1
|
Ziental D, Czarczynska-Goslinska B, Wysocki M, Ptaszek M, Sobotta Ł. Advances and perspectives in use of semisolid formulations for photodynamic methods. Eur J Pharm Biopharm 2024; 204:114485. [PMID: 39255919 DOI: 10.1016/j.ejpb.2024.114485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Although nearly 30 years have passed since the introduction of the first clinically approved photosensitizer for photodynamic therapy, progress in developing new pharmaceutical formulations remains unsatisfactory. This review highlights that despite years of research, many recurring challenges and issues remain unresolved. The paper includes an analysis of selected essential studies involving aminolevulinic acid and its derivatives, as well as other photosensitizers with potential for development as medical products. Among various possible vehicles, special attention is given to gelatin, alginates, poly(ethylene oxide), polyacrylic acid, and chitosan. The focus is particularly on infectious and cancerous diseases. Key aspects of developing new semi-solid drug forms should prioritize the creation of easily manufacturable and biocompatible preparations for clinical use. At the same time, new formulations should preserve the primary function of photosensitizers, which is the generation of reactive oxygen species capable of destroying pathogenic cells or tumors. Additionally, the use of adjuvant properties of carriers, which can enhance the effectiveness of macrocycles, is emphasized, especially in chitosan-based antibacterial formulations. Current research indicates that many promising dyes and macrocyclic compounds with high potential as photosensitizers in photodynamic therapy remain unexplored in formulation and development work. This review outlines potential new and previously explored pathways for advancing photosensitizers as active pharmaceutical ingredients (APIs).
Collapse
Affiliation(s)
- Daniel Ziental
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland.
| | - Beata Czarczynska-Goslinska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Marcin Wysocki
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Łukasz Sobotta
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
2
|
Ouyang J, Li D, Zhu L, Cai X, Liu L, Pan H, Ma A. Application and Challenge of Metalloporphyrin Sensitizers in Noninvasive Dynamic Tumor Therapy. Molecules 2024; 29:4828. [PMID: 39459197 PMCID: PMC11510167 DOI: 10.3390/molecules29204828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/22/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Dynamic tumor therapies (mainly including photodynamic therapy (PDT) and sonodynamic therapy (SDT)) offer new approaches to cancer treatment. They are often characterized by their noninvasive nature, high selectivity, and low toxicity. Sensitizers are crucial for dynamic therapy. Developing efficient sensitizers with good biocompatibility and controllability is an important aim in dynamic therapy. Porphyrins and metalloporphyrins attract great attention due to their excellent photophysical properties and low cytotoxicity under non-light. Compared to porphyrins, metalloporphyrins show greater potential for dynamic therapy due to their enhanced photochemical and photophysical properties after metal ions coordinate with porphyrin rings. This paper reviews some metalloporphyrin-based sensitizers used in photo/sonodynamic therapy and combined therapy. In addition, the probable challenges and bottlenecks in clinical translation are also discussed.
Collapse
Affiliation(s)
- Jiacheng Ouyang
- Research Center of Nano Technology and Application Engineering, Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Dan Li
- Research Center of Nano Technology and Application Engineering, Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Lizhen Zhu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoyuan Cai
- Research Center of Nano Technology and Application Engineering, Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Lanlan Liu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Aiqing Ma
- Research Center of Nano Technology and Application Engineering, Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang 523808, China
| |
Collapse
|
3
|
Botan MVG, da Silva JB, Bruschi ML. Development of nanostructured environmentally responsive system containing hydroxypropyl methylcellulose for nose-to-brain administration of meloxicam. Int J Biol Macromol 2024; 262:130015. [PMID: 38331066 DOI: 10.1016/j.ijbiomac.2024.130015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
The intranasal administration of drugs using environmentally responsive formulations, employing a combination of hydroxypropyl methylcellulose (HPMC) and poloxamer 407 (P407), can result in release systems that may assist in the treatment of neurological diseases. Meloxicam, considered a potential adjuvant in the treatment of Alzheimer's disease, could be used in these platforms. The aim of this work was to develop a mucoadhesive, thermoresponsive, and nanostructured system containing HPMC for nose-to-brain administration of meloxicam. The initially selected systems were investigated for their rheological, mechanical, and micellar size characteristics. The systems were dilatant at 25 °C and pseudoplastic with a yield value at 37 °C, showing viscoelastic properties at both temperatures. The platform containing HPMC (0.1%, w/w) and P407 (17.5%, w/w) was selected and demonstrated good mucoadhesive properties, along with an appropriate in vitro release profile. HPMC could form a binary system with P407, displaying superior mucoadhesive and thermoresponsive properties for nose-to-brain meloxicam administration, indicating that the selected formulation is worthy of clinical studies.
Collapse
Affiliation(s)
- Maria Vitoria Gouveia Botan
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Av. Colombo 5790, 87020-900 Maringa, Parana, Brazil
| | - Jéssica Bassi da Silva
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Av. Colombo 5790, 87020-900 Maringa, Parana, Brazil
| | - Marcos Luciano Bruschi
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Av. Colombo 5790, 87020-900 Maringa, Parana, Brazil.
| |
Collapse
|
4
|
Araújo JL, da Silva PB, Fonseca-Santos B, Báo SN, Chorilli M, de Souza PEN, Muehlmann LA, Azevedo RB. Photodynamic Therapy Directed to Melanoma Skin Cancer by Thermosensitive Hydrogel Containing Chlorophyll A. Pharmaceuticals (Basel) 2023; 16:1659. [PMID: 38139786 PMCID: PMC10747784 DOI: 10.3390/ph16121659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Melanoma, a severe form of skin cancer intricately linked to genetic and environmental factors, is predicted to reach 100,000 new cases worldwide by 2040, underscoring the need for effective and safe treatment options. In this study, we assessed the efficacy of a photosensitizer called Chlorophyll A (Chl-A) incorporated into hydrogels (HGs) made of chitosan (CS) and poloxamer 407 (P407) for Photodynamic Therapy (PDT) against the murine melanoma cell line B16-F10. The HG was evaluated through various tests, including rheological studies, SEM, and ATR-FTIR, along with cell viability assays. The CS- and P407-based HGs effectively released Chl-A and possessed the necessary properties for topical application. The photodynamic activity of the HG containing Chl-A was evaluated in vitro, demonstrating high therapeutic potential, with an IC50 of 25.99 µM-an appealing result when compared to studies in the literature reporting an IC50 of 173.8 µM for cisplatin, used as a positive control drug. The developed formulation of CS and P407-based HG, serving as a thermosensitive system for topical applications, successfully controlled the release of Chl-A. In vitro cell studies associated with PDT exhibited potential against the melanoma cell line.
