1
|
Matsubara H, Tokiwa Y, Masunaga A, Sakamoto H, Shishida K, Ohshima K, Prause A, Gradzielski M. Surface freezing of cationic surfactant-adsorbed films at the oil-water interface: Impact on oil-in-water emulsion and pickering emulsion stability. Adv Colloid Interface Sci 2024; 334:103309. [PMID: 39393254 DOI: 10.1016/j.cis.2024.103309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
When n-alkanes or n-alcohols coexist with surfactants that have similar chain lengths, they can form mixed surface-frozen films at the oil-water interface. In this review, we first explain the basic characteristics of this surface freezing transition mainly from a thermodynamic viewpoint. Then, we discussed the effect of surface freezing of a cationic surfactant (cetyltrimethylammonium chloride: CTAC) with tetradecane, hexadecane, or hexadecanol on the kinetic stability of the oil-in-water (O/W) emulsions. We show that the surface frozen film not only increases the kinetic stability of the O/W emulsions but also stably encapsulates coexisting organic molecules in the oil core. Finally, we will introduce one of our recent works in which we observed that the exchange between silica nanoparticles and CTAC molecules occurs at the surface of Pickering emulsions when the oil-water interfacial tension is lowered by the surface freezing. The resulting detachment of silica particles from the oil-water interface broke the Pickering emulsion. The advantages of controlling the stability of O/W emulsions via the use of surface-frozen film are discussed in comparison with normal surfactant emulsifiers in the conclusion part of the review.
Collapse
Affiliation(s)
- Hiroki Matsubara
- Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-3-1, Higashi, Hiroshima 739-8526, Japan; Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-Ku, 819-0395 Fukuoka, Japan.
| | - Yuhei Tokiwa
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-Ku, 819-0395 Fukuoka, Japan
| | - Akihiro Masunaga
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-Ku, 819-0395 Fukuoka, Japan
| | - Hiromu Sakamoto
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-Ku, 819-0395 Fukuoka, Japan
| | - Kazuki Shishida
- Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-3-1, Higashi, Hiroshima 739-8526, Japan
| | - Kouki Ohshima
- Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-3-1, Higashi, Hiroshima 739-8526, Japan
| | - Albert Prause
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany
| | - Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany.
| |
Collapse
|
2
|
Jia G, Zhang H. Control of emulsion crystal growth in low-temperature environments. Adv Colloid Interface Sci 2024; 334:103313. [PMID: 39437491 DOI: 10.1016/j.cis.2024.103313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
Currently, various types of emulsions can be applied to a wide range of systems. Emulsions are thermodynamically unstable systems, and their crystallization can be affected by a variety of factors. The nucleation and growth processes of emulsion crystal networks are determined on the basis of reported theoretical and experimental methods. The issues addressed include changes in the apparent crystal morphology of samples, changes in thermal properties with respect to temperature, changes in boundary conditions, and changes in the various applications of emulsions as feedstocks or in processing and storage methods. Changes in a variety of common emulsions during constant-temperature storage and unavoidable temperature fluctuations (e.g., multiple freeze-thaw cycles) are considered. Different methods for controlling the crystalline stability of these colloidal systems are also discussed. This review outlines the crystallization mechanism of emulsions during their food processing and storage.
Collapse
Affiliation(s)
- Guoliang Jia
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China; Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China.
| | - Huawen Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
3
|
MacWilliams SV, Clulow AJ, Gillies G, Beattie DA, Krasowska M. Recent advances in studying crystallisation of mono- and di-glycerides at oil-water interfaces. Adv Colloid Interface Sci 2024; 326:103138. [PMID: 38522289 DOI: 10.1016/j.cis.2024.103138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
This review focuses on the current understanding regarding lipid crystallisation at oil-water interfaces. The main aspects of crystallisation in bulk lipids will be introduced, allowing for a more comprehensive overview of the crystallisation processes within emulsions. Additionally, the properties of an emulsion and the impact of lipid crystallisation on emulsion stability will be discussed. The effect of different emulsifiers on lipid crystallisation at oil-water interfaces will also be reviewed, however, this will be limited to their impact on the interfacial crystallisation of monoglycerides and diglycerides. The final part of the review highlights the recent methodologies used to study crystallisation at oil-water interfaces.
