1
|
Pillai AM, Nair N, Das MK, Ram SK. Influence of the configuration of metal sensing layers on the performance of a bimetallic (Ag-Cu) surface plasmon resonance biosensor. NANOTECHNOLOGY 2024; 35:335502. [PMID: 38776892 DOI: 10.1088/1361-6528/ad4ee8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Bimetallic surface plasmon resonance (SPR) sensors have the potential to overcome the drawbacks of individual metals, but the effect of the configuration of the two metallic layers on the performance of the sensors has not been explored. This study examines the influence of different positions of a thin layer of silver in relation to a copper layer on the sensitivity of such a bimetallic SPR sensor. The design of this configuration aims to improve the SPR reflectance curve and strengthen the evanescent electric field to improve the sensor efficiency. Our findings indicate that, by optimizing the architectures of SPR sensors and using a silver-copper bimetallic structure, we can achieve superior performance compared to devices that utilize only silver or copper. The optimized Ag (5 nm)/Cu (55 nm) sensor design, with the best sensitivity of 299.09° RIU-1, can detect a change of 0.43°/(g dl-1) for hemoglobin in blood, 0.35°/(g dl-1) for glucose in urine, and 0.1°/(%) for methanol in ethanol. We also demonstrate the importance of signal quality by introducing two new parameters that offer a better quantitative indication of the efficiency of a sensor than is obtained by using only sensitivity.
Collapse
Affiliation(s)
- Anjitha M Pillai
- Department of Physics, Amrita Vishwa Vidyapeetham, Amritapuri 690525, Kerala India
| | - Niveditha Nair
- Department of Physics, Amrita Vishwa Vidyapeetham, Amritapuri 690525, Kerala India
| | - Mukul K Das
- Department of Electronics Engineering, Centre of Excellence in Renewable Energy, IIT (ISM), Dhanbad, Jharkhand 826004, India
| | - Sanjay K Ram
- Department of Physics, Amrita Vishwa Vidyapeetham, Amritapuri 690525, Kerala India
| |
Collapse
|
2
|
Rumi RB, Paul AK, Alyami SA, Moni MA. Multi-Disease Detection Using a Prism-Based Surface Plasmon Resonance Sensor: A TMM and FEM Approach. IEEE Trans Nanobioscience 2024; 23:51-62. [PMID: 37314903 DOI: 10.1109/tnb.2023.3286269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This research introduces a surface plasmon resonance (SPR)-based biosensor with multilayered structures for telecommunication wavelength in order to detect multiple diseases. The malaria and the chikungunya viruses are taken into account and the presence of these viruses are determined by examining several blood components in healthy and affected phases. Here, two distinct configurations (Al-BTO-Al-MoS2 and Cu-BTO-Cu-MoS2) are proposed and contrasted for the detection of numerous viruses. The performance characteristics of this work have been analyzed using Transfer Matrix Method (TMM) method and Finite Element Method (FEM) method under angle interrogation technique. From the TMM and FEM solutions, it is evident that the Al-BTO-Al-MoS2 structure provides the highest sensitivities of ~270 deg./RIU for malaria and ~262 deg./RIU for chikungunya viruses, with satisfactory detection accuracy of ~1.10 for malaria, ~1.64 for chikungunya, and quality factor of ~204.40 for malaria, ~208.20 for chikungunya. In addition, the Cu-BTO-Cu MoS2 structure offers the highest sensitivities of ~310 deg./RIU for malaria and ~298 deg./RIU for chikungunya, with satisfactory detection accuracy of ~0.40 for malaria, ~0.58 for chikungunya, and quality factor of ~89.85 for malaria, ~86.38 for chikungunya viruses. Therefore, the performance of the proposed sensors is analyzed using two distinct methods and gives around similar results. In a sum, this research could be utilized as a theoretical foundation and first step in the development of a real sensor.
Collapse
|
3
|
Safari M, Moghaddam A, Salehi Moghaddam A, Absalan M, Kruppke B, Ruckdäschel H, Khonakdar HA. Carbon-based biosensors from graphene family to carbon dots: A viewpoint in cancer detection. Talanta 2023; 258:124399. [PMID: 36870153 DOI: 10.1016/j.talanta.2023.124399] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/18/2023] [Accepted: 02/26/2023] [Indexed: 03/02/2023]
Abstract
According to the latest report by International Agency for Research on Cancer, 19.3 million new cancer cases and 10 million cancer deaths were globally reported in 2020. Early diagnosis can reduce these numbers significantly, and biosensors have appeared to be a solution to this problem as, unlike the traditional methods, they have low cost, rapid process, and do not need experts present on site for use. These devices have been incorporated to detect many cancer biomarkers and measure cancer drug delivery. To design these biosensors, a researcher must know about their different types, properties of nanomaterials, and cancer biomarkers. Among all types of biosensors, electrochemical and optical biosensors are the most sensitive and promising sensors for detecting complicated diseases like cancer. The carbon-based nanomaterial family has attracted lots of attention due to their low cost, easy preparation, biocompatibility, and significant electrochemical and optical properties. In this review, we have discussed the application of graphene and its derivatives, carbon nanotubes (CNTs), carbon dots (CDs), and fullerene (C60), for designing different electrochemical and optical cancer-detecting biosensors. Furthermore, the application of these carbon-based biosensors for detecting seven widely studied cancer biomarkers (HER2, CEA, CA125, VEGF, PSA, Alpha-fetoprotein, and miRNA21) is reviewed. Finally, various fabricated carbon-based biosensors for detecting cancer biomarkers and anticancer drugs are comprehensively summarized as well.
Collapse
Affiliation(s)
- Mohammad Safari
- Department of Polymer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Moloud Absalan
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran
| | - Benjamin Kruppke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069, Dresden, Germany
| | - Holger Ruckdäschel
- Department of Polymer Engineering, University of Bayreuth, Bayreuth, Germany
| | - Hossein Ali Khonakdar
- Iran Polymer and Petrochemical Institute, Tehran, Iran; Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069, Dresden, Germany.
| |
Collapse
|
4
|
Kim M, Kim J, Ju S, Kim H, Jung I, Jung JH, Lee GS, Hong YK, Park DH, Lee KT. Enhanced Photoluminescence of Crystalline Alq 3 Micro-Rods Hybridized with Silver Nanowires. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:825. [PMID: 36903704 PMCID: PMC10005281 DOI: 10.3390/nano13050825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
An enhancement of the local electric field at the metal/dielectric interface of hybrid materials due to the localized surface plasmon resonance (LSPR) phenomenon plays a particularly important role in versatile research fields resulting in a distinct modification of the electrical, as well as optical, properties of the hybrid material. In this paper, we succeeded in visually confirming the LSPR phenomenon in the crystalline tris(8-hydroxyquinoline) aluminum (Alq3) micro-rod (MR) hybridized with silver (Ag) nanowire (NW) in the form of photoluminescence (PL) characteristics. Crystalline Alq3 MRs were prepared by a self-assembly method under the mixed solution of protic and aprotic polar solvents, which could be easily applied to fabricate hybrid Alq3/Ag structures. The hybridization between the crystalline Alq3 MRs and Ag NWs was confirmed by the component analysis of the selected area electronic diffraction attached to high-resolution transmission electron microscope. Nanoscale and solid state PL experiments on the hybrid Alq3/Ag structures using a lab-made laser confocal microscope exhibited a distinct enhancement of the PL intensity (approximately 26-fold), which also supported the LSPR effects between crystalline Alq3 MRs and Ag NWs.
