. SCF Theory of Uniformly Charged Dendrimers: Impact of Asymmetry of Branching, Generation Number, and Salt Concentration. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- O. V. Shavykin
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, St. Petersburg 197101, Russia
| | - I. M. Neelov
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, St. Petersburg 197101, Russia
| | - O. V. Borisov
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, St. Petersburg 197101, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect 31, V.O., St. Petersburg 199004, Russia
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux/UMR 5254, Pau 64053, France
| | - A. A. Darinskii
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, St. Petersburg 197101, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect 31, V.O., St. Petersburg 199004, Russia
| | - F. A. M. Leermakers
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen 6703 HB, The Netherlands
| |
Collapse
|
13
|
Chen J, Hu XY, Fang Y, Xia YM. Cooperative effects of polypropylene oxide spacers and alkyl chains on dynamic amphipathicity of extended surfactants. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Mikhtaniuk SE, Bezrodnyi VV, Shavykin OV, Neelov IM, Sheveleva NN, Penkova AV, Markelov DA. Comparison of Structure and Local Dynamics of Two Peptide Dendrimers with the Same Backbone but with Different Side Groups in Their Spacers. Polymers (Basel) 2020; 12:E1657. [PMID: 32722466 PMCID: PMC7464546 DOI: 10.3390/polym12081657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 01/13/2023] Open
Abstract
In this paper, we perform computer simulation of two lysine-based dendrimers with Lys-2Lys and Lys-2Gly repeating units. These dendrimers were recently studied experimentally by NMR (Sci. Reports, 2018, 8, 8916) and tested as carriers for gene delivery (Bioorg. Chem., 2020, 95, 103504). Simulation was performed by molecular dynamics method in a wide range of temperatures. We have shown that the Lys-2Lys dendrimer has a larger size but smaller fluctuations as well as lower internal density in comparison with the Lys-2Gly dendrimer. The Lys-2Lys dendrimer has larger charge but counterions form more ion pairs with its NH 3 + groups and reduce the bare charge and zeta potential of the first dendrimer more strongly. It was demonstrated that these differences between dendrimers are due to the lower flexibility and the larger charge (+2) of each 2Lys spacers in comparison with 2Gly ones. The terminal CH 2 groups in both dendrimers move faster than the inner CH 2 groups. The calculated temperature dependencies of the spin-lattice relaxation times of these groups for both dendrimers are in a good agreement with the experimental results obtained by NMR.
Collapse
Affiliation(s)
- Sofia E. Mikhtaniuk
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia; (S.E.M.); (V.V.B.); (O.V.S.); (I.M.N.)
| | - Valeriy V. Bezrodnyi
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia; (S.E.M.); (V.V.B.); (O.V.S.); (I.M.N.)
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (N.N.S.); (A.V.P.)
| | - Oleg V. Shavykin
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia; (S.E.M.); (V.V.B.); (O.V.S.); (I.M.N.)
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (N.N.S.); (A.V.P.)
| | - Igor M. Neelov
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia; (S.E.M.); (V.V.B.); (O.V.S.); (I.M.N.)
| | - Nadezhda N. Sheveleva
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (N.N.S.); (A.V.P.)
| | - Anastasia V. Penkova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (N.N.S.); (A.V.P.)
| | - Denis A. Markelov
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (N.N.S.); (A.V.P.)
| |
Collapse
|
15
|
Gorzkiewicz M, Kopeć O, Janaszewska A, Konopka M, Pędziwiatr-Werbicka E, Tarasenko II, Bezrodnyi VV, Neelov IM, Klajnert-Maculewicz B. Poly(lysine) Dendrimers Form Complexes with siRNA and Provide Its Efficient Uptake by Myeloid Cells: Model Studies for Therapeutic Nucleic Acid Delivery. Int J Mol Sci 2020; 21:E3138. [PMID: 32365579 PMCID: PMC7246632 DOI: 10.3390/ijms21093138] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/19/2020] [Accepted: 04/27/2020] [Indexed: 12/28/2022] Open
Abstract
The disruption of the cellular pathways of protein biosynthesis through the mechanism of RNA interference has been recognized as a tool of great diagnostic and therapeutic significance. However, in order to fully exploit the potential of this phenomenon, efficient and safe carriers capable of overcoming extra- and intracellular barriers and delivering siRNA to the target cells are needed. Recently, attention has focused on the possibility of the application of multifunctional nanoparticles, dendrimers, as potential delivery devices for siRNA. The aim of the present work was to evaluate the formation of dendriplexes using novel poly(lysine) dendrimers (containing lysine and arginine or histidine residues in their structure), and to verify the hypothesis that the use of these polymers may allow an efficient method of siRNA transfer into the cells in vitro to be obtained. The fluorescence polarization studies, as well as zeta potential and hydrodynamic diameter measurements were used to characterize the dendrimer:siRNA complexes. The cytotoxicity of dendrimers and dendriplexes was evaluated with the resazurin-based assay. Using the flow cytometry technique, the efficiency of siRNA transport to the myeloid cells was determined. This approach allowed us to determine the properties and optimal molar ratios of dendrimer:siRNA complexes, as well as to demonstrate that poly(lysine) dendrimers may serve as efficient carriers of genetic material, being much more effective than the commercially available transfection agent Lipofectamine 2000. This outcome provides the basis for further research on the application of poly(lysine) dendrimers as carriers for nucleic acids in the field of gene therapy.