Collapse
Affiliation(s)
- Stephanie V MacWilliams
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia.
| | - Andrew J Clulow
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Graeme Gillies
- Fonterra Research and Development Centre, Dairy Farm Road, Fitzherbert, Palmerston North 4442, New Zealand
| | - David A Beattie
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia
| | - Marta Krasowska
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
4
|
Shishida K, Matsubara H. Demulsification of Silica Stabilized Pickering Emulsions Using Surface Freezing Transition of CTAC Adsorbed Films at the Tetradecane-Water Interface. J Oleo Sci 2023; 72:1083-1089. [PMID: 37989305 DOI: 10.5650/jos.ess23102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
The adsorbed film of cetyltrimethylammonium chloride (CTAC) at the tetradecane (C14) - water interface undergoes a first-order surface transition from two-dimensional liquid to solid states upon cooling. In this paper, we utilized this surface freezing transition to realize a spontaneous demulsification of Pickering emulsions stabilized by silica particles. In the temperature range above the surface freezing transition, the interfacial tension of silica laden oil-water interface was lower than CTAC adsorbed film, hence, stable Pickering emulsion was obtained by vortex mixing. However, the interfacial tension of CTAC adsorbed film decreased rapidly below the surface freezing temperature and became lower than the silica laden interface. The reversal of the interfacial tensions between silica laden and CTAC adsorbed films gave rise to Pickering emulsion demulsification by the desorption of silica particles from the oil-water interface. The exchange of silica particles and CTAC at the surface of emulsion droplets was also confirmed experimentally by using phase modulation ellipsometry at the oil-water interface.
Collapse
Affiliation(s)
- Kazuki Shishida
- Graduate School of Advanced Science and Engineering, Hiroshima University
| | - Hiroki Matsubara
- Graduate School of Advanced Science and Engineering, Hiroshima University
| |
Collapse
|
5
|
Matsubara S, Funatsu T, Tanida H, Aratono M, Imai Y, Matsubara H. Effect of Surface Freezing of a Cationic Surfactant and n-Alkane Mixed Adsorbed Film on Counterion Distribution and Surface Dilational Viscoelasticity Studied by Total Reflection XAFS and Surface Quasi-Elastic Light Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37224057 DOI: 10.1021/acs.langmuir.3c00591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
When liquid alkane droplets are placed on a surfactant solution surface having a proper surface density, alkane molecules penetrated into the surfactant-adsorbed film to form a mixed monolayer. Such a mixed monolayer undergoes a thermal phase transition from two-dimensional liquid to solid monolayers upon cooling when surfactant tail and alkane have similar chain lengths. We applied the total-reflection XAFS spectroscopy and surface quasi-elastic light scattering to the mixed adsorbed film of cetyltrimethylammonium bromide and hexadecane to elucidate the impact on the surface phase transition on the counterion distribution of the mixed monolayer. The EXAFS analysis verified that a higher percentage of counter Br- ions were localized in the Stern layer than in the diffuse double layer in the surface solid film compared to the surface liquid film, which resulted in a reduction in the surface elasticity measured by the SQELS. The finding that the surface phase transition accompanies the change in the counterion distribution will be important to consider the future applications of the colloidal systems, in which the coexistence of a surfactant and alkane molecules is essential, such as foams and emulsions.