Collapse
Affiliation(s)
- Joabe Lima Araújo
- Department of Genetics and Morphology, Institute of Biological Sciences, Darcy Ribeiro University Campus, University of Brasília, Brasília 70910-900, Brazil
| | - Patrícia Bento da Silva
- Department of Genetics and Morphology, Institute of Biological Sciences, Darcy Ribeiro University Campus, University of Brasília, Brasília 70910-900, Brazil
| | - Bruno Fonseca-Santos
- Department of Biotechnology, Health Sciences Institute, Federal University of Bahia, Salvador 40110-902, Brazil;
| | - Sônia Nair Báo
- Cellular Biology Department, Institute of Biological Sciences, Darcy Ribeiro University Campus, University of Brasília, Brasília 70910-900, Brazil;
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara 14800-903, Brazil;
| | | | | | - Ricardo Bentes Azevedo
- Department of Genetics and Morphology, Institute of Biological Sciences, Darcy Ribeiro University Campus, University of Brasília, Brasília 70910-900, Brazil
| |
Collapse
|
5
|
do Nascimento JR, de Matos Monteiro Lira BS, do Nascimento MO, Lopes GLN, Ferreira GM, de Souza Nunes GC, Gonçalves RS, Carvalho ALM, Vilegas W, da Rocha CQ. Innovative Microemulsion Loaded with Unusual Dimeric Flavonoids from Fridericia platyphylla (Cham.) L.G. Lohmann Roots. AAPS PharmSciTech 2023; 24:212. [PMID: 37848719 DOI: 10.1208/s12249-023-02655-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023] Open
Abstract
Fridericia platyphylla (Cham.) L.G. Lohmann is a species native to the Brazilian cerrado, with promising bioactivity. The organic fraction of the roots is rich in unusual dimeric flavonoids, reported as potential candidates for cancer treatment. The exploration of these flavonoids is very important, considering their diverse biological activities and the need for innovative therapeutic options. This work aimed to develop and characterize a microemulsion loaded with a non-polar fraction (DCM). The constituents were chosen, and the pseudo-ternary diagram was constructed to determine the region of microemulsion formation. The microemulsions blank (ME), with 3% (ME3) and 5% (ME5) of fraction DCM, were characterized in terms of droplet size, zeta potential, and polydispersity index. Both MEs showed particle sizes <100 nm; only ME3 exhibited better values for polydispersity index and zeta potential and was therefore selected for further study. The organoleptic and physicochemical characteristics were evaluated, revealing limpidity and transparency typical of these microstructures, physiologically acceptable pH, refractive index of 1.42±0.01, and density of 1.017 g/cm3±0.01. The stability tests showed good stability profiles even after exposure to extreme thermal conditions, with minimal changes in pH and the content of the incorporated fraction. The in vitro release study demonstrated that ME3 enabled the controlled release of the fraction, with a cumulative amount released over 60% within 6 h. Furthermore, fraction DCM and ME3 exhibited no toxicity in Tenebrio molitor larvae. The developed microemulsion exhibited excellent properties, so this study represents the first successful attempt to develop a formulation that incorporates the dimeric flavonoid fraction.
Collapse
Affiliation(s)
| | | | | | | | - Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Wagner Vilegas
- Institut of Biosciences, Coastal Campus of São Vicente, Paulista State University-UNESP, São Vicente, São Paulo, Brazil
| | | |
Collapse
|
6
|
da Silva JB, Dos Santos RS, Vecchi CF, da Silva Souza Campanholi K, da Silva Junior RC, de Castro Hoshino LV, Caetano W, Baesso ML, Simas FF, Cook MT, Bruschi ML. Boosting the photodynamic activity of erythrosine B by using thermoresponsive and adhesive systems containing cellulose derivatives for topical delivery. Int J Biol Macromol 2023; 245:125491. [PMID: 37353125 DOI: 10.1016/j.ijbiomac.2023.125491] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/08/2023] [Accepted: 06/18/2023] [Indexed: 06/25/2023]
Abstract
Erythrosine displays potential photodynamic activity against microorganisms and unhealthy cells. However, erythrosine has high hydrophilicity, negatively impacting on permeation through biological membranes. Combining biological macromolecules and thermoresponsive polymers may overcome these erythrosine-related issues, enhancing retention of topically applied drugs. The aim of this work was to investigate the performance of adhesive and thermoresponsive micellar polymeric systems, containing erythrosine in neutral (ERI) or disodium salt (ERIs) states. Optimized combinations of poloxamer 407 (polox407) and sodium carboxymethylcellulose (NaCMC) or hydroxypropyl methylcellulose (HPMC) were used as platforms for ERI/ERIs delivery. The rheological and mechanical properties of the systems was explored. Most of the formulations were plastic, thixotropic and viscoelastic at 37 °C, with suitable gelation temperature for in situ gelation. Mechanical parameters were reduced in the presence of the photosensitizer, improving the softness index. Bioadhesion was efficient for all hydrogels, with improved parameters for mucosa in contrast to skin. Formulations composed of 17.5 % polox407 and 3 % HPMC or 1 % NaCMC with 1 % (w/w) ERI/ERIs could release the photosensitizer, reaching different layers of the skin/mucosa, ensuring enough production of cytotoxic species for photodynamic therapy. Functional micelles could boost the photodynamic activity of ERI and ERIs, improving their delivery and contact time with the cells.
Collapse
Affiliation(s)
- Jéssica Bassi da Silva
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, PR, Brazil
| | - Rafaela Said Dos Santos
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, PR, Brazil
| | - Camila Felix Vecchi
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, PR, Brazil
| | | | | | | | - Wilker Caetano
- Department of Chemistry, State University of Maringa, Maringa, Brazil
| | | | - Fernanda Fogagnoli Simas
- Laboratory of Inflammatory and Neoplastic Cells, Cell Biology Department, Section of Biological Sciences, Federal University of Parana, Curitiba, Brazil
| | | | - Marcos Luciano Bruschi
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, PR, Brazil.