Collapse
Affiliation(s)
- Misuk Kim
- Department of Physics, Inha University, Incheon 22212, Republic of Korea
| | - Jiyoun Kim
- Department of Chemical Engineering, Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Seongcheol Ju
- Department of Physics, Inha University, Incheon 22212, Republic of Korea
| | - Hyeonwoo Kim
- Department of Physics, Inha University, Incheon 22212, Republic of Korea
| | - Incheol Jung
- Department of Physics, Inha University, Incheon 22212, Republic of Korea
| | - Jong Hoon Jung
- Department of Physics, Inha University, Incheon 22212, Republic of Korea
| | - Gil Sun Lee
- Department of General Education, Kookmin University, Seoul 02707, Republic of Korea
| | - Young Ki Hong
- Department of Physics, Gyeongsang National University, Jinju 52828, Republic of Korea
- Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Dong Hyuk Park
- Department of Chemical Engineering, Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Kyu-Tae Lee
- Department of Physics, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
5
|
Wang S, Zheng W, Wang R, Zhang L, Yang L, Wang T, Saliba JG, Chandra S, Li CZ, Lyon CJ, Hu TY. Monocrystalline Labeling Enables Stable Plasmonic Enhancement for Isolation-Free Extracellular Vesicle Analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204298. [PMID: 36354195 PMCID: PMC9839537 DOI: 10.1002/smll.202204298] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/14/2022] [Indexed: 05/20/2023]
Abstract
Sensitive detection of extracellular vesicles (EVs) as emerging biomarkers has shown great promises for disease diagnosis. Plasmonic metal nanostructures conjugated with molecules that bind specific biomarker targets are widely used for EVs sensing but involve tradeoffs between particle-size-dependent signal intensity and conjugation efficiency. One solution to this problem would be to induce nucleation on nanoparticles that have successfully bound a target biomarker to permit in situ nanoparticle growth for signal amplification, but approaches that are evaluated to date require harsh conditions or lack nucleation specificity, prohibiting their effective use with most biological specimens. This study describes a one-step in situ strategy to induce monocrystalline copper shell growth on gold nanorod probes without decreasing signal by disrupting probe-target interactions or lipid bilayer integrity to enable EV biomarker detections. This approach increases the detected nanoparticle signal about two orders of magnitude after a 10 min copper nanoshell growth reaction. This has significant implications for improved disease detection, as indicated by the ability of a novel immunoassay using this approach to detect low abundance EVs carrying a pathogen-derived biomarker, after their direct capture from serum, to facilitate the diagnosis of tuberculosis cases in a diagnostically challenging pediatric cohort.
Collapse
Affiliation(s)
- Shu Wang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Wenshu Zheng
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Ruixuan Wang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Lili Zhang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Li Yang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Tao Wang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Julian G Saliba
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Biomedical Engineering, Tulane University School of Science & Engineering, 6823 St. Charles Ave, New Orleans, LA, 70118, USA
| | - Sutapa Chandra
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Chen-Zhong Li
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Christopher J Lyon
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Tony Y Hu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| |
Collapse
|
6
|
McCourt KM, Cochran J, Abdelbasir SM, Carraway ER, Tzeng TRJ, Tsyusko OV, Vanegas DC. Potential Environmental and Health Implications from the Scaled-Up Production and Disposal of Nanomaterials Used in Biosensors. BIOSENSORS 2022; 12:1082. [PMID: 36551049 PMCID: PMC9775545 DOI: 10.3390/bios12121082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Biosensors often combine biological recognition elements with nanomaterials of varying compositions and dimensions to facilitate or enhance the operating mechanism of the device. While incorporating nanomaterials is beneficial to developing high-performance biosensors, at the stages of scale-up and disposal, it may lead to the unmanaged release of toxic nanomaterials. Here we attempt to foster connections between the domains of biosensors development and human and environmental toxicology to encourage a holistic approach to the development and scale-up of biosensors. We begin by exploring the toxicity of nanomaterials commonly used in biosensor design. From our analysis, we introduce five factors with a role in nanotoxicity that should be considered at the biosensor development stages to better manage toxicity. Finally, we contextualize the discussion by presenting the relevant stages and routes of exposure in the biosensor life cycle. Our review found little consensus on how the factors presented govern nanomaterial toxicity, especially in composite and alloyed nanomaterials. To bridge the current gap in understanding and mitigate the risks of uncontrolled nanomaterial release, we advocate for greater collaboration through a precautionary One Health approach to future development and a movement towards a circular approach to biosensor use and disposal.
Collapse
Affiliation(s)
- Kelli M McCourt
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
- Global Alliance for Rapid Diagnostics (GARD), Michigan State University, East Lancing, MI 48824, USA
| | - Jarad Cochran
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Sabah M Abdelbasir
- Central Metallurgical Research and Development Institute, P.O. Box 87, Helwan 11421, Egypt
| | - Elizabeth R Carraway
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
| | - Tzuen-Rong J Tzeng
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Diana C Vanegas
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
- Global Alliance for Rapid Diagnostics (GARD), Michigan State University, East Lancing, MI 48824, USA
- Interdisciplinary Group for Biotechnology Innovation and Ecosocial Change (BioNovo), Universidad del Valle, Cali 76001, Colombia
| |
Collapse
|
7
|
Mostafavi E, Medina-Cruz D, Truong LB, Kaushik A, Iravani S. Selenium-based nanomaterials for biosensing applications. MATERIALS ADVANCES 2022; 3:7742-7756. [PMID: 36353516 PMCID: PMC9619417 DOI: 10.1039/d2ma00756h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/11/2022] [Indexed: 05/03/2023]
Abstract
The unique chemical and physical features of nanomaterials make them ideal for developing new and better sensing devices, particularly biosensors. Various types of nanoparticles, including metal, oxide, and semiconductor nanostructures, have been utilized to manufacture biosensors, and each kind of nanoparticle plays a unique role in the sensing system. Nanoparticles provide critical roles such as immobilizing biomolecules, catalyzing electrochemical processes, enhancing electron transport between electrode surfaces and proteins, identifying biomolecules, and even functioning as the reactant for the catalytic reaction. Among all the potential nanosystems to be used in biosensors, selenium nanoparticle (SeNP) features have sparked a growing interest in their use in bridging biological recognition events and signal transduction, as well as in developing biosensing devices with novel applications for identification, quantification, and study of different analytes of biological relevance. The optical, physical, and chemical characteristics of differently shaped SeNPs opened up a world of possibilities for developing biosensors of biomedical interest. The outstanding biocompatibility, conductivity, catalytic characteristics, high surface-to-volume ratio, and high density of SeNPs have enabled their widespread use in developing electrochemical biosensors with superior analytical performance compared to other designs of biosensors. This review summarizes recent and ongoing advances, current challenges, and future research perspectives on real-world applications of Se-based nanobiosensors to detect biologically relevant analytes such as hydrogen peroxide, heavy metals, or glucose. Due to the superior properties and multifunctionality of Se-NPs biosensors, these structures can open up considerable new horizons in the future of healthcare and medicine.