Collapse
Affiliation(s)
- Michał Gorzkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; (M.G.); (O.K.); (A.J.); (M.K.); (E.P.-W.)
| | - Olga Kopeć
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; (M.G.); (O.K.); (A.J.); (M.K.); (E.P.-W.)
| | - Anna Janaszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; (M.G.); (O.K.); (A.J.); (M.K.); (E.P.-W.)
| | - Małgorzata Konopka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; (M.G.); (O.K.); (A.J.); (M.K.); (E.P.-W.)
| | - Elżbieta Pędziwiatr-Werbicka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; (M.G.); (O.K.); (A.J.); (M.K.); (E.P.-W.)
| | - Irina I. Tarasenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect 31, V.O., 199004 St. Petersburg, Russia;
| | - Valeriy V. Bezrodnyi
- Department of Physics, St. Petersburg State University (SPbSU), 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia;
- Institute of Bioengineering, St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia;
| | - Igor M. Neelov
- Institute of Bioengineering, St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia;
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; (M.G.); (O.K.); (A.J.); (M.K.); (E.P.-W.)
- Leibniz-Institut für Polymerforschung Dresden e.V., 6 Hohe St., 01069 Dresden, Germany
| |
Collapse
|
16
|
Gorzkiewicz M, Konopka M, Janaszewska A, Tarasenko II, Sheveleva NN, Gajek A, Neelov IM, Klajnert-Maculewicz B. Application of new lysine-based peptide dendrimers D3K2 and D3G2 for gene delivery: Specific cytotoxicity to cancer cells and transfection in vitro. Bioorg Chem 2019; 95:103504. [PMID: 31864904 DOI: 10.1016/j.bioorg.2019.103504] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/12/2019] [Accepted: 12/09/2019] [Indexed: 12/31/2022]
Abstract
In order to enhance intracellular uptake and accumulation of therapeutic nucleic acids for improved gene therapy methods, numerous delivery vectors have been elaborated. Based on their origin, gene carriers are generally classified as viral or non-viral vectors. Due to their significantly reduced immunogenicity and highly optimized methods of synthesis, nanoparticles (especially those imitating natural biomolecules) constitute a promising alternative for virus-based delivery devices. Thus, we set out to develop innovative peptide dendrimers for clinical application as transfection agents and gene carriers. In the present work we describe the synthesis of two novel lysine-based dendritic macromolecules (D3K2 and D3G2) and their initial characterization for cytotoxicity/genotoxicity and transfection potential in two human cell line models: cervix adenocarcinoma (HeLa) and microvascular endothelial (HMEC-1). This approach allowed us to identify more cationic D3K2 as potent delivery agent, being able to increase intracellular accumulation of large nucleic acid molecules such as plasmids. Moreover, the dendrimers exhibited specific cytotoxicity towards cancer cell line without showing significant toxic effects on normal cells. These observations are promising prognosis for future clinical application of this type of nanoparticles.