| |
Collapse
|
7
|
Junior RCDS, Campanholi KDSS, Maciel BC, Pinto LADM, de Morais FAP, Rando FDS, Pereira PCDS, Pozza MSDS, Nakamura CV, Caetano W. Natural photosensitizer-loaded in micellar copolymer to prevent bovine mastitis: A new post-dipping protocol on milking. Photodiagnosis Photodyn Ther 2023; 42:103337. [PMID: 36813143 DOI: 10.1016/j.pdpdt.2023.103337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023]
Abstract
Good management practices such as post-dipping applications (post-milking immersion bath) contribute to the dairy cattle health during lactation and minimize the appearance of mastitis (an infection in the mammary gland). The post-dipping procedure is performed conventionally using iodine-based solutions. The search for therapeutic modalities that are not invasive and do not cause resistance to the microorganisms that cause bovine mastitis instigates the interest of the scientific community. In this regard, antimicrobial Photodynamic Therapy (aPDT) is highlighted. The aPDT is based on combining a photosensitizer (PS) compound, light of adequate wavelength, and molecular oxygen (3O2), which triggers a series of photophysical processes and photochemical reactions that generate reactive oxygen species (ROS) responsible for the inactivation of microorganisms. The present investigation explored the photodynamic efficiency of two natural PS: Chlorophyll-rich spinach extract (CHL) and Curcumin (CUR), both incorporated into the Pluronic® F127 micellar copolymer. They were applied in post-dipping procedures in two different experiments. The photoactivity of formulations mediated through aPDT was conducted against Staphylococcus aureus, and obtained a minimum inhibitory concentration (MIC) of 6.8 mg mL-1 for CHL-F127 and 0.25 mg mL-1 for CUR-F127. Only CUR-F127 inhibited Escherichia coli growth with MIC 0.50 mg mL-1. Concerning the count of microorganisms during the days of the application, a significant difference was observed between the treatments and control (Iodine) when the teat surface of cows was evaluated. For CHL-F127 there was a difference for Coliform and Staphylococcus (p < 0.05). For CUR-F127 there was a difference for aerobic mesophilic and Staphylococcus (p < 0.05). Such application decreased bacterial load and maintained the milk quality, being evaluated via total microorganism count, physical-chemical composition, and somatic cell count (SCC).
Collapse
Affiliation(s)
| | | | - Bianca Cristina Maciel
- Department of Animal Science, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| | | | | | - Fabiana Dos Santos Rando
- Post-graduate in Agronomy, State University of Mato Grosso do Sul, Cassilândia, 79804-970, Mato Grosso do Sul, Brazil
| | | | | | - Celso Vataru Nakamura
- Department of Basic Health Sciences, Brazil State University of Maringá, Maringá, 87020-900, Paraná, Brazil
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| |
Collapse
|
8
|
Slavkova M, Tzankov B, Popova T, Voycheva C. Gel Formulations for Topical Treatment of Skin Cancer: A Review. Gels 2023; 9:gels9050352. [PMID: 37232944 DOI: 10.3390/gels9050352] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Skin cancer, with all its variations, is the most common type of cancer worldwide. Chemotherapy by topical application is an attractive strategy because of the ease of application and non-invasiveness. At the same time, the delivery of antineoplastic agents through the skin is difficult because of their challenging physicochemical properties (solubility, ionization, molecular weight, melting point) and the barrier function of the stratum corneum. Various approaches have been applied in order to improve drug penetration, retention, and efficacy. This systematic review aims at identifying the most commonly used techniques for topical drug delivery by means of gel-based topical formulations in skin cancer treatment. The excipients used, the preparation approaches, and the methods characterizing gels are discussed in brief. The safety aspects are also highlighted. The combinatorial formulation of nanocarrier-loaded gels is also reviewed from the perspective of improving drug delivery characteristics. Some limitations and drawbacks in the identified strategies are also outlined and considered within the future scope of topical chemotherapy.
Collapse
Affiliation(s)
- Marta Slavkova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Borislav Tzankov
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Teodora Popova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Christina Voycheva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| |
Collapse
|
9
|
Copaiba Oil-Based Emulsion as a Natural Chemotherapeutic Agent for the Treatment of Bovine Mastitis: In Vivo Studies. Pharmaceutics 2023; 15:pharmaceutics15020346. [PMID: 36839669 PMCID: PMC9958983 DOI: 10.3390/pharmaceutics15020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/29/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Copaiba oil-resin (COR) extracted from Copaifera reticulata Ducke has been used as a natural chemotherapeutic agent for a wide range of therapeutic applications. This study presents an emulgel design with a high concentration of COR, designed to prevent and treat mastitis. The COR was stabilized in a gel matrix constituted by carbopol C934P and Pluronic® F127 (ECO formulation) ratios. The permeation study of ECO was accessed by Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS). The results reveal a high capacity of ECO to permeate deep skin layers. Dairy cows with a history of mastitis were used as in vivo models and exposed to ECO treatment. Monitoring of the teat's inflammatory response showed that ECO effectively prevents mastitis. Furthermore, the ECO formulation was able to form a thin film gel on the application side, preventing fly proliferation and significantly reducing the pathogen load. This study reveals a drug that can used as an alternative application for mastitis in human or veterinary clinics.
Collapse
|
10
|
Campanholi KDSS, Junior RCDS, Jaski JM, da Silva JB, de Oliveira MC, dos Santos RS, Pozza MSDS, de Castro-Hoshino LV, Baesso ML, Cardozo-Filho L, Bruschi ML, Caetano W. Thermo and Photoresponsive Emulgel Loaded with Copaifera reticulata Ducke and Chlorophylls: Rheological, Mechanical, Photodynamic and Drug Delivery Properties in Human Skin. Pharmaceutics 2022; 14:pharmaceutics14122798. [PMID: 36559290 PMCID: PMC9785550 DOI: 10.3390/pharmaceutics14122798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Recently, the number of new cases of cutaneous leishmaniasis has been of concern among health agencies. Research that offers new therapeutic alternatives is advantageous, especially those that develop innovative drugs. Therefore, this paper presents the incorporation of Copaifera reticulata Ducke and chlorophyll extract into Pluronic®® F127 and Carbopol gels, under optimized polymer quantities. The chlorophyll extract (rich in photosensitizing compounds) was obtained by continuous-flow pressurized liquid extraction (PLE), a clean, environmentally friendly method. The system aims to act as as a leishmanicidal, cicatrizant, and antibiotic agent, with reinforcement of the photodynamic therapy (PDT) action. Rheological and mechanical analyses, permeation studies and bioadhesiveness analyses on human skin, and PDT-mediated activation of Staphylococcus aureus were performed. The emulgels showed gelation between 13° and 15 °C, besides pseudoplastic and viscoelastic properties. Furthermore, the systems showed transdermal potential, by releasing chlorophylls and C. reticulata Ducke into the deep layers of human skin, with good bioadhesive performance. The application of PDT reduced three logarithmic colony-forming units of S. aureus bacteria. The results support the potential of the natural drug for future clinical trials in treating wounds and cutaneous leishmania.