Collapse
Affiliation(s)
- Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine Stanford CA 94305 USA
- Department of Medicine, Stanford University School of Medicine Stanford CA 94305 USA
| | - David Medina-Cruz
- Chemical Engineering Department, Northeastern University Boston MA 02115 USA
| | - Linh B Truong
- Chemical Engineering Department, Northeastern University Boston MA 02115 USA
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University Lakeland FL-33805 USA
- School of Engineering, University of Petroleum and Energy Studies (UPES) Dehradun Uttarakhand India
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences Isfahan Iran
| |
Collapse
|
8
|
Negm A, Howlader MMR, Belyakov I, Bakr M, Ali S, Irannejad M, Yavuz M. Materials Perspectives of Integrated Plasmonic Biosensors. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7289. [PMID: 36295354 PMCID: PMC9611134 DOI: 10.3390/ma15207289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/02/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
With the growing need for portable, compact, low-cost, and efficient biosensors, plasmonic materials hold the promise to meet this need owing to their label-free sensitivity and deep light-matter interaction that can go beyond the diffraction limit of light. In this review, we shed light on the main physical aspects of plasmonic interactions, highlight mainstream and future plasmonic materials including their merits and shortcomings, describe the backbone substrates for building plasmonic biosensors, and conclude with a brief discussion of the factors affecting plasmonic biosensing mechanisms. To do so, we first observe that 2D materials such as graphene and transition metal dichalcogenides play a major role in enhancing the sensitivity of nanoparticle-based plasmonic biosensors. Then, we identify that titanium nitride is a promising candidate for integrated applications with performance comparable to that of gold. Our study highlights the emerging role of polymer substrates in the design of future wearable and point-of-care devices. Finally, we summarize some technical and economic challenges that should be addressed for the mass adoption of plasmonic biosensors. We believe this review will be a guide in advancing the implementation of plasmonics-based integrated biosensors.
Collapse
Affiliation(s)
- Ayman Negm
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Electronics and Communications Engineering, Cairo University, Giza 12613, Egypt
| | - Matiar M. R. Howlader
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Ilya Belyakov
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Mohamed Bakr
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Shirook Ali
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada
- School of Mechanical and Electrical Engineering Technology, Sheridan College, Brampton, ON L6Y 5H9, Canada
| | | | - Mustafa Yavuz
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
9
|
Eghbali A, Vyshnevyy AA, Arsenin AV, Volkov VS. Optical Anisotropy and Excitons in MoS 2 Interfaces for Sensitive Surface Plasmon Resonance Biosensors. BIOSENSORS 2022; 12:582. [PMID: 36004977 PMCID: PMC9405904 DOI: 10.3390/bios12080582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The use of ultra-thin spacer layers above metal has become a popular approach to the enhancement of optical sensitivity and immobilization efficiency of label-free SPR sensors. At the same time, the giant optical anisotropy inherent to transition metal dichalcogenides may significantly affect characteristics of the studied sensors. Here, we present a systematic study of the optical sensitivity of an SPR biosensor platform with auxiliary layers of MoS2. By performing the analysis in a broad spectral range, we reveal the effect of exciton-driven dielectric response of MoS2 and its anisotropy on the sensitivity characteristics. The excitons are responsible for the decrease in the optimal thickness of MoS2. Furthermore, despite the anisotropy being at record height, it affects the sensitivity only slightly, although the effect becomes stronger in the near-infrared spectral range, where it may lead to considerable change in the optimal design of the biosensor.
Collapse
|
10
|
SPR-Based Sensor for the Early Detection or Monitoring of Kidney Problems. Int J Biomater 2022; 2022:9135172. [PMID: 35755268 PMCID: PMC9225913 DOI: 10.1155/2022/9135172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
SPR-based technology has emerged as one of the most versatile optical tools for analyzing the binding mechanism of molecular interaction due to its inherent advantages in sensing applications, such as real-time, label-free, and high sensitivity characteristics. SPR is widely used in various fields, including healthcare, environmental management, and food-borne illness analysis. Meanwhile, kidney disease has grown to be one of the world's most serious public health problems in recent decades, resulting in physical degeneration and even death. As a result, several studies have published their findings regarding developing of reliable sensor technology based on the SPR phenomenon. However, an integrated and comprehensive discussion regarding the application of SPR-based sensors for detecting of kidney disease has not yet been found. Therefore, this review will discuss the recent advancements in the development of SPR-based sensors for monitoring kidney-related diseases. Numerous SPR configurations will be discussed, including Kretschmann, Otto, optical fiber-based SPR, and LSPR, which are all used to detect analytes associated with kidney disease, including urea, creatinine, glucose, uric acid, and dopamine. This review aims to show the broad application of SPR sensors which encouraged the development of SPR sensors for kidney problems monitoring.