Collapse
Affiliation(s)
- Michal Gorzkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Malgorzata Konopka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Anna Janaszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Irina I Tarasenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect 31, V.O., St. Petersburg 199004, Russia
| | - Nadezhda N Sheveleva
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia; Laboratory of Physics, Lappeenranta University of Technology, Box 20, 53851 Lappeenranta, Finland
| | - Arkadiusz Gajek
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Igor M Neelov
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, St. Petersburg 197101, Russia
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; Leibniz-Institut für Polymerforschung Dresden e.V., 6 Hohe St., 01069 Dresden, Germany.
| |
Collapse
|
17
|
What dominates the interfacial properties of extended surfactants: Amphipathicity or surfactant shape? J Colloid Interface Sci 2019; 547:190-198. [PMID: 30954763 DOI: 10.1016/j.jcis.2019.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 11/23/2022]
Abstract
HYPOTHESIS The properties of conventional surfactants (c-surfactants) are generally accepted to be amphipathicity-dominated, but extended surfactants (e-surfactants) are additionally polypropylene oxide (PPO)-dependent; this additional property makes us wonder how an intramolecular PPO spacer would be "extended" at various interfaces and what is responsible for the excellent all-round properties of e-surfactants. EXPERIMENTS A series of novel sodium medium alkyl chain PPO-b-PEO sulfates (2-ethylhexyl polypropylene oxide-block-polyethylene oxide sulfates, C8PpEeS) were designed, synthesized and structurally identified. Tensiometry was applied to estimate the surfactant shape at the air/water surface. Surface tension, interfacial tension, emulsifying power, electrolyte tolerance, adsorption onto oil sands and thermal hydrolysis stability were measured to evaluate the effect of the PPO coil on the interfacial and micellar properties of the e-surfactants. FINDINGS On the basis of obtaining greater values for e-surfactants than c-surfactants for both surface area (am) per surfactant molecule and the corresponding shape factor (S), we were surprised to find that e-surfactants form a rugby ball shape not only at the air/water surface but also at the oil/water interface; this result is potentially explained by the PPO spacer coiling and collapsing to produce dense packing at the monolayer adsorption, which is rationally borrowed by other interfaces. Many positive or negative correlations were observed between the interfacial/micellar properties of C8PpEeS and am values, which seems that the surfactant shape dominants the properties of the e-surfactants. In fact, the properties of C8PpEeS are dominated by the dynamic amphipathicity and assisted by the rugby ball shape of the molecules because of both being driven by the dynamic biphasic affinity of the PPO coil in response to the external environment; these findings provide soft interfacial materials specially adapted for surfactant flooding.
Collapse
|
18
|
Chen J, Hu XY, Fang Y, Liu HH, Xia YM. Comparative Study of Conventional/Ethoxylated/Extended n-Alkylsulfate Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3116-3125. [PMID: 30758969 DOI: 10.1021/acs.langmuir.8b04022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A series of novel anionic e-surfactants n-C cP pS was molecular designed and synthesized from long-chain fatty alcohols by polypropoxylation and sulfation followed by neutralization. Excellent all-round performance of extended surfactants (e-surfactants) interests us how a simple polypropylene oxide (PPO) spacer has great effects on properties. By a comparative study of conventional/ethoxylated/extended n-alkylsulfate surfactants, we were surprised to find that e-surfactants are in an obvious rugby shape at the air/water surface according to molecular surface area ( am), and it comes down to the intramolecular PPO spacer coiling and surface-induced collapse. On the basis of the interfacial properties of the e-surfactants, it is found that the PPO spacer can provide both hydrophilic and lipophilic contributions to an e-surfactant molecule. The synergism between PPO spacers and alkyl chains indicates that a certain PPO spacer can adjust the contributions in view of different alkyl chain lengths. Therefore, it is both the rugby-shaped molecular geometry of e-surfactants and the dynamic amphipathicity of a PPO spacer that makes e-surfactants behave with excellent interfacial and solution properties for household cleaning. Therefore, this work gives us a hint that the molecular geometry of surfactants plays a vital role in interfacial and solution properties similar to molecular amphipathicity.
Collapse
Affiliation(s)
- Ji Chen
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education); School of Chemical and Material Engineering , Jiangnan University , Wuxi , Jiangsu 214122 , P. R. China
| | - Xue-Yi Hu
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education); School of Chemical and Material Engineering , Jiangnan University , Wuxi , Jiangsu 214122 , P. R. China
| | - Yun Fang
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education); School of Chemical and Material Engineering , Jiangnan University , Wuxi , Jiangsu 214122 , P. R. China
| | - Huan-Huan Liu
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education); School of Chemical and Material Engineering , Jiangnan University , Wuxi , Jiangsu 214122 , P. R. China
| | - Yong-Mei Xia
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education); School of Chemical and Material Engineering , Jiangnan University , Wuxi , Jiangsu 214122 , P. R. China
| |
Collapse
|