Collapse
Affiliation(s)
- Katieli da Silva Souza Campanholi
- Chemistry Department, State University of Maringá, Maringá 87020-900, Brazil
- Correspondence: (K.d.S.S.C.); (W.C.); Tel.: +55-44-3011-5153 (K.d.S.S.C. & W.C.)
| | | | | | - Jéssica Bassi da Silva
- Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringá, Maringá 87020-900, Brazil
| | - Mariana Carla de Oliveira
- Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringá, Maringá 87020-900, Brazil
| | - Rafaela Said dos Santos
- Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringá, Maringá 87020-900, Brazil
| | | | | | | | - Lucio Cardozo-Filho
- Chemical Engineering Department, State University of Maringá, Maringá 87020-900, Brazil
| | - Marcos Luciano Bruschi
- Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringá, Maringá 87020-900, Brazil
| | - Wilker Caetano
- Chemistry Department, State University of Maringá, Maringá 87020-900, Brazil
- Correspondence: (K.d.S.S.C.); (W.C.); Tel.: +55-44-3011-5153 (K.d.S.S.C. & W.C.)
| |
Collapse
|
11
|
Campanholi KDSS, da Silva Junior RC, Gonçalves RS, de Oliveira MC, Pozza MSDS, Leite AT, da Silva LH, Malacarne LC, Bruschi ML, Castilha LD, dos Santos TC, Caetano W. Photo-Phytotherapeutic Gel Composed of Copaifera reticulata, Chlorophylls, and k-Carrageenan: A New Perspective for Topical Healing. Pharmaceutics 2022; 14:pharmaceutics14122580. [PMID: 36559074 PMCID: PMC9785472 DOI: 10.3390/pharmaceutics14122580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Chronic wound healing represents an impactful financial burden on healthcare systems. In this context, the use of natural products as an alternative therapy reduces costs and maintains effectiveness. Phytotherapeutic gels applied in photodynamic therapy (PDT) have been developed to act as topical healing medicines and antibiotics. The bioactive system is composed of Spirulina sp. (source of chlorophylls) and Copaifera reticulata oil microdroplets, both incorporated into a polymeric blend constituted by kappa-carrageenan (k-car) and F127 copolymer, constituting a system in which all components are bioactive agents. The flow behavior and viscoelasticity of the formulations were investigated. The photodynamic activity was accessed from studies of the inactivation of Staphylococcus aureus bacteria, the main pathogen of hospital relevance. Furthermore, in vivo studies were conducted using eighteen rabbits with dermatitis (grade III and IV) in both paws. The gels showed significant antibiotic potential in vitro, eliminating up to 100% of S. aureus colonies in the presence or absence of light. The k-car reduced 41% of the viable cells; however, its benefits were enhanced by adding chlorophyll and copaiba oil. The animals treated with the phytotherapeutic medicine showed a reduction in lesion size, with healing and re-epithelialization verified in the histological analyses. The animals submitted to PDT displayed noticeable improvement, indicating this therapy's viability for ulcerative and infected wounds. This behavior was not observed in the iodine control treatment, which worsened the animals' condition. Therefore, gel formulations were a viable alternative for future pharmaceutical applications, aiming at topical healing.
Collapse
Affiliation(s)
- Katieli da Silva Souza Campanholi
- Chemistry Department, State University of Maringá, Maringá 87020-900, PR, Brazil
- Correspondence: (K.d.S.S.C.); (W.C.); Tel.: +55-44-3011-5153 (K.d.S.S.C. & W.C.)
| | | | - Renato Sonchini Gonçalves
- Laboratory of Chemistry of Natural Products, Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Maranhão, São Luís 65080-805, MA, Brazil
| | - Mariana Carla de Oliveira
- Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringá, Maringá 87020-900, PR, Brazil
| | | | - Angela Tiago Leite
- Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringá, Maringá 87020-900, PR, Brazil
| | | | | | - Marcos Luciano Bruschi
- Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringá, Maringá 87020-900, PR, Brazil
| | | | | | - Wilker Caetano
- Chemistry Department, State University of Maringá, Maringá 87020-900, PR, Brazil
- Correspondence: (K.d.S.S.C.); (W.C.); Tel.: +55-44-3011-5153 (K.d.S.S.C. & W.C.)
| |
Collapse
|
12
|
Design and Optimization of a Natural Medicine from Copaifera reticulata Ducke for Skin Wound Care. Polymers (Basel) 2022; 14:polym14214483. [DOI: 10.3390/polym14214483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
In this study, we developed a bioadhesive emulsion-filled gel containing a high amount of Copaifera reticulata Ducke oil-resin as a veterinary or human clinical proposal. The phytotherapeutic system had easy preparation, low cost, satisfactory healing ability, and fly repellency, making it a cost-effective clinical strategy for wound care and myiasis prevention. Mechanical, rheological, morphological, and physical stability assessments were performed. The results highlight the crosslinked nature of the gelling agent, with three-dimensional channel networks stabilizing the Copaifera reticulata Ducke oil-resin (CrD-Ore). The emulgel presented antimicrobial activity, satisfactory adhesion, hardness, cohesiveness, and viscosity profiles, ensuring the easy spreading of the formulation. Considering dermatological application, the oscillatory responses showed a viscoelastic performance that ensures emulgel retention at the action site, reducing the dosage frequencies. In Vivo evaluations were performed using a case report to treat ulcerative skin wounds aggravated by myiasis in calves and heifers, which demonstrated healing, anti-inflammatory, and repellent performance for the emulsion-filled gel. The emulgel preparation, which is low in cost, shows promise as a drug for wound therapy.