Collapse
|
11
|
Quynh LT, Cheng CW, Huang CT, Raja SS, Mishra R, Yu MJ, Lu YJ, Gwo S. Flexible Plasmonics Using Aluminum and Copper Epitaxial Films on Mica. ACS NANO 2022; 16:5975-5983. [PMID: 35333048 DOI: 10.1021/acsnano.1c11191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We demonstrate here the growth of aluminum (Al), copper (Cu), gold (Au), and silver (Ag) epitaxial films on two-dimensional, layered muscovite mica (Mica) substrates via van der Waals (vdW) heteroepitaxy with controllable film thicknesses from a few to hundreds of nanometers. In this approach, the mica thin sheet acts as a flexible and transparent substrate for vdW heteroepitaxy, which allows for large-area formation of atomically smooth, single-crystalline, and ultrathin plasmonic metals without the issue of film dewetting. The high-quality plasmonic metal films grown on mica enable us to design and fabricate well-controlled Al and Cu plasmonic nanostructures with tunable surface plasmon resonances ranging from visible to the near-infrared spectral region. Using these films, two kinds of plasmonic device applications are reported, including (1) plasmonic sensors with high effective index sensitivities based on surface plasmon interferometers fabricated on the Al/Mica film and (2) Cu/Mica nanoslit arrays for plasmonic color filters in the visible and near-infrared regions. Furthermore, we show that the responses of plasmonic nanostructures fabricated on the Mica substrates remain unaltered under large substrate bending conditions. Therefore, the metal-on-mica vdW heteroepitaxy platform is suitable for flexible plasmonics based on their bendable properties.
Collapse
Affiliation(s)
- Le Thi Quynh
- Department of Physics, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Chang-Wei Cheng
- Department of Physics, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Chiao-Tzu Huang
- Department of Electrophysics, National Yang-Ming Chaio-Tung University, Hsinchu 30010, Taiwan
| | - Soniya Suganthi Raja
- Institute of Nanoengineering and Microsystems, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Ragini Mishra
- Institute of Nanoengineering and Microsystems, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Meng-Ju Yu
- Research Center for Applied Sciences, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Yu-Jung Lu
- Research Center for Applied Sciences, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Shangjr Gwo
- Department of Physics, National Tsing-Hua University, Hsinchu 30013, Taiwan
- Department of Electrophysics, National Yang-Ming Chaio-Tung University, Hsinchu 30010, Taiwan
- Institute of Nanoengineering and Microsystems, National Tsing-Hua University, Hsinchu 30013, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
12
|
Sensitivity Characterization of Multi-Band THz Metamaterial Sensor for Possible Virus Detection. ELECTRONICS 2022. [DOI: 10.3390/electronics11050699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The recent COVID-19 pandemic has shown that there is a substantial need for high-precision reliable diagnostic tests able to detect extremely low virus concentrations nearly instantaneously. Since conventional methods are fairly limited, there is a need for an alternative method such as THz spectroscopy with the utilization of THz metamaterials. This paper proposes a method for sensitivity characterization, which is demonstrated on two chosen multi-band THz metamaterial sensors and samples of three different subtypes of the influenza A virus. Sensor models have been simulated in WIPL-D software in order to analyze their sensitivity both graphically and numerically around all resonant peaks in the presence of virus samples. The sensor with a sandwiched structure is shown to be more suitable for detecting extremely thin virus layers. The distribution of the electric field for this sensor suggests a possibility of controlling the two resonant modes independently. The sensor with cross-shaped patches achieves significantly better Q-factors and refractive sensitivities for both resonant peaks. The reasoning can be found in the wave–sample interaction enhancement due to the better electromagnetic field confinement. A high Q-factor of around 400 at the second resonant frequency makes the sensor with cross-shaped patches a promising candidate for potential applications in THz sensing.
Collapse
|
13
|
Performance of Surface Plasmon Resonance Sensors Using Copper/Copper Oxide Films: Influence of Thicknesses and Optical Properties. PHOTONICS 2022. [DOI: 10.3390/photonics9020104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Surface plasmon resonance sensors (SPR) using copper for sensitive parts are a competitive alternative to gold and silver. Copper oxide is a semiconductor and has a non-toxic nature. The unavoidable presence of copper oxide may be of interest as it is non-toxic, but it modifies the condition of resonance and the performance of the sensor. Therefore, the characterization of the optical properties of copper and copper oxide thin films is of interest. We propose a method to recover both the thicknesses and optical properties of copper and copper oxide from absorbance curves over the (0.9;3.5) eV range, and we use these results to numerically investigate the surface plasmon resonance of copper/copper oxide thin films. Samples of initial copper thicknesses 10, 30 and 50 nm, after nine successive oxidations, are systematically studied to simulate the signal of a Surface Plasmon Resonance setup. The results obtained from the resolution of the inverse problem of absorbance are used to discuss the performance of a copper-oxide sensor and, therefore, to evaluate the optimal thicknesses.
Collapse
|
14
|
Lei Z, Guo B. 2D Material-Based Optical Biosensor: Status and Prospect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102924. [PMID: 34898053 PMCID: PMC8811838 DOI: 10.1002/advs.202102924] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/05/2021] [Indexed: 05/07/2023]
Abstract
The combination of 2D materials and optical biosensors has become a hot research topic in recent years. Graphene, transition metal dichalcogenides, black phosphorus, MXenes, and other 2D materials (metal oxides and degenerate semiconductors) have unique optical properties and play a unique role in the detection of different biomolecules. Through the modification of 2D materials, optical biosensor has the advantages that traditional sensors (such as electrical sensing) do not have, and the sensitivity and detection limit are greatly improved. Here, optical biosensors based on different 2D materials are reviewed. First, various detection methods of biomolecules, including surface plasmon resonance (SPR), fluorescence resonance energy transfer (FRET), and evanescent wave and properties, preparation and integration strategies of 2D material, are introduced in detail. Second, various biosensors based on 2D materials are summarized. Furthermore, the applications of these optical biosensors in biological imaging, food safety, pollution prevention/control, and biological medicine are discussed. Finally, the future development of optical biosensors is prospected. It is believed that with their in-depth research in the laboratory, optical biosensors will gradually become commercialized and improve people's quality of life in many aspects.
Collapse
Affiliation(s)
- Zong‐Lin Lei
- Key Lab of In‐Fiber Integrated Optics of Ministry of Education of ChinaHarbin Engineering UniversityHarbin150001China
| | - Bo Guo
- Key Lab of In‐Fiber Integrated Optics of Ministry of Education of ChinaHarbin Engineering UniversityHarbin150001China
| |
Collapse
|
15
|
Loyez M, DeRosa MC, Caucheteur C, Wattiez R. Overview and emerging trends in optical fiber aptasensing. Biosens Bioelectron 2022; 196:113694. [PMID: 34637994 DOI: 10.1016/j.bios.2021.113694] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022]
Abstract
Optical fiber biosensors have attracted growing interest over the last decade and quickly became a key enabling technology, especially for the detection of biomarkers at extremely low concentrations and in small volumes. Among the many and recent fiber-optic sensing amenities, aptamers-based sensors have shown unequalled performances in terms of ease of production, specificity, and sensitivity. The immobilization of small and highly stable bioreceptors such as DNA has bolstered their use for the most varied applications e.g., medical diagnosis, food safety and environmental monitoring. This review highlights the recent advances in aptamer-based optical fiber biosensors. An in-depth analysis of the literature summarizes different fiber-optic structures and biochemical strategies for molecular detection and immobilization of receptors over diverse surfaces. In this review, we analyze the features offered by those sensors and discuss about the next challenges to be addressed. This overview investigates both biochemical and optical parameters, drawing the guiding lines for forthcoming innovations and prospects in this ever-growing field of research.