Collapse
Affiliation(s)
- Satoshi Matsubara
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Teruko Funatsu
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hajime Tanida
- Materials Sciences Research Center, Sector of Nuclear Science Research, Japan Atomic Energy Agency, 1-1-1 Koto, Sayo, Hyogo 679-5148, Japan
| | - Makoto Aratono
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yosuke Imai
- Division for Experimental Nature Science, Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroki Matsubara
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-3-1, Higashi, Hiroshima 739-8526, Japan
| |
Collapse
|
6
|
Study on thermophysical properties of C7∼C9 binary alkane PCM and preparation of anti-volatile emulsion template for cryogenic thermal energy storage. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
Nanikashvili PM, Butenko AV, Deutsch M, Lee D, Sloutskin E. Salt-induced stability and modified interfacial energetics in self-faceting emulsion droplets. J Colloid Interface Sci 2022; 621:131-138. [PMID: 35487043 DOI: 10.1016/j.jcis.2022.03.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
Abstract
HYPOTHESIS The counterintuitive temperature-controlled self-faceting of water-suspended, surfactant-stabilized, liquid oil droplets provides new opportunities in engineering of smart liquids, the properties of which are controllable by external stimuli. However, many emulsions exhibiting self-faceting phenomena have limited stability due to surfactant precipitation. The emulsions' stability may be enhanced, and their inter-droplet electrostatic repulsion tuned, through controlled charge screening driven by varying-concentration added salts. Moreover, in many technologically-relevant situations, salts may already exist in the emulsion's aqueous phase. Yet, salts' impact on self-faceting effects has never been explored. We hypothesize that the self-faceting transitions' temperatures, and stability against surfactant precipitation, of ionic-surfactants-stabilized emulsions are significantly modified by salt introduction. EXPERIMENTS We explore the temperature-dependent impact of NaCl and CsCl salt concentration on the emulsions' phase diagrams, employing optical microscopy of emulsion droplet shapes and interfacial tension measurements, both sensitive to interfacial phase transitions. FINDINGS A salt concentration dependent increase in the self-faceting transition temperatures is found, and its mechanism elucidated. Our findings allow for a significant enhancement of the emulsions' stability, and provide the physical understanding necessary for future progress in research and applications of self-faceting phenomena in salt-containing emulsions.
Collapse
Affiliation(s)
- Pilkhaz M Nanikashvili
- Department of Physics, Bar-Ilan University, Ramat-Gan 5290002, Israel; Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Alexander V Butenko
- Department of Physics, Bar-Ilan University, Ramat-Gan 5290002, Israel; Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Moshe Deutsch
- Department of Physics, Bar-Ilan University, Ramat-Gan 5290002, Israel; Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eli Sloutskin
- Department of Physics, Bar-Ilan University, Ramat-Gan 5290002, Israel; Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
8
|
Ataeian P, Nasseri R, Tong A, Tam KC. Effect of Oil Phase Transition on the Stability of Pickering Emulsions Stabilized by Cellulose Nanocrystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2737-2745. [PMID: 35171615 DOI: 10.1021/acs.langmuir.2c00107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Emulsifier design is one of the key strategies in interfacial engineering for emulsion stability. In this study, cellulose nanocrystals (CNCs) were used as an interfacial stabilizer to improve the stability of coconut oil (CO)-in-water emulsions. A Pickering emulsion consisting of CO and water was optimized based on four parameters using the response surface methodology and the central composite design. The droplet coverage remained stable during the crystallization of the oil phase when the temperature was reduced below the melting temperature of CO. Fluorescent-labeled CNCs were used to monitor the partitioning of CNC at the O/W interface during the crystallization of CO. The Generation 6 polyamidoamine (G6 PAMAM) dendrimer covalently grafted on the surface of CNC was used as an intrinsic fluorescent dye. Since it displayed similar properties as the emulsifier, it could be used to monitor the CNC coverage on the oil droplets at various temperatures. The fluorescence micrographs showed that the emission of PAMAM CNCs at the O/W interface remained on both the liquid and solid CO droplets, confirming that oil crystallization did not affect the fluorescent CNC coverage on the oil droplets.
Collapse
Affiliation(s)
- Parinaz Ataeian
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| | - Rasool Nasseri
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| | - Alice Tong
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| | - Kam C Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
9
|
Langevin D. Light scattering by liquid surfaces, new developments. Adv Colloid Interface Sci 2021; 289:102368. [PMID: 33561568 DOI: 10.1016/j.cis.2021.102368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/25/2022]
Abstract
The surface light scattering technique is presented, highlighting recent technical improvements and describing studies of various types of surfaces. The technique is non-invasive, but delicate to handle and no commercial instruments are available yet. The technique gives however interesting information difficult to obtain otherwise, for instance on out-of-equilibrium surfaces, surfaces of very low tension, or systems close to solidification. Many studies were performed with monolayers of surface-active molecules at the surface of water. In this case, surface viscoelastic parameters can be determined at high frequencies (10 kHz- 1 MHz), complementing usefully the data obtained at lower frequencies with other techniques. As with these other techniques, inconsistencies such as negative surface viscosities are sometimes reported. The origin of these anomalies is not yet fully clarified. The problem deserves further work, in order to achieve a satisfactory description of the motion of surfactant or polymer-laden surfaces.