Collapse
|
13
|
da Silva Souza Campanholi K, Sonchini Gonçalves R, Bassi da Silva J, Said dos Santos R, Carla de Oliveira M, Barbosa de Souza Ferreira S, Vizioli de Castro-Hoshino L, Bento Balbinot R, Lazarin-Bidóia D, Luciano Baesso M, Luciano Bruschi M, Vataru Nakamura C, Caetano W. Thermal stimuli-responsive topical platform based on copaiba oil-resin: Design and performance upon ex-vivo human skin. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Campanholi KDSS, Zanqui AB, Pedroso de Morais FA, Jaski JM, Gonçalves RS, da Silva Junior RC, Cardozo-Filho L, Caetano W. Obtaining phytotherapeutic chlorophyll extracts using pressurized liquid technology. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
|
16
|
Ludačka P, Kubát P, Bosáková Z, Mosinger J. Antibacterial Nanoparticles with Natural Photosensitizers Extracted from Spinach Leaves. ACS OMEGA 2022; 7:1505-1513. [PMID: 35036813 PMCID: PMC8756605 DOI: 10.1021/acsomega.1c06229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
We prepared antibacterial polystyrene nanoparticles (NPs) with natural photosensitizers from chlorophyll (Chl) extract via a simple nanoprecipitation method using the same solvent for dissolution of the polystyrene matrix and extraction of Chls from spinach leaves. A high photo-oxidation and antibacterial effect was demonstrated on Escherichia coli and was based on the photogeneration of singlet oxygen O2(1Δg), which was directly monitored by NIR luminescence measurements and indirectly verified using a chemical trap. The photoactivity of NPs was triggered by visible light, with enhanced red absorption by Chls. To reduce the quenching effect of carotenoids (β-carotene, lutein, etc.) in the Chl extract, diluted and/or preirradiated samples, in which the photo-oxidized carotenoids lose their quenching effect, were used for preparation of the NPs. For enhanced photo-oxidation and antibacterial effects, a sulfonated polystyrene matrix was used for preparation of a stable dispersion of sulfonated NPs, with the quenching effect of carotenoids being suppressed.
Collapse
Affiliation(s)
- Pavel Ludačka
- Faculty
of Science, Charles University, 2030 Hlavova, 128 43 Prague 2, Czech Republic
| | - Pavel Kubát
- J.
Heyrovský Institute of Physical Chemistry of the Czech Academy
of Sciences, v.v.i.,
Dolejškova 3, 182 23 Prague 8, Czech Republic
| | - Zuzana Bosáková
- Faculty
of Science, Charles University, 2030 Hlavova, 128 43 Prague 2, Czech Republic
| | - Jiří Mosinger
- Faculty
of Science, Charles University, 2030 Hlavova, 128 43 Prague 2, Czech Republic
| |
Collapse
|
17
|
da Silva JB, Dos Santos RS, Vecchi CF, Bruschi ML. Drug Delivery Platforms Containing Thermoresponsive Polymers and Mucoadhesive Cellulose Derivatives: A Review of Patents. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2022; 16:90-102. [PMID: 35379163 DOI: 10.2174/2667387816666220404123625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/09/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Nowadays, the development of mucoadhesive systems for drug delivery has gained keen interest, with enormous potential in applications through different routes. Mucoadhesion characterizes an attractive interaction between the pharmaceutical dosage form and the mucosal surface. Many polymers have shown the ability to interact with mucus, increasing the residence time of local and/or systemic administered preparations, such as tablets, patches, semi-solids, and micro and nanoparticles. Cellulose is the most abundant polymer on the earth. It is widely used in the pharmaceutical industry as an inert pharmaceutical ingredient, mainly in its covalently modified forms: methylcellulose, ethylcellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, and carboxymethylcellulose salts. Aiming to overcome the drawbacks of oral, ocular, nasal, vaginal, and rectal routes and thereby maintaining patient compliance, innovative polymer blends have gained the interest of the pharmaceutical industry. Combining mucoadhesive and thermoresponsive polymers allows for simultaneous in situ gelation and mucoadhesion, thus enhancing the retention of the system at the site of administration and drug availability. Thermoresponsive polymers have the ability to change physicochemical properties triggered by temperature, which is particularly interesting considering the physiological temperature. The present review provides an analysis of the main characteristics and applications of cellulose derivatives as mucoadhesive polymers and their use in blends together with thermoresponsive polymers, aiming at platforms for drug delivery. Patents were reviewed, categorized, and discussed, focusing on the applications and pharmaceutical dosage forms using this innovative strategy. This review manuscript also provides a detailed introduction to the topic and a perspective on further developments.
Collapse
Affiliation(s)
- Jéssica Bassi da Silva
- Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, State University of Maringa, Maringa, PR, Brazil
| | - Rafaela Said Dos Santos
- Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, State University of Maringa, Maringa, PR, Brazil
| | - Camila Felix Vecchi
- Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, State University of Maringa, Maringa, PR, Brazil
| | - Marcos Luciano Bruschi
- Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, State University of Maringa, Maringa, PR, Brazil
| |
Collapse
|
18
|
da Silva Souza Campanholi K, Combuca da Silva Junior R, Cazelatto da Silva I, Said dos Santos R, Vecchi CF, Bruschi ML, Soares dos Santos Pozza M, Vizioli de Castro-Hoshino L, Baesso ML, Hioka N, Caetano W, Batistela VR. Stimulus-responsive phototherapeutic micellar platform of Rose Bengal B: A new perspective for the treatment of wounds. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Barbosa PM, Campanholi KDSS, Vilsinski BH, Ferreira SBDS, Gonçalves RS, Castro-Hoshino LVD, Oliveira ACVD, Sato F, Baesso ML, Bruschi ML, Caetano W. Aluminum phthalocyanine hydroxide-loaded thermoresponsive biomedical hydrogel: A design for targeted photosensitizing drug delivery. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Campanholi KDSS, da Silva JB, Batistela VR, Gonçalves RS, Said Dos Santos R, Balbinot RB, Lazarin-Bidóia D, Bruschi ML, Nakamura TU, Nakamura CV, Caetano W. Design and Optimization of Stimuli-responsive Emulsion-filled Gel for Topical Delivery of Copaiba Oil-resin. J Pharm Sci 2021; 111:287-292. [PMID: 34662545 DOI: 10.1016/j.xphs.2021.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 01/30/2023]
Abstract
This study presents a phytotherapeutic emulsion-filled gel design composed of Pluronic® F127, Carbopol® C934P, and high level of copaiba oil-resin (PHY-ECO). Mathematical modeling and response surface methodology (RSM) were employed to access the optimal ratio between the oil and the polymer gel-matrix constituents. The chemometric approach showed robust mechanical and thermoresponsive properties for emulsion gel. The model predicts viscosity parameters at 35.0°C (skin temperature) from PHY-ECOs. Optimized PHY-ECOs were described by 18-20% (w/w) F127, 0.25% (w/w) C934P, and 15% (w/w) copaiba oil-resin, and showed interfacial layers properties that led to high physicochemical stability. Besides, it had thermal stimuli-responsive that led large viscosity range before and after skin administration, observed by oscillatory rheology. These behaviors give the optimized smart PHY-ECO high design potential to be used as a pharmaceutical platform for CO delivery, focusing on the anti-inflammatory therapy and skin wound care.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tânia Ueda Nakamura
- Department of Basic Health Sciences, State University of Maringa, Maringa, Brazil
| | | | - Wilker Caetano
- Department of Chemistry, State University of Maringa, Maringa, Brazil
| |
Collapse
|
21
|
Li B, Niu X, Xie M, Luo F, Huang X, You Z. Tumor-Targeting Multifunctional Nanoprobe for Enhanced Photothermal/Photodynamic Therapy of Liver Cancer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8064-8072. [PMID: 34189915 DOI: 10.1021/acs.langmuir.0c03578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Numerous researchers have committed to the development of combined therapy strategies for tumors, since their use in the treatment of tumors has more ideal therapeutic outcomes. In the study, we designed and prepared gold nanostars with CD147 modified on the surface and then efficiently loaded a photosensitive drug IR820 to construct a multifunctional nanoprobe. Due to the protection effect of gold, the nanoprobe has oxygen/heat energy generation capability and can also efficiently deliver the loaded drugs inside the tumor cells. Moreover, the nanoprobe has excellent photothermal/photodynamic therapeutic outcomes. The observation by photoacoustic real-time imaging validated the outstanding tumor-targeting characteristics of our nanoprobe. Finally, in the in vivo treatment experiment, the nanoprobe achieved ideal tumor-suppressive effects after the photothermal/photodynamic therapy. In summary, the findings of this experiment are useful in the development of new combined tumor therapy strategies based on nanomaterials.