Collapse
Affiliation(s)
- Médéric Loyez
- Proteomics and Microbiology Department, University of Mons, Avenue du Champ de Mars 6, 7000, Mons, Belgium; Electromagnetism and Telecommunication Department, University of Mons, Bld. Dolez 31, 7000, Mons, Belgium.
| | - Maria C DeRosa
- Department of Chemistry, 203 Steacie Building, Carleton University, 1125, Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Christophe Caucheteur
- Electromagnetism and Telecommunication Department, University of Mons, Bld. Dolez 31, 7000, Mons, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Department, University of Mons, Avenue du Champ de Mars 6, 7000, Mons, Belgium
| |
Collapse
|
16
|
Mahapatra DM, Satapathy KC, Panda B. Biofertilizers and nanofertilizers for sustainable agriculture: Phycoprospects and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149990. [PMID: 34492488 DOI: 10.1016/j.scitotenv.2021.149990] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 05/21/2023]
Abstract
Increased food demands and ceasing nutrient deposits have resulted in a great shortfall between the food supply and demand and would be worse in the years to come. Higher inputs of synthetic fertilizers on lands have resulted in environmental pollution, persistent changes in the soil ecology, and physicochemical conditions. This has greatly decreased the natural soil fertility thereby hindering agricultural productivity, human health, and hygiene. Bio-based resilient nutrient sources as wastewater-derived algae are promising as a complete nutrient for agriculture and have the potential to be used in soilless cultivations. Innovations in nano-fortification and nano-sizing of minerals and algae have the potential to facilitate nutrients bioavailability and efficacy for a multifold increase in productivity. In this context, various options on minerals nanofertilizer application in agricultural food production besides efficient biofertilizer have been investigated. Algal biofertilizer with the nanoscale application has huge prospects for further agriculture productivities and fosters suitable development.
Collapse
Affiliation(s)
- Durga Madhab Mahapatra
- Center of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India; Biological and Ecological Engineering Department, Oregon State University, Corvallis, OR, USA.
| | - Kanhu Charan Satapathy
- Center of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India; Post Graduate Department of Anthropology, Utkal University, Bhubaneswar 751004, Odisha, India.
| | - Bhabatarini Panda
- Center of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India; Post Graduate Department of Botany, Utkal University, Bhubaneswar 751004, Odisha, India.
| |
Collapse
|
17
|
Ermolaev GA, Voronin KV, Tatmyshevskiy MK, Mazitov AB, Slavich AS, Yakubovsky DI, Tselin AP, Mironov MS, Romanov RI, Markeev AM, Kruglov IA, Novikov SM, Vyshnevyy AA, Arsenin AV, Volkov VS. Broadband Optical Properties of Atomically Thin PtS 2 and PtSe 2. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3269. [PMID: 34947618 PMCID: PMC8708229 DOI: 10.3390/nano11123269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 01/31/2023]
Abstract
Noble transition metal dichalcogenides (TMDCs) such as PtS2 and PtSe2 show significant potential in a wide range of optoelectronic and photonic applications. Noble TMDCs, unlike standard TMDCs such as MoS2 and WS2, operate in the ultrawide spectral range from ultraviolet to mid-infrared wavelengths; however, their properties remain largely unexplored. Here, we measured the broadband (245-3300 nm) optical constants of ultrathin PtS2 and PtSe2 films to eliminate this gap and provide a foundation for optoelectronic device simulation. We discovered their broadband absorption and high refractive index both theoretically and experimentally. Based on first-principle calculations, we also predicted their giant out-of-plane optical anisotropy for monocrystals. As a practical illustration of the obtained optical properties, we demonstrated surface plasmon resonance biosensors with PtS2 or PtSe2 functional layers, which dramatically improves sensor sensitivity by 60 and 30%, respectively.
Collapse
Affiliation(s)
- Georgy A. Ermolaev
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny, Russia; (G.A.E.); (K.V.V.); (M.K.T.); (A.B.M.); (A.S.S.); (D.I.Y.); (A.P.T.); (M.S.M.); (A.M.M.); (I.A.K.); (S.M.N.); (A.A.V.); (A.V.A.)
| | - Kirill V. Voronin
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny, Russia; (G.A.E.); (K.V.V.); (M.K.T.); (A.B.M.); (A.S.S.); (D.I.Y.); (A.P.T.); (M.S.M.); (A.M.M.); (I.A.K.); (S.M.N.); (A.A.V.); (A.V.A.)
| | - Mikhail K. Tatmyshevskiy
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny, Russia; (G.A.E.); (K.V.V.); (M.K.T.); (A.B.M.); (A.S.S.); (D.I.Y.); (A.P.T.); (M.S.M.); (A.M.M.); (I.A.K.); (S.M.N.); (A.A.V.); (A.V.A.)
| | - Arslan B. Mazitov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny, Russia; (G.A.E.); (K.V.V.); (M.K.T.); (A.B.M.); (A.S.S.); (D.I.Y.); (A.P.T.); (M.S.M.); (A.M.M.); (I.A.K.); (S.M.N.); (A.A.V.); (A.V.A.)
- Dukhov Research Institute of Automatics (VNIIA), 22 Suschevskaya St., 127055 Moscow, Russia
| | - Aleksandr S. Slavich
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny, Russia; (G.A.E.); (K.V.V.); (M.K.T.); (A.B.M.); (A.S.S.); (D.I.Y.); (A.P.T.); (M.S.M.); (A.M.M.); (I.A.K.); (S.M.N.); (A.A.V.); (A.V.A.)
| | - Dmitry I. Yakubovsky
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny, Russia; (G.A.E.); (K.V.V.); (M.K.T.); (A.B.M.); (A.S.S.); (D.I.Y.); (A.P.T.); (M.S.M.); (A.M.M.); (I.A.K.); (S.M.N.); (A.A.V.); (A.V.A.)
| | - Andrey P. Tselin
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny, Russia; (G.A.E.); (K.V.V.); (M.K.T.); (A.B.M.); (A.S.S.); (D.I.Y.); (A.P.T.); (M.S.M.); (A.M.M.); (I.A.K.); (S.M.N.); (A.A.V.); (A.V.A.)