Collapse
|
10
|
Sakamoto H, Masunaga A, Takiue T, Tanida H, Uruga T, Nitta K, Prause A, Gradzielski M, Matsubara H. Surface Freezing of Cetyltrimethylammonium Chloride-Hexadecanol Mixed Adsorbed Film at Dodecane-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14811-14818. [PMID: 33222439 DOI: 10.1021/acs.langmuir.0c02807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The surface freezing transition of a mixed adsorbed film containing cetyltrimethylammonium chloride (CTAC) and n-hexadecanol (C16OH) was utilized at the dodecane-water interface to control the stability of oil-in-water (O/W) emulsions. The corresponding surface frozen and surface liquid mixed adsorbed films were characterized using interfacial tensiometry and X-ray reflectometry. The emulsion samples prepared in the temperature range of the surface frozen and surface liquid phases showed a clear difference in their stability: the emulsion volume decreased continuously right after the emulsification in the surface liquid region, while it remained constant or decreased at a much slower rate in the surface frozen region. Compared to the previously examined CTAC-tetradecane mixed adsorbed film, the surface freezing temperature increased from 9.5 to 25.0 °C due to the better chain matching between CTAC and C16OH and higher surface activity of C16OH. This then renders such systems much more attractive for practical applications.
Collapse
Affiliation(s)
- Hiromu Sakamoto
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akihiro Masunaga
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takanori Takiue
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hajime Tanida
- Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
| | - Tomoya Uruga
- Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
| | - Kiyofumi Nitta
- Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
| | - Albert Prause
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany
| | - Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany
| | - Hiroki Matsubara
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
- Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
11
|
Yamakawa A, Hayase H, Hiraki S, Imai Y, Ina T, Nitta K, Tanida H, Uruga T, Takiue T. Condensed Film Formation and Molecular Packing in Cationic Surfactant-Cholesterol and Zwitterionic Surfactant-Cholesterol Systems at the Hexane/Water Interface. J Phys Chem B 2020; 124:9275-9282. [PMID: 32997501 DOI: 10.1021/acs.jpcb.0c07874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A condensed film formation of surfactants with a charged head group at the oil/water interface was achieved by mixing surfactants of different geometric shapes to control molecular packing at the interface. The adsorbed films of mixed tetradecyltrimethylammonium bromide (C14TAB)-cholesterol (Chol) and tetradecylphosphocholine (C14PC)-Chol systems at the hexane/water interface were examined by interfacial tension and X-ray reflectivity measurements. The interfacial tension versus Chol concentration curves have break points because of the expanded-condensed phase transition of the adsorbed film. A two dimensional (2D) phase diagram, phase diagram of adsorption, indicated that 1:1 mixing in the condensed film is energetically favorable because of stronger mutual interaction between different molecules than between the same ones. The electron density profile normal to the interface manifested that the packing of C14TAB (or C14PC) and Chol molecules is like a 2D solid in the condensed state. As C14TAB and C14PC molecules take a corn shape with a large head group (critical packing parameter: CPP ≈ 1/3) and Chol takes an inverted corn shape with a bulky sterol ring (CPP > 1), the mixing of corn shape and inverted corn shape molecules produces well-ordered packing to promote solid-like molecular packing at the interface by energy gain because of vdW interaction between hydrophobic chains in addition to attractive ion-dipole interaction between head groups. Furthermore, the heterogeneous feature in the adsorbed film of the C14TAB-Chol system is explained by an interplay between contact energy and dipole interaction, which contribute to line tension at the domain boundary.
Collapse
Affiliation(s)
- Ayumi Yamakawa
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Haruna Hayase
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Shinya Hiraki
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Yosuke Imai
- Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Toshiaki Ina
- Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
| | - Kiyofumi Nitta
- Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
| | - Hajime Tanida
- Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
| | - Tomoya Uruga
- Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
| | - Takanori Takiue
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan.,Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
12
|
Thinning and thickening transitions of foam film induced by 2D liquid-solid phase transitions in surfactant-alkane mixed adsorbed films. Adv Colloid Interface Sci 2020; 282:102206. [PMID: 32707348 DOI: 10.1016/j.cis.2020.102206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 11/22/2022]
Abstract
Mixed adsorbed film of cationic surfactant and linear alkane at the air-water interface shows two-dimensional phase transition from surface liquid to surface frozen states upon cooling. This surface phase transition is accompanying with the compression of electrical double layer due to the enhancement of counterion adsorption onto the adsorbed surfactant cation and therefore induces the thinning of the foam film at fixed disjoining pressures. However, by increasing the disjoining pressure, surfactant ions desorb from the surface to reduce the electric repulsion between the adsorbed films on the both sides of the foam film. As a result, the foam film stabilized by the surfactant-alkane mixed adsorbed films showed unique thickening transition on the disjoining pressure isotherm due to the back reaction to the surface liquid films. In this review, we will summarize all these features based on the previously published papers and newly obtained results.