Collapse
Affiliation(s)
- Bei Li
- Department of Biliary Surgery, West China Hospital of Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu 610041, Sichuan, China
| | - Xiaoya Niu
- Department of Biliary Surgery, West China Hospital of Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu 610041, Sichuan, China
| | - Maodi Xie
- West Chia-Washington Mitochondria and Metabolism Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Fan Luo
- Department of Biliary Surgery, West China Hospital of Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu 610041, Sichuan, China
| | - Xiuyi Huang
- Department of Biliary Surgery, West China Hospital of Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu 610041, Sichuan, China
| | - Zhen You
- Department of Biliary Surgery, West China Hospital of Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu 610041, Sichuan, China
| |
Collapse
|
22
|
Rizzi V, Gubitosa J, Fini P, Fraix A, Sortino S, Agostiano A, Cosma P. Development of Spirulina sea-weed raw extract/polyamidoamine hydrogel system as novel platform in photodynamic therapy: Photostability and photoactivity of chlorophyll a. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 119:111593. [PMID: 33321637 DOI: 10.1016/j.msec.2020.111593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/16/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022]
Abstract
The aim of this paper is to present and characterize Polyamidoamine-based hydrogels (PAA) as scaffolds to host photoactive Chlorophyll a (Chl a) from Spirulina (Arthrospira platensis) sea-weed Extract (SE), for potential applications in Photodynamic Therapy (PDT). The pigment extracted from SE was blended inside PAA without further purification, according to Green Chemistry principles. A comprehensive investigation of this hybrid platform, PAA/SE-based, was thus performed in our laboratory and, by means of Visible absorption and emission spectroscopies, the Chl a features, stability and photoactivity were studied. The obtained results evidenced the presence of two main Chl a forms, monomeric and dimeric, interacting with hydrogel polyamidoamines network. To better understand the nature of this interaction, the spectroscopic investigation of this system was performed both before and after the solidification of the hydrogel, that occurred at least in 24 h. Then, focusing the attention on solid scaffold, the 1Chl a⁎ fluorescence lifetime and FTIR-ATR analyses of PAA/SE were carried out, confirming the findings. The swelling and Point Zero Charge (PZC) measurements of solid PAA and PAA/SE were additionally performed to investigate the hydrogel behavior in water. Chl a molecules blended in PAA were (photo) stable and photoactive, and this latter feature was demonstrated showing that the pigment induced, when swelled in water and under irradiation, the formation of singlet oxygen (1O2), measured by direct and indirect methods.
Collapse
Affiliation(s)
- Vito Rizzi
- Università degli Studi "Aldo Moro" di Bari, Dip. Chimica, Via Orabona, 4, 70126 Bari, Italy
| | - Jennifer Gubitosa
- Consiglio Nazionale delle Ricerche CNR-IPCF, UOS Bari, Via Orabona, 4, 70126 Bari, Italy
| | - Paola Fini
- Consiglio Nazionale delle Ricerche CNR-IPCF, UOS Bari, Via Orabona, 4, 70126 Bari, Italy
| | - Aurore Fraix
- Laboratory of Photochemistry, Department of Drug Sciences, University of Catania, Viale Andrea Doria 6, I-95125 Catania, Italy
| | - Salvatore Sortino
- Laboratory of Photochemistry, Department of Drug Sciences, University of Catania, Viale Andrea Doria 6, I-95125 Catania, Italy
| | - Angela Agostiano
- Università degli Studi "Aldo Moro" di Bari, Dip. Chimica, Via Orabona, 4, 70126 Bari, Italy; Consiglio Nazionale delle Ricerche CNR-IPCF, UOS Bari, Via Orabona, 4, 70126 Bari, Italy
| | - Pinalysa Cosma
- Università degli Studi "Aldo Moro" di Bari, Dip. Chimica, Via Orabona, 4, 70126 Bari, Italy; Consiglio Nazionale delle Ricerche CNR-IPCF, UOS Bari, Via Orabona, 4, 70126 Bari, Italy.
| |
Collapse
|
23
|
da Silva-Junior RC, Campanholi KDSS, de Morais FAP, Pozza MSDS, de Castro-Hoshino LV, Baesso ML, da Silva JB, Bruschi ML, Caetano W. Photothermal Stimuli-Responsive Hydrogel Containing Safranine for Mastitis Treatment in Veterinary Using Phototherapy. ACS APPLIED BIO MATERIALS 2020. [DOI: 10.1021/acsabm.0c01143] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Effect of Chlorophyll Hybrid Nanopigments from Broccoli Waste on Thermomechanical and Colour Behaviour of Polyester-Based Bionanocomposites. Polymers (Basel) 2020; 12:polym12112508. [PMID: 33126539 PMCID: PMC7692781 DOI: 10.3390/polym12112508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 01/07/2023] Open
Abstract
Natural dyes obtained from agro-food waste can be considered promising substitutes of synthetic dyes to be used in several applications. With this aim, in the present work, we studied the use of chlorophyll dye (CD) extracted from broccoli waste to obtain hybrid nanopigments based on calcined hydrotalcite (HT) and montmorillonite (MMT) nanoclays. The synthesized chlorophyll hybrid nanopigments (CDNPs), optimized by using statistical designed experiments, were melt-extruded with a polyester-based matrix (INZEA) at 7 wt% loading. Mechanical, thermal, structural, morphological and colour properties of the obtained bionanocomposites were evaluated. The obtained results evidenced that the maximum CD adsorption into HT was obtained when adding 5 wt% of surfactant (sodium dodecyl sulphate) without using any biomordant and coupling agent, while the optimal conditions for MMT were achieved without adding any of the studied modifiers. In both cases, an improvement in CD thermal stability was observed by its incorporation in the nanoclays, able to protect chlorophyll degradation. The addition of MMT to INZEA resulted in large ΔE* values compared to HT incorporation, showing bionanocomposite green/yellow tones as a consequence of the CDNPs addition. The results obtained by XRD and TEM revealed a partially intercalated/exfoliated structure for INZEA-based bionanocomposites, due to the presence of an inorganic filler in the formulation of the commercial product, which was also confirmed by TGA analysis. CDNPs showed a reinforcement effect due to the presence of the hybrid nanopigments and up to 26% improvement in Young's modulus compared to neat INZEA. Finally, the incorporation of CDNPs induced a decrease in thermal stability as well as limited effect in the melting/crystallization behaviour of the INZEA matrix. The obtained results showed the potential use of green natural dyes from broccoli wastes, adsorbed into nanoclays, for the development of naturally coloured bionanocomposites.