| | - Mikhail S. Mironov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny, Russia; (G.A.E.); (K.V.V.); (M.K.T.); (A.B.M.); (A.S.S.); (D.I.Y.); (A.P.T.); (M.S.M.); (A.M.M.); (I.A.K.); (S.M.N.); (A.A.V.); (A.V.A.)
| | - Roman I. Romanov
- Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, 31 Kashirskoe Sh., 115409 Moscow, Russia;
| | - Andrey M. Markeev
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny, Russia; (G.A.E.); (K.V.V.); (M.K.T.); (A.B.M.); (A.S.S.); (D.I.Y.); (A.P.T.); (M.S.M.); (A.M.M.); (I.A.K.); (S.M.N.); (A.A.V.); (A.V.A.)
| | - Ivan A. Kruglov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny, Russia; (G.A.E.); (K.V.V.); (M.K.T.); (A.B.M.); (A.S.S.); (D.I.Y.); (A.P.T.); (M.S.M.); (A.M.M.); (I.A.K.); (S.M.N.); (A.A.V.); (A.V.A.)
- Dukhov Research Institute of Automatics (VNIIA), 22 Suschevskaya St., 127055 Moscow, Russia
| | - Sergey M. Novikov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny, Russia; (G.A.E.); (K.V.V.); (M.K.T.); (A.B.M.); (A.S.S.); (D.I.Y.); (A.P.T.); (M.S.M.); (A.M.M.); (I.A.K.); (S.M.N.); (A.A.V.); (A.V.A.)
| | - Andrey A. Vyshnevyy
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny, Russia; (G.A.E.); (K.V.V.); (M.K.T.); (A.B.M.); (A.S.S.); (D.I.Y.); (A.P.T.); (M.S.M.); (A.M.M.); (I.A.K.); (S.M.N.); (A.A.V.); (A.V.A.)
| | - Aleksey V. Arsenin
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny, Russia; (G.A.E.); (K.V.V.); (M.K.T.); (A.B.M.); (A.S.S.); (D.I.Y.); (A.P.T.); (M.S.M.); (A.M.M.); (I.A.K.); (S.M.N.); (A.A.V.); (A.V.A.)
- GrapheneTek, Skolkovo Innovation Center, 143026 Moscow, Russia
| | - Valentyn S. Volkov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny, Russia; (G.A.E.); (K.V.V.); (M.K.T.); (A.B.M.); (A.S.S.); (D.I.Y.); (A.P.T.); (M.S.M.); (A.M.M.); (I.A.K.); (S.M.N.); (A.A.V.); (A.V.A.)
- GrapheneTek, Skolkovo Innovation Center, 143026 Moscow, Russia
| |
Collapse
|
18
|
Highly Sensitive and Selective Copper (II)-Catalyzed Dual-DNAzyme Colorimetric Biosensor Based on Exonuclease III-Mediated Cyclical Assembly. Catalysts 2021. [DOI: 10.3390/catal11111352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
“Cu-DNAzyme” and “G4-DNAzyme” were used to develop a “turn-off” dual-DNAzyme colorimetric biosensor, which could be used to detect Cu2+ by employing exonuclease III-mediated cyclical assembly (EMCA). EMCA was based on the cleavage activity of Cu2+ to transfer the linkage sequences of the substrate strand and enzyme strand into the transition sequence. The horseradish peroxidase (HRP)-mimicking activity of the G4-DNAzyme was lost after binding with the complementary transition sequence and was hydrolyzed by Exo III. These results demonstrate that the proposed colorimetric biosensor was an effective method for ultradetection of trace metals in a high original signal background. Due to the high sensitivity of the biosensor, the limit of detection (LOD) of Cu2+ is 0.16 nM. This design offers a general purpose platform that could be applied for the detection of any metal ion target through adjustment of metal-dependent DNA-cleaving DNAzymes, which is of great significance for the rapid determination of food safety.
Collapse
|
19
|
Kitta M, Murai K, Yoshii K, Sano H. Electrochemical Surface Plasmon Resonance Spectroscopy for Investigation of the Initial Process of Lithium Metal Deposition. J Am Chem Soc 2021; 143:11160-11170. [PMID: 34260226 DOI: 10.1021/jacs.1c04934] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The initial process of Li-metal electrodeposition on the negative electrode surface determines the charging performance of Li-metal secondary batteries. However, minute depositions or the early processes of nucleation and growth of Li metal are generally difficult to detect under operando conditions. In this study, we propose an optical diagnostic approach to address these challenges. Surface plasmon resonance (SPR) spectroscopy coupled with electrochemical operation is a promising technique that enables the ultrasensitive detection of the initial stage of Li-metal electrodeposition. The SPR is excited in a thin copper film deposited on a glass substrate, which also serves as a current collector enabling electrochemical Li-metal deposition. For a propylene carbonate (PC)-based Li-ion battery electrolyte, under both cyclic voltammetry and constant-current operation, Li-metal deposition is readily detected by changes in the SPR absorption dip in the reflectance spectrum. Electrochemical SPR is highly sensitive to metal deposition, with a demonstrated capability of detecting an average thickness of approximately 0.1 nm, corresponding to a few atomic layers of Li. To identify the growth mechanism, the SPR reflectance spectra of various possible Li-metal deposition processes were simulated. Comparison of the simulated spectra with the experimental data found good agreement with the well-known nucleation and growth model for Li-metal deposition from PC-based electrolytes. The demonstrated operando electrochemical SPR measurement should be a valuable tool for basic research on the initial Li-metal deposition process.
Collapse
Affiliation(s)
- Mitsunori Kitta
- Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Kensuke Murai
- National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Kazuki Yoshii
- Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Hikaru Sano
- Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| |
Collapse
|
20
|
Thao NT, Hoang TX, Phan TB, Kim JY, Ta HKT, Trinh KTL, Tran NHT. Metal-enhanced sensing platform for the highly sensitive detection of C-reactive protein antibody and rhodamine B with applications in cardiovascular diseases and food safety. Dalton Trans 2021; 50:6962-6974. [PMID: 33929466 DOI: 10.1039/d0dt04353b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The potential applications of metal-enhanced fluorescence (MEF) devices include biosensors for the detection of trace amounts in biosciences, biotechnology, and pathogens that are relevant to medical diagnostics and food control. In the present study, the silver (Ag) film thickness (56 nm) of an MEF system was calibrated to maximize the depth-to-width ratio (Γ) of the surface plasmon resonance (SPR) active metal from reflectance dip curves. Upon plasmon coupling with thermally evaporated Ag, we demonstrated a 2.21-fold enhancement compared to the pristine flat substrate with the coefficient of variation (CV) ≈0.22% and the limit of detection (LOD) 0.001 mg L-1 of the concentration of an Alexa Fluor 488-labeled anti-C-reactive protein antibody (CRP@Alexa fluor 488). The structure was developed to simplify the in situ generation of biosensors for the surface-enhanced Raman spectroscopy (SERS) to determine Rhodamine B (RhB) with a highly robust performance. The procedure presented a simple and rapid sample pretreatment for the determination of RhB with a limit of quantification of 10-10 M and a satisfactory linear response (0.98). The results showed the excellent performance of the surface plasmon coupled emission (SPCE), which opens up possibilities for the accurate detection of small-volume and low-concentration target analytes due to the improved sensitivity and signal-to-noise ratio (SNR).