Collapse
|
13
|
|
14
|
Cholakova D, Denkov N, Tcholakova S, Valkova Z, Smoukov SK. Multilayer Formation in Self-Shaping Emulsion Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5484-5495. [PMID: 30924339 DOI: 10.1021/acs.langmuir.8b02771] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In several recent studies, we showed that micrometer-sized oil-in-water emulsion droplets from alkanes, alkenes, alcohols, triglycerides, or mixtures of these components can spontaneously "self-shape" upon cooling into various regular shapes, such as regular polyhedrons, platelets, rods, and fibers ( Denkov , N. , Nature 2015 , 528 , 392 ; Cholakova , D. , Adv. Colloid Interface Sci. 2016 , 235 , 90 ). These drop-shape transformations were explained by assuming that intermediate plastic rotator phase, composed of ordered multilayers of oily molecules, is formed beneath the drop surface around the oil-freezing temperature. An alternative explanation was proposed ( Guttman , S. , Proc. Natl. Acad. Sci. USA 2016 113 , 493 ; Guttman , S. , Langmuir 2017 , 33 , 1305 ), which is based on the assumption that the oil-water interfacial tension decreases to very low values upon emulsion cooling. Here, we present new results, obtained by differential scanning calorimetry (DSC), which quantify the enthalpy effects accompanying the drop-shape transformations. Using optical microscopy, we related the peaks in the DSC thermograms to the specific changes in the drop shape. Furthermore, from the enthalpies measured by DSC, we determined the fraction of the intermediate phase involved in the processes of drop deformation. The obtained results support the explanation that the drop-shape transformations are intimately related to the formation of ordered multilayers of alkane molecules with thickness varying between several and dozens of layers of alkane molecules, depending on the specific system. The new results provide the basis for a rational approach to the mechanistic explanation and to the fine control of this fascinating and industrially relevant phenomenon.
Collapse
Affiliation(s)
- Diana Cholakova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy , Sofia University , 1 James Bourchier Avenue , 1164 Sofia , Bulgaria
| | - Nikolai Denkov
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy , Sofia University , 1 James Bourchier Avenue , 1164 Sofia , Bulgaria
| | - Slavka Tcholakova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy , Sofia University , 1 James Bourchier Avenue , 1164 Sofia , Bulgaria
| | - Zhulieta Valkova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy , Sofia University , 1 James Bourchier Avenue , 1164 Sofia , Bulgaria
| | - Stoyan K Smoukov
- Active and Intelligent Materials Lab, School of Engineering and Materials Science , Queen Mary University of London , Mile End Road , London E14NS , UK
| |
Collapse
|
15
|
Matsubara H, Aratono M. Unique Interfacial Phenomena on Macroscopic and Colloidal Scales Induced by Two-Dimensional Phase Transitions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1989-2001. [PMID: 29925234 DOI: 10.1021/acs.langmuir.8b01203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This feature article addresses a variety of unique macroscopic-scale and colloidal-scale interfacial phenomena, such as wetting transitions of oil droplets into molecularly thin films, spontaneous merging and splitting of oil droplets at air-water interfaces, solid monolayer and bilayer formation in mixed cationic surfactant/alkane adsorbed films, switching of foam-film thickness, and oil-in-water emulsion stability. All of these phenomena can be observed using commercial cationic surfactants, liquid alkanes, and water.
Collapse
Affiliation(s)
- Hiroki Matsubara
- Department of Chemistry, Faculty of Science , Kyushu University , Motooka 744 , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Makoto Aratono
- Department of Chemistry, Faculty of Science , Kyushu University , Motooka 744 , Nishi-ku, Fukuoka 819-0395 , Japan
| |
Collapse
|