Collapse
|
25
|
da Silva JB, Dos Santos RS, da Silva MB, Braga G, Cook MT, Bruschi ML. Interaction between mucoadhesive cellulose derivatives and Pluronic F127: Investigation on the micelle structure and mucoadhesive performance. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111643. [PMID: 33321681 DOI: 10.1016/j.msec.2020.111643] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/15/2020] [Accepted: 10/15/2020] [Indexed: 01/10/2023]
Abstract
Systems composed of bioadhesive and thermoresponsive polymers can combine in situ gelation with bio/mucoadhesion, enhancing retention of topically applied drugs. The effect of bioadhesive sodium carboxymethylcellulose (NaCMC) and hydroxypropyl methylcellulose cellulose (HPMC) on the properties of thermoresponsive Pluronic® F127 (F127) was explored, including micellization and the mucoadhesion. A computational analysis between these polymers and their molecular interactions were also studied, rationalising the design of improved binary polymeric systems for pharmaceutical and biomedical applications. The morphological characterization of polymeric systems was conducted by SEM. DSC analysis was used to investigate the crystallization and micellization enthalpy of F127 and the mixed systems. Micelle size measurements and TEM micrographs allowed for investigation into the interference of cellulose derivatives on F127 micellization. Both cellulose derivatives reduced the critical micellar concentration and enthalpy of micellization of F127, altering hydrodynamic diameters of the aggregates. Mucoadhesion performance was useful to select the best systems for mucosal application. The systems composed of 17.5% (w/w) F127 and 3% (w/w) HPMC or 1% (w/w) NaCMC are promising as topical drug delivery systems, mainly on mucosal surfaces. They were biocompatible when tested against Artemia salina, and also able to release a model of hydrophilic drug in a controlled manner.
Collapse
Affiliation(s)
- Jéssica Bassi da Silva
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, PR, Brazil
| | - Rafaela Said Dos Santos
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, PR, Brazil
| | | | - Gustavo Braga
- Department of Chemistry, State University of Maringa, Maringa, Brazil
| | - Michael Thomas Cook
- Research Centre in Topical Drug Delivery and Toxicology, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, United Kingdom
| | - Marcos Luciano Bruschi
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, PR, Brazil.
| |
Collapse
|
26
|
Synthesis of Fluorinated Chlorophylls‐
a
and Their Bio/Physico‐Chemical Properties. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Ferreira SBDS, Slowik KM, Castro Hoshino LVD, Baesso ML, Murdoch C, Colley HE, Bruschi ML. Mucoadhesive emulgel systems containing curcumin for oral squamous cell carcinoma treatment: From pre-formulation to cytotoxicity in tissue-engineering oral mucosa. Eur J Pharm Sci 2020; 151:105372. [PMID: 32450222 DOI: 10.1016/j.ejps.2020.105372] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/20/2020] [Accepted: 05/04/2020] [Indexed: 11/29/2022]
Abstract
Current oral squamous cell carcinoma chemotherapies demonstrate off-target toxicity, which could be reduced by local delivery. Curcumin acts via many cellular targets to give anti-cancer properties; however the bioavailability is hindered by its physicochemical characteristics. The incorporation of curcumin into emulgel systems could be a promising approach for its solubilization and delivery. The aim of this work was to develop emulgel systems containing curcumin for the treatment of oral cancer. The emulgels containing curcumin were prepared with poloxamer 407, acrylic acid derivatives, oil phase (sesame oil or isopropyl myristate). The more stable system was evaluated for mechanical and rheological properties, as well as, the in vitro drug release profile, permeation and cytotoxic potential to oral mucosa models. The flow-throw system evidenced that the formulations could keep 5 min over porcine oral mucosa. Emulgel showed pseudoplastic behavior and a gelation temperature of 33 °C, which ensure their higher consistency. In addition, 70% of the incorporated curcumin was released within 24 h in an in vitro drug release study and could permeate porcine oral mucosa. Monolayers cultures and tissue-engineered models showed the selectivity of the drug and systems for tumor cells. The physicochemical properties, subsequent release and permeation of curcumin to selectivity kill cancer cells could be improved by the incorporation into emulgel systems.
Collapse
Affiliation(s)
- Sabrina Barbosa de Souza Ferreira
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Colombo Avenue, 5790, 97020-900, Maringa, Brazil
| | - Klaudia M Slowik
- Department of Physics, State University of Maringa, Colombo Avenue, 5790, 97020-900, Maringa, Brazil
| | | | - Mauro Luciano Baesso
- The School of Clinical Dentistry, The University of Sheffield, 19 Claremont Crescent, S10 2TA, Sheffield, UK
| | - Craig Murdoch
- Department of Physics, State University of Maringa, Colombo Avenue, 5790, 97020-900, Maringa, Brazil
| | - Helen Elizabeth Colley
- Department of Physics, State University of Maringa, Colombo Avenue, 5790, 97020-900, Maringa, Brazil
| | - Marcos Luciano Bruschi
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Colombo Avenue, 5790, 97020-900, Maringa, Brazil.