Collapse
Affiliation(s)
- Nguyen Thanh Thao
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City, Viet Nam.
| | | | | | | | | | | | | |
Collapse
|
21
|
Zhang M, Adkins M, Wang Z. Recent Progress on Semiconductor-Interface Facing Clinical Biosensing. SENSORS 2021; 21:s21103467. [PMID: 34065696 PMCID: PMC8156696 DOI: 10.3390/s21103467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 01/17/2023]
Abstract
Semiconductor (SC)-based field-effect transistors (FETs) have been demonstrated as amazing enhancer gadgets due to their delicate interface towards surface adsorption. This leads to their application as sensors and biosensors. Additionally, the semiconductor material has enormous recognizable fixation extends, high affectability, high consistency for solid detecting, and the ability to coordinate with other microfluidic gatherings. This review focused on current progress on the semiconductor-interfaced FET biosensor through the fundamental interface structure of sensor design, including inorganic semiconductor/aqueous interface, photoelectrochemical interface, nano-optical interface, and metal-assisted interface. The works that also point to a further advancement for the trademark properties mentioned have been reviewed here. The emergence of research on the organic semiconductor interface, integrated biosensors with Complementary metal–oxide–semiconductor (CMOS)-compatible, metal-organic frameworks, has accelerated the practical application of biosensors. Through a solid request for research along with sensor application, it will have the option to move forward the innovative sensor with the extraordinary semiconductor interface structure.
Collapse
Affiliation(s)
- Mingrui Zhang
- School of Engineering, University of Manchester, Manchester M13 9PL, UK;
| | - Mitchell Adkins
- Chemistry Department, Oakland University, Rochester, MI 48309, USA;
| | - Zhe Wang
- Chemistry Department, Oakland University, Rochester, MI 48309, USA;
- Correspondence: ; Tel.: +1-248-370-2086
| |
Collapse
|
22
|
Mkhitaryan V, March K, Tseng EN, Li X, Scarabelli L, Liz-Marzán LM, Chen SY, Tizei LHG, Stéphan O, Song JM, Kociak M, García de Abajo FJ, Gloter A. Can Copper Nanostructures Sustain High-Quality Plasmons? NANO LETTERS 2021; 21:2444-2452. [PMID: 33651617 DOI: 10.1021/acs.nanolett.0c04667] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Silver, king among plasmonic materials, features low inelastic absorption in the visible-infrared (vis-IR) spectral region compared to other metals. In contrast, copper is commonly regarded as too lossy for actual applications. Here, we demonstrate vis-IR plasmons with quality factors >60 in long copper nanowires (NWs), as determined by electron energy-loss spectroscopy. We explain this result by noticing that most of the electromagnetic energy in these plasmons lies outside the metal, thus becoming less sensitive to inelastic absorption. Measurements for silver and copper NWs of different diameters allow us to elucidate the relative importance of radiative and nonradiative losses in plasmons spanning a wide spectral range down to <20 meV. Thermal population of such low-energy modes becomes significant and generates electron energy gains associated with plasmon absorption, rendering an experimental determination of the NW temperature. Copper is therefore emerging as an attractive, cheap, abundant material platform for high-quality plasmonics in elongated nanostructures.
Collapse
Affiliation(s)
- Vahagn Mkhitaryan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain
| | - Katia March
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Eric Nestor Tseng
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Xiaoyan Li
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Leonardo Scarabelli
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 38013 Bilbao, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramón 182, 28014 Donostia-San Sebastián, Spain
| | - Shih-Yun Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Luiz H G Tizei
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Odile Stéphan
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Jenn-Ming Song
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Mathieu Kociak
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Alexandre Gloter
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405 Orsay, France
| |
Collapse
|
23
|
Functional nanostructured metal oxides and its hybrid electrodes – Recent advancements in electrochemical biosensing applications. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105522] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Ferhan AR, Yoon BK, Jeon WY, Cho NJ. Biologically interfaced nanoplasmonic sensors. NANOSCALE ADVANCES 2020; 2:3103-3114. [PMID: 36134263 PMCID: PMC9418064 DOI: 10.1039/d0na00279h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/26/2020] [Indexed: 05/30/2023]
Abstract
Understanding biointerfacial processes is crucial in various fields across fundamental and applied biology, but performing quantitative studies via conventional characterization techniques remains challenging due to instrumentation as well as analytical complexities and limitations. In order to accelerate translational research and address current challenges in healthcare and medicine, there is an outstanding need to develop surface-sensitive technologies with advanced measurement capabilities. Along this line, nanoplasmonic sensing has emerged as a powerful tool to quantitatively study biointerfacial processes owing to its high spatial resolution at the nanoscale. Consequently, the development of robust biological interfacing strategies becomes imperative to maximize its characterization potential. This review will highlight and discuss the critical role of biological interfacing within the context of constructing nanoplasmonic sensing platforms for biointerfacial science applications. Apart from paving the way for the development of highly surface-sensitive characterization tools that will spur fundamental biological interaction studies and improve the overall understanding of biological processes, the basic principles behind biointerfacing strategies presented in this review are also applicable to other fields that involve an interface between an inorganic material and a biological system.