| |
Collapse
|
28
|
de Souza Ferreira SB, Braga G, Oliveira ÉLD, Rosseto HC, Hioka N, Caetano W, Bruschi ML. Colloidal systems composed of poloxamer 407, different acrylic acid derivatives and curcuminoids: Optimization of preparation method, type of bioadhesive polymer and storage conditions. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Takahashi T, Ogasawara S, Shinozaki Y, Tamiaki H. Synthesis of Cationic Pyridinium–Chlorin Conjugates with Various Counter Anions and Effects of the Anions on Their Photophysical Properties. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tatsuya Takahashi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Shin Ogasawara
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yoshinao Shinozaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
30
|
Bruschi ML, da Silva JB, Rosseto HC. Photodynamic Therapy of Psoriasis Using Photosensitizers of Vegetable Origin. Curr Pharm Des 2020; 25:2279-2291. [PMID: 31258060 DOI: 10.2174/1381612825666190618122024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022]
Abstract
Psoriasis is an immune-mediated, chronic and recurrent inflammatory skin disease, prevalent worldwide, and represents an important burden in life quality of patients. The most common clinical variant is termed as psoriasis vulgaris or plaque psoriasis, which with an individualized and carefully monitored therapy can decrease the patients' morbidity and improving their life quality. The aim is to achieve disease control, minimize the adverse drug effects, and tailor the treatment to individual patient factors. Photodynamic therapy (PDT) is based on local or systemic administration of a non-toxic photosensitizer followed by irradiation with a particular wavelength to generate reactive oxygen species (ROS), mainly highly cytotoxic singlet oxygen (1O2). The generation of these species results in the attack to substrates involved in biological cycles causing necrosis and apoptosis of affected tissues. Photosensitizers are found in natural products and also obtained by partial syntheses from abundant natural starting compounds. They can be isolated at low cost and in large amounts from plants or algae. Therefore, this manuscript reviews the use of molecules from vegetal sources as photosensitizer agents for the PDT of psoriasis. Psoriasis pathogenesis, management and treatment were reviewed. PDT principles, fundamentals and utilization for the treatment of psoriasis were also discussed. Photosensitizers for PDT of psoriasis are also reviewed focusing on those from vegetal sources. Despite the PDT is utilized for the treatment of psoriasis, very little amount of photosensitizers from plant sources are utilized, such as chlorophyll derivatives and hypericin; however, other natural photosensitizers such as curcumin, could also be investigated. They could constitute a very important, safe and cheap alternative for the successful photodynamic treatment of psoriasis.
Collapse
Affiliation(s)
- Marcos L Bruschi
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, PR, Brazil
| | - Jéssica Bassi da Silva
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, PR, Brazil
| | - Hélen C Rosseto
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, PR, Brazil
| |
Collapse
|
31
|
da Silva Souza Campanholi K, Jaski JM, da Silva Junior RC, Zanqui AB, Lazarin-Bidóia D, da Silva CM, da Silva EA, Hioka N, Nakamura CV, Cardozo-Filho L, Caetano W. Photodamage on Staphylococcus aureus by natural extract from Tetragonia tetragonoides (Pall.) Kuntze: Clean method of extraction, characterization and photophysical studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 203:111763. [PMID: 31931382 DOI: 10.1016/j.jphotobiol.2019.111763] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 01/05/2023]
Abstract
Photodynamic therapy (PDT) is a clinical modality that allows the destruction of tumor cells and microorganisms by reactive oxygen species, formed by the combination of photosensitizer (PS), molecular oxygen and adequate wavelength light. This research, through a clean methodology that involves pressurized liquids extraction (PLE), obtained a highly antimicrobial extract of Tetragonia tetragonoides, which rich in chlorophylls as photosensitizers. The Chlorophylls-based extract (Cbe-PLE) presented pharmacological safety, through the maintenance of cellular viability. In addition, Cbe-PLE showed great efficacy against Staphylococcus aureus, with severe dose-dependent damage to the cell wall of the pathogen. The obtained product has a high potential for the development of photostimulated phytotherapic formulations for clinical applications in localized infections, as a complementary therapeutic alternative to antibiotics.
Collapse
Affiliation(s)
| | - Jonas Marcelo Jaski
- Department of Agronomy, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| | | | - Ana Beatriz Zanqui
- Department of Chemical Engineering, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| | | | | | - Edson Antonio da Silva
- State University of Western Paraná, 645 Faculdade Street, 85903-000, Toledo, Paraná, Brazil
| | - Noboru Hioka
- Department of Chemistry, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| | - Celso Vataru Nakamura
- Department of Microbiology, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| | - Lucio Cardozo-Filho
- Department of Chemical Engineering, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| |
Collapse
|
32
|
Ferreira SBDS, Braga G, Oliveira ÉL, da Silva JB, Rosseto HC, de Castro Hoshino LV, Baesso ML, Caetano W, Murdoch C, Colley HE, Bruschi ML. Design of a nanostructured mucoadhesive system containing curcumin for buccal application: from physicochemical to biological aspects. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:2304-2328. [PMID: 31886108 PMCID: PMC6902884 DOI: 10.3762/bjnano.10.222] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/23/2019] [Indexed: 05/04/2023]
Abstract
Mucoadhesive nanostructured systems comprising poloxamer 407 and Carbopol 974P® have already demonstrated good mucoadhesion, as well as improved mechanical and rheological properties. Curcumin displays excellent biological activity, mainly in oral squamous cancer; however, its physicochemical characteristics hinder its application. Therefore, the aim of this study was to develop nanostructured formulations containing curcumin for oral cancer therapy. The photophysical interactions between curcumin and the formulations were elucidated by incorporation kinetics and location studies. They revealed that the drug was quickly incorporated and located in the hydrophobic portion of nanometer-sized polymeric micelles. Moreover, the systems displayed plastic behavior with rheopexy characteristics at 37 °C, viscoelastic properties and a gelation temperature of 36 °C, which ensures increased retention after application in the oral cavity. The mucoadhesion results confirmed the previous findings with the nanostructured systems showing a residence time of 20 min in porcine oral mucosa under flow system conditions. Curcumin was released after 8 h and could permeate through the porcine oral mucosa. Cytotoxicity testing revealed that the formulations were selective to cancer cells over healthy cells. Therefore, these systems could improve the physicochemical characteristics of curcumin by providing improved release and permeation, while selectivity targeting cancer cells.
Collapse
Affiliation(s)
- Sabrina Barbosa de Souza Ferreira
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, Brazil
| | - Gustavo Braga
- Department of Chemistry, State University of Maringa, Maringa, Brazil
| | | | - Jéssica Bassi da Silva
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, Brazil
| | - Hélen Cássia Rosseto
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, Brazil
| | | | | | - Wilker Caetano
- Department of Chemistry, State University of Maringa, Maringa, Brazil
| | - Craig Murdoch
- The School of Clinical Dentistry, The University of Sheffield, Sheffield, UK
| | | | - Marcos Luciano Bruschi
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, Brazil
| |
Collapse
|