Collapse
Affiliation(s)
- Abdul Rahim Ferhan
- School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| | - Bo Kyeong Yoon
- School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
- School of Chemical Engineering, Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Won-Yong Jeon
- School of Chemical Engineering, Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| |
Collapse
|
25
|
Voronin KV, Stebunov YV, Voronov AA, Arsenin AV, Volkov VS. Vertically Coupled Plasmonic Racetrack Ring Resonator for Biosensor Applications. SENSORS 2019; 20:s20010203. [PMID: 31905897 PMCID: PMC6983217 DOI: 10.3390/s20010203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/23/2019] [Accepted: 12/26/2019] [Indexed: 02/04/2023]
Abstract
Plasmonic chemical and biological sensors offer significant advantages such as really compact sizes and extremely high sensitivity. Biosensors based on plasmonic waveguides and resonators are some of the most attractive candidates for mobile and wearable devices. However, high losses in the metal and complicated schemes for practical implementation make it challenging to find the optimal configuration of a compact plasmon biosensor. Here, we propose a novel plasmonic refractive index sensor based on a metal strip waveguide placed under a waveguide-based racetrack ring resonator made of the same metal. This scheme guarantees effective coupling between the waveguide and resonator and low loss light transmittance through the long-range waveguide. The proposed device can be easily fabricated (e.g., using optical lithography) and integrated with materials like graphene oxide for providing adsorption of the biomolecules on the sensitive part of the optical elements. To analyze the properties of the designed sensing system, we performed numerical simulations along with some analytical estimations. There is one other interesting general feature of this sensing scheme that is worth pointing out before looking at its details. The sensitivity of the considered device can be significantly increased by surrounding the resonator with media of slightly different refractive indices, which allows sensitivity to reach a value of more than 1 μm per refractive index unit.
Collapse
Affiliation(s)
- Kirill V. Voronin
- Center for Photonics & 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, Dolgoprudny 141700, Russia; (K.V.V.); (Y.V.S.); (A.A.V.); (A.V.A.)
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow 121205, Russia
| | - Yury V. Stebunov
- Center for Photonics & 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, Dolgoprudny 141700, Russia; (K.V.V.); (Y.V.S.); (A.A.V.); (A.V.A.)
- GrapheneTek, 7 Nobel Street, Skolkovo Innovation Center, Moscow 143026, Russia
| | - Artem A. Voronov
- Center for Photonics & 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, Dolgoprudny 141700, Russia; (K.V.V.); (Y.V.S.); (A.A.V.); (A.V.A.)
| | - Aleksey V. Arsenin
- Center for Photonics & 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, Dolgoprudny 141700, Russia; (K.V.V.); (Y.V.S.); (A.A.V.); (A.V.A.)
- GrapheneTek, 7 Nobel Street, Skolkovo Innovation Center, Moscow 143026, Russia
| | - Valentyn S. Volkov
- Center for Photonics & 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, Dolgoprudny 141700, Russia; (K.V.V.); (Y.V.S.); (A.A.V.); (A.V.A.)
- GrapheneTek, 7 Nobel Street, Skolkovo Innovation Center, Moscow 143026, Russia
- Correspondence: ; Tel.: +7-926-735-9398
| |
Collapse
|
26
|
Shin SH, Shin SH, Choi JH, Lee J, Choi DG, Jeong JH, Ju BK, Jung JY. Dual nanotransfer printing for complementary plasmonic biosensors. NANOTECHNOLOGY 2019; 30:385302. [PMID: 31234162 DOI: 10.1088/1361-6528/ab2c10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
One of the main challenges in the widespread utilization of localized plasmon resonance-based biosensors is the fabrication of large-area and low-cost plasmonic nanostructures. In this work, we fabricated large-area and low-cost complementary plasmonic biosensors such as nanohole and nanodisk arrays using dual nanotransfer printing (NTP) with a single metal deposition and a single reusable mold. The suspended nanohole arrays and the suspended nanodisk arrays were fabricated using the subsequent dry etching process. We confirmed a maximum enhancement in bulk sensitivity in experiments and simulations by controlling the vertical and lateral etching depths of the dielectric layer underneath the gold (Au) nanohole and nanodisk arrays. Furthermore, we show that the surface sensitivity evaluated by atomic layer deposition of aluminum oxide increased because appropriate vertical and lateral etching depths allow the target analyte to access the additional near-field formed at the bottom of the Au nanostructure. The dual NTP method provides a practical solution for the realization of large-area and low-cost label-free plasmonic biosensing systems, with a reduction in complexity and cost of the fabrication process of complementary plasmonic structures and metasurfaces.
Collapse
Affiliation(s)
- Sang-Ho Shin
- Department of Electrical Engineering, College of Engineering, Korea University, Seoul 02841, Republic of Korea. Nano-convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 305-343, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Yakubovsky DI, Stebunov YV, Kirtaev RV, Voronin KV, Voronov AA, Arsenin AV, Volkov VS. Graphene-Supported Thin Metal Films for Nanophotonics and Optoelectronics. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E1058. [PMID: 30558333 PMCID: PMC6316737 DOI: 10.3390/nano8121058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/09/2018] [Accepted: 12/11/2018] [Indexed: 11/22/2022]
Abstract
Graphene-metal hybrid nanostructures have attracted considerable attention due to their potential applications in nanophotonics and optoelectronics. The output characteristics of devices based on such nanostructures largely depend on the properties of the metals. Here, we study the optical, electrical and structural properties of continuous thin gold and copper films grown by electron beam evaporation on monolayer graphene transferred onto silicon dioxide substrates. We find that the presence of graphene has a significant effect on optical losses and electrical resistance, both for thin gold and copper films. Furthermore, the growth kinetics of gold and copper films vary greatly; in particular, we found here a significant dependence of the properties of thin copper films on the deposition rate, unlike gold films. Our work provides new data on the optical properties of gold and copper, which should be considered in modeling and designing devices with graphene-metal nanolayers.
Collapse
Affiliation(s)
- Dmitry I Yakubovsky
- Center for Photonics & 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, Dolgoprudny 141700, Russia.
| | - Yury V Stebunov
- Center for Photonics & 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, Dolgoprudny 141700, Russia.
- GrapheneTek, 7 Nobel Street, Skolkovo Innovation Center, Moscow 143026, Russia.
| | - Roman V Kirtaev
- Center for Photonics & 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, Dolgoprudny 141700, Russia.
| | - Kirill V Voronin
- Center for Photonics & 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, Dolgoprudny 141700, Russia.
| | - Artem A Voronov
- Center for Photonics & 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, Dolgoprudny 141700, Russia.
| | - Aleksey V Arsenin
- Center for Photonics & 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, Dolgoprudny 141700, Russia.
- GrapheneTek, 7 Nobel Street, Skolkovo Innovation Center, Moscow 143026, Russia.
| | - Valentyn S Volkov
- Center for Photonics & 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, Dolgoprudny 141700, Russia.
- GrapheneTek, 7 Nobel Street, Skolkovo Innovation Center, Moscow 143026, Russia.
- SDU Nano Optics, Mads Clausen Institute, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark.
| |
Collapse
|
28
|
Vlăsceanu GM, Amărandi RM, Ioniță M, Tite T, Iovu H, Pilan L, Burns JS. Versatile graphene biosensors for enhancing human cell therapy. Biosens Bioelectron 2018; 117:283-302. [DOI: 10.1016/j.bios.2018.04.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/18/2018] [Accepted: 04/25/2018] [Indexed: 01/04/2023]
|